
Exploring Math with Eigenmath

Some Tapas of Tensors

From Kronecker delta to the Christoffel tensor

Dr. Wolfgang Lindner
dr.w.g.Lindner@gmail.com

Leichlingen, Germany
2023

CONTENTS 1

Contents

1 What is a tensor? 3

2 The Kronecker delta symbol 6
2.1 Definition . 6
2.2 Applications . 7

3 The Permutation symbol 9
3.1 Definition . 9
3.2 Implementation . 9
3.3 Applications . 13

4 The Kronecker product and the outer product 18
4.1 outer . 18
4.2 kronecker . 21
4.3 Applications of kronecker . 23

5 contract 26
5.1 A Potpourri of Tensor Operators - the case of the curl 30

6 The Metric Tensor 33
6.1 Definition . 33
6.2 Implementation and Examples . 34
6.3 The Contravariant Basis . 41

7 The Levi-Civita Tensor 43
7.1 Definition . 43
7.2 Implementation and Examples . 44

8 The Christoffel Symbol 46
8.1 Definition . 46
8.2 Implementation and Examples . 47

9 Appendix: source code of tensorBox 56

CONTENTS 2

Preface

Some tapas of tensors: this booklet would like to whet your appetite to immerse yourself
into the world of tensors with small bites of special tensors to take a closer look at tensor
calculus. For the novice, tensor notations and operations are somehow clumsy and uncom-
fortable and accompanied by heavy calculations. Therefore here is no forbidding theory
presented but instead the focus is on praxis with selected examples - using Eigenmath
as your computer algebraic companion to unburden calculation in this field. We only cite
some of the necessary underlying mathematical definitions and facts to be able to show
the corresponding implementation of the concepts into the language of CAS Eigenmath.

For the theory of Tensor Analysis I strongly recommend the fantastic and crystal-clear
treatment by Pavel Grinfeld. His book [1] focusses on comprehension and illuminates
mathematical concepts by well choosen worked examples and 354 exercises. It is a must
to read. No other text I am aware of can compete with his presentation.

Looking back at my first contact with Eigenmath I was very impressed by the ingenious
and sophisticated treatment of the Riemann tensor in the calculation of the Schwarzschild
metric by George Weigt in [15]. This script is an eye opener and a convincing powerful
example of the amazing efficiency of Eigenmath.

The collection of 25 short Eigenmath example scripts and 27 exercises in this booklet
to cope with tensor operations not only want to help the reader to dive into the theory
of tensors e.g. along Grinfeld’s book, but also to become comfortable with the use of
the CAS Eigenmath in this field. It aims to be a source of help and inspiration for
another round of thoughtful activity with respect to tensors - supplementary to paper
& pencil calculations, now from the perspective of a compact CAS. So have fun on our
tour from the Kronecker delta via the omnipresent metric tensor to the Christoffel
symbol. The forthcoming booklet on Elementary Differential Geometry will e.g. address
the Riemann tensor R and the curvature tensor B to calculate the Gauss resp. the mean
curvature of surfaces in IR3.

For the inspection or running an Eigenmath script no installation is necessary, everything
runs directly online: a click on a link in this text is enough to invoke the corresponding
script - and by a click on the RUN button the calculation is made, allowing further free
inputs form the user. If you own a Mac or Linux PC, there is the option to install the app
Eigenmath free of charge and run the scripts by mark–copy–paste into the Eigenmath
window.
I want to thank George Weigt for his friendly support with tips and hints while writing
these notes.

Wolfgang Lindner
Leichlingen, Germany, January 2023

1 WHAT IS A TENSOR? 3

1 What is a tensor?

We do not give a theoretical definition what a tensor mathematically is. Instead we visit
and explore some specimens and individuals in the zoo of tensors.
Remember, that we denote a vector v = (a1, ...a2) ∈ IRn as a list of entries, e.g. v =
(3, 2) ∈ IR2. In the language of tensors we will denote v often compact as ai, meaning the
whole list or the individual entry at index i, i.e. ai = (a1, ...a2), but a1 = 3
We denote a matrix M =

[
a11 a12
a21 a22

]
∈ IR2,2 as a table of entries, e.g. M =

[
1 2
3 4

]
∈ IR2,2.

In the language of tensors we will denote M often as aij, meaning the whole table or the
individual entry at the index pair (i, j), i.e. aij =

[
a11 a12
a21 a22

]
, but a21 = M [2, 1] = 3.

To sum up:

LEXICON Math Eigenmath
vector a = (a1, a2) in IR2 ai a=(a1, a2)

matrix A =
[
a11 a12
a21 a22

]
aij M=((a11,a12),(a21,a22))

tensor T Tijk Tijk

In a figurative sense, tensors are ’multidimensional’ matrices.

Example 1. We define and test a tensor T , cf. the example by Grinfeld [1], page 94.

EIGENMATH

i = quote(i) -- clear i as global defined imaginary unit ..

-- define/calculate tensor elements of T as function values

Tijk(i,j,k) = i^2*j*k -- .. otherwise this term would be -jk

Tijk --(1)

Tijk(1,2,1) --(2) 1,2,1 = 1st matrix, 2nd row, 1st entry

-- tensor T as multidimensional ’matrix’

Tijk = zero(2, 2,2) -- empty container for tensor T

for(i,1,2, -- three loops to fill container Tijk

for(j,1,2,

for(k,1,2, Tijk[i,j,k] = i^2*j*k)))

Tijk -- (3)

Tijk[1,2,1] -- (4) 1st matrix, 2nd row, 1st entry

• Mark & Copy the blue code lines. B Then Click here and Paste it into the input box �RUN. Press RUN.1

Anyway: B Click here to run the script.

1Do not forget to click into the Online form to give it the focus. You have the focus, if the Eigenmath
Online frame change to blue. Please check, wether all input lines are pasted with the right NEW LINE
ending! Otherwise correct the pasting online.

https://georgeweigt.github.io/eigenmath-demo.html
https://lindnerdrwg.github.io/tensor30.html

1 WHAT IS A TENSOR? 4

Eigenmath output:

Figure 1:
(1): tensor T defined as function Tijk := i2jk.
(2): value of tensor T at index triple (i, j, k) = (1, 2, 1).
(3): tensor T as multidimensional ’matrix’ [(::), (::)].

Comment. We define tensor T in two ways. First T is defined by computing each indi-
vidual tensor value by the term i2jk in (1). Here you have to address the value via Tijk

(..) for the function call. Alternatively T is defined in (2) as a multidimensional matrix
whose values are read in with matrix-access brackets Tijk[..]. In this way the complete
table T of tensor values is available at once.

Exercise 1. (Tensor Tijkl with prescribed values.)

Determine the function and the table-oriented formula for the given tensor T .
Do access for the value 16 in the 3th matrix inside tensor T .

Solution No1: We give the defining relation as function value.

Tijkl(i,j,k,l) = i^2*j*k*l -- defining function term

Tijkl(i,j,k,l) -- the tensor access formula

Tijkl(2,1,2,2) -- grasp value at (2,1,2,2)

Solution No2: We define T as a tensor ’table’.

Tijkl = zero(2, 2,2,2) -- empty container for tensor Tijkl

Tijkl

1 WHAT IS A TENSOR? 5

for(i,1,2, for(j,1,2,

for(k,1,2,

for(l,1,2, Tijkl[i,j,k,l] = i^2*j*k*l))))

Tijkl -- the tensor ’table’ T

Tijkl[2,1,2,2] -- grasp value at (2,1,2,2)

• Mark & Copy the blue code lines. B Then Click here and Paste it into the input box �RUN. Press RUN.

Or B Click here to run the script.

You should see the tensor T as shown in the beginning of the exercise.

Remark. 1. The outputs of the tensors Tijk and Tijkl above demonstrate, that Eigen-
math has a marvelous automatic build-in mechanism to format multidimensional objects
in a clear way, that allows easy inspections. No special format options are necessary.
2. Our ’definition (notation)’ of tensor is a bit sloppy. It is in the broadest sense a
multilinear form, cf. [4, p.26]. The property to be a tensor is related to transformation
rules under a change of coordinates, see [1, p.75 ff]. We will ignore this mathematical
aspect here, because we are mainly interested in the notation and use of tensors using CAS
Eigenmath.

https://georgeweigt.github.io/eigenmath-demo.html
https://lindnerdrwg.github.io/tensor31.html

2 THE KRONECKER DELTA SYMBOL 6

2 The Kronecker delta symbol

In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function
of two variables (’indices’), usually non-negative integers. The function has value 1 if the
inputs are equal, and 0 otherwise.

2.1 Definition

The Kronecker delta is defined by

δij =

{
0 if i 6= j,

1 if i = j.

We implement two versions of the Kronecker δ symbol in Eigenmath.

LEXICON Math Eigenmath
Kronecker δ function δ(i, j) delta(i,j)

Kronecker δ symbol δij deltaij[i,j]

EIGENMATH

-- Define KRONECKER delta function

delta(i,j) = test(i=j, 1, 0) -- (1)

delta11 = delta(1,1) -- (2)

delta11 -- (3)

delta10 = delta(1,0)

delta10

-- Define KRONECKER delta symbol

deltaij = zero(2,2) -- (4)

deltaij[1,1] = 1

deltaij[2,2] = 1

deltaij -- the whole tensor

deltaij[1,2] -- (5), watch the [.] brackets

Comment. Definition (1) is a direct formulation of the mathematical definition. In (2)
we test the function delta on the input pair (1, 1) and catch the result in the identifier
delta11. Its return value in (3) is automatically written in pretty-print LaTeX shape δij
in the Eigenmath-output region - which has nothing to do with the tensorial notation in
(4), which is formatted by Eigenmath also as δij and therefore looks like (3).

2 THE KRONECKER DELTA SYMBOL 7

• B Click here to run the script.

Eigenmath output:

Exercise 2. Argue, whether it is possible to define the Kronecker delta symbol using
the self-written function ’signum’ sign. Do some tests in Eigenmath’s script window.

sign(x) = test(x>0, 1, -1)

deltaij(i,j) = 1 - abs(sign(i-j))

2.2 Applications

2.2.1 The inner product of vectors

The inner product of vectors can be written as

a · b =
n∑

i,j=1

aiδijbj =
n∑
i=1

aibi

where i and j take the values 1, 2, ..., n and the vectors a and b are defined as arbitrary
n-tuples a = (a1, a2, . . . , an) and b = (b1, b2, ..., bn).
We see how in the above equation the values of the Kronecker delta reduce the double
summation over i and j to a single summation over i only. This is a first indication of the
’contract ’ing effect of δij.
In the following demo it is comfortable to use the function definition of δij.

EIGENMATH

delta(i,j) = test(i=j, 1, 0)

ip(a,b) = sum(i,1,dim(a), -- inner product via double sum

sum(j,1,dim(b), a[i]*delta(i,j)*b[j])) -- (1)

a=(1,2,3)

b=(3,2,1)

ip(a,b) -- (2)

dot(a,b) -- (3)

https://lindnerdrwg.github.io/tensor32.html

2 THE KRONECKER DELTA SYMBOL 8

Eigenmath output: both calculations using function ip(.) in (2) or the build-in dot-
product dot(.) in (3) give the same value 10.
• B Click here to run the script.

2.2.2 The Einstein summation convention

Sometimes the Kronecker delta δij is written with one index as superscript and the other
as subscript, i.e. δij = δij. If one now writes δii = δii, this is interpreted in tensor language
in the sense of Einstein as a hidden summation behind the scene in the ambient space,
e.g. in IR3 to suppress the summation sign

∑
in tensor expressions.

B (Einstein summation convention) A summation in a tensor expression is implicit done,
when an index appears twice, once as a subscript (’lower index’) and once as a superscript
(’upper index’).

Ergo, summation symbols can be ’eliminated or forgotten’ by using Einstein’s convention,
giving very compact tensorial notations - but with the drawback to decode the terms in your
mind. The application of the Einstein-summation-convention is often called a contraction:

δii = δii ≡
3∑
i=1

δii in IR3

↓ contract

δii

↓ i.e. sum

3

Here is the Einstein summation convention applied in Eigenmath:

EIGENMATH

-- EINSTEIN summation convention

delta(i,j) = test(i=j, 1, 0)

deltaii = sum(i,1,3, delta(i,i)) -- Einstein’s implicit sum in R^3

deltaii

• Mark & Copy the blue code lines. B Then Click here and Paste it into the input box �RUN. Press RUN.

Eigenmath output: δij = 3

Remark. The dot product a · b =
∑n

i=1 aibi of two vectors in 2.2.2 can be thought of as
a contraction a la Einstein’s convention. The vectors are first multiplied element-wise
and then contracted, i.e. ’summed up’. Therefore, we may write the short tensor notation
a · b = aibi, meaning expanded and decoded a · b =

∑n
i=1aibi.

https://lindnerdrwg.github.io/tensor33.html
https://georgeweigt.github.io/eigenmath-demo.html

3 THE PERMUTATION SYMBOL 9

3 The Permutation symbol

The permutation symbol is a three-index function sometimes also called the alternating
symbol or the signature. There are several common notations for the symbol: some authors
uses the Greek epsilon character εijk, others uses the curly variant εijk or the Latin lower
case eijk. We will use the the latter, because we will follow Grinfeld and reserve the Greek
epsilon notation for the Levi-Civita symbol, cf. [1, p.134]. The permutation tensor is
heavily used to define advanced tensorial objects such as the determinant, the curl or the
cross product of vectors, cf. [17].

3.1 Definition

In two dimensions, the permutation symbol is defined by:

eij =

+1 if (i, j) = (1, 2)

−1 if (i, j) = (2, 1)

0 if i = j

In three dimensions, the permutation symbol is defined by:

eijk =

+1 if (i, j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2),

−1 if (i, j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3),

0 if i = j, or j = k, or k = i

In four dimensions (and also in 2D or 3D), the permutation symbol is defined by:

eijkl =

+1 if (i, j, k, l) is an even permutation of (1, 2, 3, 4)

−1 if (i, j, k, l) is an odd permutation of (1, 2, 3, 4)

0 otherwise

Remark. Be warned: some authors call the permutation symbol the Levi-Civita symbol.

LEXICON Math Eigenmath
permutation tensor : eijk eijk or Eijk

3.2 Implementation

3.2.1 ... of the two dimensional permutation symbol eij

EIGENMATH

-- permutation symbol als function E

Eij(i,j) = j-i

Eij(1,2)

Eij(1,1)

3 THE PERMUTATION SYMBOL 10

-- permutation tensor eij as table

eij = zero(2,2) -- container

for(i,1,2, for(j,1,2, eij[i,j]=j-i)) -- fill container

eij -- the permutation symbol

eij[1,2] -- result on index pair (1,2)

Eigenmath output:

• B Click here to run the script.

Exercise 3. Define function Eij(i,j) using the math definition for eij from above.

3.2.2 ... the three dimensional permutation symbol eijk

EIGENMATH

-- permutation symbol as function, i.e.

-- eijk is 1 if (i,j,k) is an even permutation of (1,2,3),

-- -1 if (i,j,k) is an odd permutation of (1,2,3),

-- 0 if any index is repeated.

Eijk(i,j,k) = test(

or((i,j,k)==(1,2,3), (i,j,k)==(2,3,1), (i,j,k)==(3,1,2)), +1,

or((i,j,k)==(3,2,1), (i,j,k)==(1,3,2), (i,j,k)==(2,1,3)), -1,

or(i==j, j==k, k==i), 0)

Eijk(1,2,3)

Eijk(2,1,3)

Eijk(2,2,1)

Eigenmath output:

Now the version with table access:

EIGENMATH

eijk = zero(3,3,3)

n = 3

for(i,1,n,

for(j,1,n,

https://lindnerdrwg.github.io/tensor34.html

3 THE PERMUTATION SYMBOL 11

for(k,1,n, eijk[i,j,k]=(j-i)*(k-i)*(k-j)/2)))

eijk

--test:

eijk[1,2,1] -- access to entry with index list (1,2,1)

a = eijk[1,2,3] + eijk[2,1,3]

a

b = eijk[1,2,3] * eijk[2,3,1]

b

Eigenmath output:

• B Click here to run the script.

Remark. The Eigenmath output of symbol eijk is verified by the two visualizations of
this function:

Figure 2:
Left: 3D image of eijk with 3 layered matrix components.
Right: values of eijk in a 3D coordinate cube in IR3.
Cf. both pictures borrowed from [17].

Exercise 4. Define function Eijk(i,j,k) using the Eigenmath definition eijk(i,j,k)

= (j-i)*(k-i)*(k-j)/2. Argue for the correctness of the formula and test it on some
examples e.g. eijk(3,2,1) = -1.

https://lindnerdrwg.github.io/tensor01.html

3 THE PERMUTATION SYMBOL 12

Remark. The above formulas use the alternative explicit expression of the permutation
symbol as a product of numbers using the signum function (denoted sign) as helper
function:

εa1a2a3...an =
∏

1≤i<j≤n

sign(aj − ai)

Exercise 5. G. Weigt, the author of Eigenmath, defined eijk explicit in this way:

EIGENMATH (G. Weigt)

eijk = zero(3,3,3)

eijk[1,2,3] = 1

eijk[2,3,1] = 1

eijk[3,1,2] = 1

eijk[3,2,1] = -1

eijk[1,3,2] = -1

eijk[2,1,3] = -1

eijk -- the tensor

Explain.

3.2.3 ... the 4D permutation symbol eijkl

In what follows we will not use more than the 4 dimensional version of the permutation
symbol.

EIGENMATH

-- permutation symbol eijkl as TABLE

eijkl=zero(4,4,4,4)

n=4

for(i,1,n, for(j,1,n, for(k,1,n, for(l,1,n,

eijkl[i,j,k,l] = (i-j)*(i-k)*(i-l)*(j-k)*(j-l)*(k-l)/12))))

eijkl

eijkl[3,4,2,1] -- -1

eijkl[1,2,3,4] -- 1

eijkl[1,2,1,4] -- 0 ok

-- permutation symbol eijkl as FUNCTION

Eijkl(i,j,k,l) = (i-j)*(i-k)*(i-l)*(j-k)*(j-l)*(k-l)/12

Eijkl(3,4,2,1) -- -1

Eijkl(1,2,3,4) -- 1

Eijkl(1,2,1,4) -- 0 ok

3 THE PERMUTATION SYMBOL 13

Eigenmath output:

• B Click here to open this file.

♥ The last output should convince you of the magnificent cool suitability of Eigenmath
for doing tensor calculus without pain - and to present ’tensors’ (symbols) visually to
inspect their action.

Exercise 6. Define the permutation symbol eijkl in Eigenmath using the G. Weigt-
way, i.e. use a table of just enough prescribed values at quadruple index positions - and to
make tensors printed visually to inspect their action.
[Hint: look carefully into the last Eigenmath output. How many entrys do you need?]

3.3 Applications

As a proof of concept we show how the mathematical concepts of the determinant of a
square matrix, the cross product of two vectors and the curl of a vector field can be defined
and calculated using tensor technics with Eigenmath.

3.3.1 Determinants

If A = (aij) ∈ IRn×n is a n-by-n square matrix, the determinant is defined and calculated
through the so-called Leibniz formula using sigma notation,

det(A) =
∑
σ∈Sn

sgn(σ)a1,σ1 · · · an,σn

Using pi notation, this is in short detA =
∑

σ∈Sn

(
sgn(σ)

∏n
i=1 ai,σ(i)

)
. With the permuta-

tion tensor, the Leibniz formula may be written as det(A) =
∑

i1,i2,...,in
εi1···ina1,i1 · · · an,in ,

where the sum is taken over all n-tuples of integers in {1, . . . , n}.

This is a horrible formula, which no one really wants to compute this way by paper’n
pencil. So let’s do Eigenmath the work for us.

https://lindnerdrwg.github.io/tensor02.html

3 THE PERMUTATION SYMBOL 14

For the special case of a 3× 3 matrix A we have

det(A) =
3∑
i=1

3∑
j=1

3∑
k=1

εijka1ia2ja3k

Here the permutation symbol εijk acts as a filter, which sort out the proper ones of the
whole 27 summands.

EIGENMATH

A=((1,2,3),(4,5,6),(7,8,8)) -- a 3-by-3 matrix

Eijk(i,j,k) = (j-i)*(k-i)*(k-j)/2 -- permutation symbol

Det(A) = sum(i,1,3,

sum(j,1,3,

sum(k,1,3, Eijk(i,j,k)*A[1,i]*A[2,j]*A[3,k])))

Det(A) -- determinant via LEIBNIZ formula

det(A) -- build-in det-function

Eigenmath output: 3
• B Click here to run this script.

Exercise 7. Define an Eigenmath function Det2 analog to the example above and cal-
culate the determinant of matrix A = ((1, 2), (7, 8)).

3.3.2 Cross product

Given two linearly independent vectors a and b in IR3, the cross product a× b is a vector,
that is perpendicular to both a and b, i.e. therefore perpendicular to the plane containing
them. Using column vector notation, we have the explicit defining formula for c = a× b:c1c2

c3

 =

a2b3 − a3b2a3b1 − a1b3
a1b2 − a2b1

In any basis, the cross-product a× b is given by the tensorial formula

(a× b)k = Eijka
ibj

Einstein . . . ↓ . . . expanded

(a× b)k =
3∑
i=1

3∑
j=1

Eijka
ibj

https://lindnerdrwg.github.io/tensor03.html

3 THE PERMUTATION SYMBOL 15

i.e. with the suppressed summation expanded, we get the correct formula for the translation
of the cross product term into Eigenmath code. Therein Eijk is the permutation symbol,
which respects the positions of the indices. So we have:

EIGENMATH

Eijk(i,j,k) = (j-i)*(k-i)*(k-j)/2 -- permutation symbol

do(E1=(1,0,0), E2=(0,1,0), E3=(0,0,1)) -- basis in R^3

E=(E1,E2,E3)

Cross(a,b) = sum(i,1,3,

sum(j,1,3, sum(k,1,3, -- implicit EINSTEIN summation

Eijk(i,j,k) * E[i]*a[j]*b[k]))) -- the tensorial formula

Cross((1,2,3),(4,5,6)) -- test tensorial Cross product formula

cross((1,2,3),(4,5,6)) -- check using build-in cross

Eigenmath output: [-3, 6, -3]

• B Click here to run this script.

Exercise 8. If you only need the first component axb1 of the cross product of a and b,
you can do: axb1 = sum(j,1,3, sum(k,1,3, Eijk(1,j,k)*a[j]*b[k])). Verify it.

Exercise 9. Program the cross product using the explicit formula given above.

3.3.3 Curl

curl F 2 is a vector operator that is used in vector calculus to describe the circulation of
a 3D differentiable vector field F : IR3 → IR3, given through its three component functions
F (x, y, z) = (Fx(x, y, z), Fy(x, y, z), Fz(x, y, z)). We then have the definition:

(curl F)(x, y, z) =

(
∂Fz
∂y
− ∂Fy

∂z
,
∂Fx
∂z
− ∂Fz

∂x
,
∂Fy
∂x
− ∂Fx

∂y

)
The equation for each component (curl F)k is obtained by exchanging each occurrence
of a subscript y, z, x in cyclic permutation (y, z) → (z, x) → (x, y) by focussing at the
denominators.

Implementation No1: (classic vectorial version) We implement the classic definition from
above in Eigenmath and test it with the vector field F (x, y, z) = (xy,− sin(z), 1):

2In classic scientific literature in Europe, the alternative notation rotF (read: rotation F) is used.

https://lindnerdrwg.github.io/tensor04.html

3 THE PERMUTATION SYMBOL 16

EIGENMATH

Curl(F) = do(

Cx = d(F[3],y)-d(F[2],z),

Cy = d(F[1],z)-d(F[3],x),

Cz = d(F[2],x)-d(F[1],y),

C = (Cx,Cy,Cz),

C)

F = (x*y,-sin(z),1) -- example vector field [Marsden, p.917]

Curl(F) -- testing the definition

curl(F) -- check against build-in curl

Eigenmath output: [cos(x), 0, -x]

• Mark & Copy the blue code lines. B Then Click here and Paste it into the input box �RUN. Press RUN.

Implementation No2: (tensorial version) If we write F = (F1, F2, F3) as a function of
position x = (x1, x2, x3) in IR3 using index notion, then the ith component of the curl of
F equals (summation suppressed according the Einstein summation convention!)

(curlF)i(x) = εijk
∂

∂xj
F k(x)

in tensorial notation, which follows from the cross product definition in 3.2.2, substituting
components of the gradient vector. Here we do not need any memorizing help.

EIGENMATH

F = (x*y, -sin(z), 1) -- differential vector field in R^3

X = (x,y,z) -- coordinates in R^3

Eijk(i,j,k) = (j-i)*(k-i)*(k-j)/2 -- permutation symbol

Curl(F,i) = sum(j,1,3, -- ith component of curl

sum(k,1,3, Eijk(i,j,k) * d(F[k],X[j])))

Curl(F,1) -- 1st component of curl F

Curl(F,2)

Curl(F,3)

CurlF = (Curl(F,1), Curl(F,2), Curl(F,3))

CurlF -- curl F as vector field

Eigenmath output: [cos(x), 0, -x]

• B Click here to run this script.

https://georgeweigt.github.io/eigenmath-demo.html
https://lindnerdrwg.github.io/tensor05.html

3 THE PERMUTATION SYMBOL 17

Implementation No3: (using tensor operators) The following wonderful compact imple-
mentation is by G. Weigt. He use again the ith component tensor formula of the curl of
F , i.e. (curlF)i(x) = εijk

∂
∂xj
F k(x). Because we call the tensor operators contract(.)

and outer(.), we have to use the (multidimensional) matrix table version eijk of the
permutation symbol. We explain the following two constructions curl1 and curl2 later,
but would like to whet your appetite for the following chapter, where these tensor operators
incl. the Kronecker product ⊗ are themed.

EIGENMATH

eijk = zero(3,3,3) -- Define permutation symbol as TABLE

eijk[1,2,3] = 1

eijk[2,3,1] = 1

eijk[3,1,2] = 1

eijk[3,2,1] = -1

eijk[1,3,2] = -1

eijk[2,1,3] = -1

F = (x*y, -sin(z), 1) -- differential vector field in R^3

curl1(F) = contract(contract(outer(eijk, d(F,(x,y,z))), 3,4),2,3)

curl1(F)

curl2(F) = contract(dot(eijk, d(F,(x,y,z))), 2,3)

curl2(F)

Eigenmath output: [cos(x), 0, -x]

• B Click here to run this script.

Exercise 10. Calculate the the curl of the following vector fields [Mardsen, p. 914 ff].
a. F (x, y, z) = (ez,− cos(xy), z3y).
b. F (x, y, z) = (xy cos(x),−yz sin(x),−xy tan(y)).
c. F (x, y, z) = (yz,−xz, xy) · 1/(x2 + y2 + z2).
d. F (x, y, z) = (yez, xez, xyez).

Exercise 11. Let f : IR3 → IR be defined through f(x, y, z) = x2yz3 and A : IR3 → IR3 be
defined through A(x, y, z) = (xz,−y2, 2x2y).
Calculate curl(A) and curl(f · A), cf. [8, p. 151].

Exercise 12. Let f be f(x, y, z) = xy + yz + zx and A(x, y, z) = (x2y, y2z, z2).
Calculate curl(A) and curl(f · A) at the point P = (3,−1, 2), cf. [8, p. 151].

Exercise 13. If A : IR3 → IR3 is defined through A(x, y, z) = (3xz2,−yz, x+ 2z),
calculate curl curl(A), cf. [8, p. 158].

https://lindnerdrwg.github.io/tensor06.html

4 THE KRONECKER PRODUCT AND THE OUTER PRODUCT 18

4 The Kronecker product and the outer product

4.1 outer

Eigenmath’s outer function implements the tensor operator
outer
⊗ of tensor algebra. Given

two tensors (i.e. multidimensional ’arrays’ or tables of numbers), their outer product is
again a tensor. The outer product of the tensors T and S is a tensor with dimension
(dim(T), dim(S)). We define the outer product in the special case of vectors, leave the
definition of the outer product of matrices for the reader, but give the definition for the
general case of two tensors, which includes the case of matrices, cf. [19].

4.1.1 Definition of outer

a. Given two vectors u =

u1
u2
...
um

 and v =

v1
v2
...
vn

 of size m×1 and n×1, their outer product,

denoted u
outer
⊗ v is defined as the m× n matrix obtained by multiplying each element of u

by each element of v :

u
outer
⊗ v =

u1v1 u1v2 . . . u1vn
u2v1 u2v2 . . . u2vn

...
...

. . .
...

umv1 umv2 . . . umvn

In tensorial index notation: (u

outer
⊗ v)ij = uivj

b. Given two tensors T and S with dimensions (k1, k2, . . . , km) and (l1, l2, . . . , ln), their

outer product T
outer
⊗ S is a tensor with dimensions (k1, k2, . . . , km, l1, l2, . . . , ln) and entries

(T⊗ S)i1,i2,...im,j1,j2,...,jn = ui1,i2,...,im · vj1,j2,...,jn

The concept of the outer product
outer
⊗ is best understood by looking at several examples.

4.1.2 Examples of the use of outer

Example 2. (the outer product of two vectors)

EIGENMATH

u=(1,2,3)

v=(3,2,1)

outer(u,v)

• Mark & Copy the blue code lines. B Then Click here and Paste it into the input box �RUN. Press RUN.

https://georgeweigt.github.io/eigenmath-demo.html

4 THE KRONECKER PRODUCT AND THE OUTER PRODUCT 19

Eigenmath output:

Example 3. (the outer product of two matrices with arbitrary dimensions)

EIGENMATH

A = ((1, 2, 3),(4, 5, 6)) -- a 2-by-3 matrix

A

B = ((1,1),(1,1)) -- ones(2), a 2-by-2 matrix

B

outer(A,B) -- a (2,3,2,2) tensor (multidim. matrix)

• Mark & Copy the blue code lines. B Then Click here and Paste it into the input box �RUN. Press RUN.

Eigenmath output:

Obviously outer respects the block structure of both input matrices.

Example 4. (the outer product of two tensors with arbitrary dimensions)

EIGENMATH

i = quote(i) -- clear name i (otherwise i^2=1 ;)

T = zero(2,2,2) -- a (2,2,2) tensor

for(i,1,2, for(j,1,2, for(k,1,2, T[i,j,k] = i^2*j*k))) -- initialize T

S = zero(2,2,2,2) -- a (2,2,2,2) tensor

for(i,1,2, for(j,1,2, for(k,1,2, for(l,1,2, S[i,j,k,l] = i^2*j*k*l))))

T

S

TT = outer(T,T)

TT

TS=outer(T,S)

TS

https://georgeweigt.github.io/eigenmath-demo.html

4 THE KRONECKER PRODUCT AND THE OUTER PRODUCT 20

• B Click here to run this script.

Eigenmath output:

Here is tensor TS:

Exercise 14. Let A = ((x, y), (z, u)) and B = ((a, b), (c, d)).

Calculate A
outer
⊗ B, B

outer
⊗ (A

outer
⊗ B) and (A

outer
⊗ B)

outer
⊗ (A

outer
⊗ B)

using the build-in function outer. Imagine by mind what output is to be expected.

Exercise 15. (The inner product is the contract of the outer product.)
Given two vectors u = (u1, u2, . . . , um) and v = (v1, v2, . . . , vn).
Verify: The dot product u • v=dot(u,v) is the contract (trace) of the outer product.

https://lindnerdrwg.github.io/tensor07.html

4 THE KRONECKER PRODUCT AND THE OUTER PRODUCT 21

Exercise 16. Think about the algebraic properties of the outer product
outer
⊗ .

Chheck, if it is associative, commutative, bilinear etc.

4.2 kronecker

Eigenmath’s kronecker function implements the tensor operator ⊗ of tensor algebra, i.e.
kronecker(A,B) returns the Kronecker tensor product of tensors (e.g. matrices) A and
B. The Kronecker product is best understood by thinking about block matrices. If A is a
n×p matrix and B is a m×q matrix, then the Kronecker product A⊗B is a block matrix
that is build from blocks of B, where each block is multiplied by an element of A, cf. [16].

4.2.1 Definition of kronecker

Let’s begin with the inevitable theoretical mathematical definition.
Let A be an m × n matrix and let B an p × q matrix. Then the Kronecker product of A
and B, symbolically written A⊗B, is the m · p× n · q matrix explicitly defined by

A⊗B = (aij ·B) =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

More descriptive: If A is an m-by-n matrix and B is a p-by-q matrix, then kronecker(A,B)

is an m · p-by-n · q matrix, which is calculated by taking all possible products between the
elements of A and those of B, i.e. the Kronecker tensor product of A and B is a large
matrix formed by multiplying B by each element of A.

Example 5.

1 2
3 4
5 6

⊗(7 8
9 0

)
=

1 ·
(

7 8
9 0

)
2 ·
(

7 8
9 0

)

3 ·
(

7 8
9 0

)
4 ·
(

7 8
9 0

)

5 ·
(

7 8
9 0

)
6 ·
(

7 8
9 0

)

=

7 8 14 16
9 0 18 0

21 24 28 32
27 0 36 0

35 40 42 48
45 0 54 0

4.2.2 Examples of the use of kronecker

EIGENMATH input:

kronecker(((1,2),(3,4),(5,6)), ((7,8),(9,0)))

Eigenmath output:
cf. example 5.

4 THE KRONECKER PRODUCT AND THE OUTER PRODUCT 22

We now repeat the examples of outer to contrast them with the results of kronecker.

Example 6. (the Kronecker product of two vectors)

EIGENMATH

u=(1,2,3)

v=(3,2,1)

kronecker(u,v)

• Mark & Copy the blue code lines. B Then Click here and Paste it into the input box �RUN. Press RUN.

Eigenmath output:

In contrast to outer the output of kronecker has stacked the rows to one long column.

Example 7. (the Kronecker product of two matrices with arbitrary dimensions)

EIGENMATH

A = ((1, 2, 3),(4, 5, 6)) -- a 2-by-3 matrix

A

B = ((1,1),(1,1)) -- ones(2), a 2-by-2 matrix

B

kronecker(A,B) -- a (2,3,2,2) tensor (multidim. matrix)

• Mark & Copy the blue code lines. B Then Click here and Paste it into the input box �RUN. Press RUN.

Eigenmath output:

In contrast to outer the output of kronecker has cleared the brackets of the inner matrices
to give one single matrix. Obviously kronecker ’flattens’ the block structure of both input
matrices.

Remark. The Kronecker product of two tensors with arbitrary dimensions is currently
not implemented in Eigenmath. So there is no return value e.g for the tensor product
(T [i, j, k] = i2 ∗ j ∗ k)⊗ (S[i, j, k, l] = i2 ∗ j ∗ k ∗ l).

https://georgeweigt.github.io/eigenmath-demo.html
https://georgeweigt.github.io/eigenmath-demo.html

4 THE KRONECKER PRODUCT AND THE OUTER PRODUCT 23

Exercise 17. Let A = ((x, y), (z, u)) and B = ((a, b), (c, d)).
Calculate A⊗B, B⊗(A⊗B) and (A⊗B)⊗(A⊗B)

Exercise 18. Write a function ones(n), which returns a n-by-n matrix whose all entries
are 1. E.g.

EIGENMATH

n =2

ones(n)

Eigenmath output: ((1,1),(1,1))

4.3 Applications of kronecker

4.3.1 The direct sum ⊕

Let A be an m × n matrix and B an p × q matrix. Then the direct sum of A and B,
symbolically written A⊕B, is the m · p× n · q matrix explicitly defined by

A⊕B =

(
A O
O B

)
i.e. for any arbitrary matrices A and B the direct sum (aka tensor sum) is defined as the
block diagonal matrix of A and B. Both zero matrices O are of appropriate dimension.

Example 8. (cf. [9, p. 7], [11, p. 28])

(
1 2 3

)
⊕
(

4 5
6 7

)
=

 (1 2 3
) (

0 0
)(

0 0 0
0 0 0

) (
4 5
6 7

) =

1 2 3 0 0
0 0 0 4 5
0 0 0 6 7

We show how the direct sum could be used in Eigenmath using function kronecker.

EIGENMATH

A=((1,2),(3,4))

B=((4,5),(6,7))

U=((1,0), -- Upper

(0,0))

L=((0,0), -- Lower

(0,1))

kronecker(U,A)

directSum(A,B)= kronecker(U,A) + kronecker(L,B)

directSum(A,B)

4 THE KRONECKER PRODUCT AND THE OUTER PRODUCT 24

• B Click here to run this script.

Eigenmath output:

The first matrix is the result of the call kronecker(U,A) and the second matrix is the
result of the call directSum(A,B)

Exercise 19. Calculate the direct sum of A and B from example 9 using directSum(A,B)

4.3.2 Construction of the basis of IR4 from the basis of IR2, cf. [9, p. 7]

Let u = (1, 0), v = (0, 1) be the canonical standard basis in IR2. Verify, that (u ⊗ u, u ⊗
v, v ⊗ u, u⊗ u) is the standard basis in IR2.
We use Eigenmath’s kronecker(.).

EIGENMATH

kron(A,B)=kronecker(A,B)

u=(1,0)

v=(0,1)

-- Basis R^4

kron(u,u)

kron(u,v)

kron(v,u)

kron(v,v)

• Mark & Copy the blue code lines. B Then Click here and Paste it into the input box �RUN. Press RUN.

Eigenmath output: [1, 0, 0, 0], ..., [0, 0, 0, 1]

Exercise 20. Construct an orthonormal basis of C4 with the help of kronecker.
Hint: start with u = 1/

√
2 · (1, i) and u = 1/

√
2 · (1,−i).

Exercise 21. (cf. [12, p. 112]) A basis in the Hilbert space M2(C) of 2-by-2 matrices is
given by the Pauli spin matrices

σ0 =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
including the 2-by-2 identity matrix. Use this orthonormal basis and the Kronecker prod-
ucts σj ⊗ σk with j, k = 0, 1, 2, 3 to find a basis in the Hilbert space M4(C).

https://lindnerdrwg.github.io/tensor08.html
https://georgeweigt.github.io/eigenmath-demo.html

4 THE KRONECKER PRODUCT AND THE OUTER PRODUCT 25

Solution:

EIGENMATH

kron(A,B)=kronecker(A,B)

-- Pauli spins is basis in M2(C)

s(0)=((1,0),(0,1))

s(1)=((0,1),(1,0))

s(2)=((0,-i),(i,0))

s(3)=((1,0),(0,-1))

for(j,0,3,

for(k,0,3,

print(kron(s(j),s(k))) -- Basis M4(C)

))

• B Click here to run this script.

Exercise 22. Do some more of the examples 2.1 . . . 2.12 in [12] using Eigenmath.

https://lindnerdrwg.github.io/tensor09.html

5 CONTRACT 26

5 contract

The contraction of a tensor acts by setting equal a pair of indices3 of the tensor to each
other and summed over. In Einstein notation this summation is implicit in the notation.
The result is a new tensor with order reduced by 2, cf. [20].
Contraction of tensors is heavily used in Differential Geometry or in General Relativity.
Tensor contraction is a generalization of the trace of a matrix.

5.0.1 Definition of contract

Let T = T ij be a tensor. Then its contraction is

T ijδi
j = T jj =

n∑
j=1

T jj = T 1
1 + · · ·+ T nn

In Eigenmath this is expressed with the call of contract(T,i,j).

• A general contraction is denoted by labeling one (covariant, lower) index and one (con-
travariant, upper) index with the same letter, summation over that index being implied by
the summation convention. The resulting contracted tensor inherits the remaining indices
of the original tensor, cf. [20].
• For example, contracting a tensor T of type (2,2) on the second and third indices (i.e.
b) to create a new tensor U of type (1,1) is written as

T abbc =
∑
b

T abbc = T a11c + T a22c + · · ·+ T annc = Ua
c

Example 9.
EIGENMATH

u=(1)

contract(u)

A = ((1, 2, 3),(4, 5, 6))

-- contract(A) -- unequal tensor dimensions !

B = ((1,2),(3,4)) -- contract = trace

contract(B)

Eigenmath output:
1 error 5

Comment. contract(B) contracts (’adds’) the diagonal elements of B, i.e. 1 + 4 = 5.
Tensor B (a matrix of shape 2-by-2) is reduced into a new tensor of type 1-by-1, i.e. a
number 5.

3one a subscript (upper) index, the other a superscript (lower) index

5 CONTRACT 27

Example 10.
EIGENMATH

i = quote(i) -- clear i

T = zero(2, 2,2)

for(i,1,2, for(j,1,2, for(k,1,2, T[i,j,k] = i^2*j*k)))

T

contract(T,1,2) -- (1)

contract(T,2,3) -- (2)

• B Click here to run this script.

Eigenmath output:

Comment. In (1) the command contract(T,1,2) adds (1+8, 2+16) = (9, 18) =
[
1
2

]
+
[
8
16

]
,

i.e. it adds the 1st column of 1st submatrix to the 2nd column of the second submatrix.
In (2) the command contract(T,2,3) adds (1 + 4, 4 + 16) = (5, 20) =

[
1
4

]
+
[
4
16

]
, i.e it

adds the trace of 1st submatrix to the trace of the second submatrix. Tensor T (an array
of shape 2-by-2-by-2) is reduced into a new tensor of type 2-by-1, i.e. a vector.
Let’s elaborate a bit on it. If we fill tensor T with arbitrary values we are able to follow
the path of picking the right entries of T by contract(.,1,2):

T = zero(2, 2,2) -- an tensor with 2^3=8 general elements

"contract(T,1,2):"

-- tensor index

-- i j k

-- 1 2 3

-- . . (..,1,2) : choose all entries with ’i=j’ aka ’1=2’

-- i.e. all entries of type 11x and 22x.

T[1,1,1] = a -- .

T[1,1,2] = b -- ..

T[1,2,1] = c

T[1,2,2] = d

T[2,1,1] = e

T[2,1,2] = f

https://lindnerdrwg.github.io/tensor10.html

5 CONTRACT 28

T[2,2,1] = g -- . = a + g

T[2,2,2] = h -- .. = b + h

That is explicit: contract(T,1,2) =
[◦+ ◦
◦◦+ ◦◦

]
=
[
T [1,1,1]+T [2,2,1]
T [1,1,2]+T [2,2,2]

]
.

Now look at contract(.,2,3):

"contract(T,2,3):"

T = zero(2, 2,2)

-- tensor index

-- i j k

-- 1 2 3

-- . . (..,2,3) : choose all entries with ’j=k’ aka ’2=3’

-- i.e. all entries of type x11 and x22.

T[1,1,1] = a -- .

T[1,1,2] = b

T[1,2,1] = c

T[1,2,2] = d -- . = a + d

T[2,1,1] = e -- ..

T[2,1,2] = f

T[2,2,1] = g

T[2,2,2] = h -- .. = e + h

That is explicit: contract(T,2,3) =
[◦+ ◦
◦◦+ ◦◦

]
=
[
T [1,1,1]+T [1,2,2]
T [2,1,1]+T [2,2,2]

]
.

5 CONTRACT 29

Example 11.
EIGENMATH

S = zero(2, 2,2,2)

for(i,1,2, for(j,1,2, for(k,1,2, for(l,1,2,

S[i,j,k,l] = i^2*j*k*l))))

S

contract(S) -- (1), i.e. contract(S)=contract(S,1,2)

contract(S,2,3) -- (2)

contract(S,1,3) -- (3)

• B Click here to run this script.

Eigenmath output:

Comment. In (1) and (3) contract(S)≡contract(S,1,2)=contract(S,1,3) adds (1 +
8, 2 + 16) = (9, 18) =

[
1
2

]
+
[
8
16

]
, i.e. it adds the 1st column of 1st ’sub’matrix to the 2nd

column of the second ’sub’matrix.
In (2) the command contract(S,2,3) picks the trace of each matrix-part of S and puts
it as entry at the corresponding position in the new reduced tensor of type 2-by-2, i.e. a
matrix.

Exercise 23. Watch the output of contract by looking at an arbitrary (2,2,2,2) tensor
S and elaborate a bit on it as in example 11. Therefore fill tensor S with arbitrary
values and follow the path of picking the right entries of S by contract(.,1,2) and
contract(.,2,3):

EIGENMATH

S = zero(2, 2,2,2) -- we need 2^4=16 elements

S[1,1,1,1] =a

S[1,1,1,2] =b

-- ...

S[2,2,2,1] =o

S[2,2,2,2] =p

https://lindnerdrwg.github.io/tensor11.html

5 CONTRACT 30

5.1 A Potpourri of Tensor Operators - the case of the curl

In chapter 3.2.3 we looked at the wonderful compact Eigenmath implementation of the
curl by G. Weigt. We started with an arbitrary vector-valued function F : IR3 → IR3

defined through its component functions F = (F1, F2, F3) in the coordinates (x1, x2, x3).
Then we used the ith component tensorial formula of the curl of F , i.e.

(curlF)i(x) = εijk
∂

∂xj
F k(x) (5.1)

Task: How to translate formula (5.1) to Eigenmath?

Solution: Analyse formula (4.1). Index i is ’free’ in the defining term in the sense that
it is not seen twice on the RHS of (4.1). But index j and k are to be seen twofold on the
RHS - each one once as superscript (’upper index’) and once as subscript (’lower index’).
Therefore there are 2 implicit hidden summation processes involved in accordance with the
Einstein summation convention. So we have three phases A → B → C to construct the
term in Eigenmath:

εijk ·
∂

∂xj
F k(x)

A ↓ outer to build products

B ↓ contract over k, i.e. sum

C ↓ contract over j, i.e. sum

We are able to use Eigenmath, because we know the ingredients, i.e. the tensor operators
contract, outer and the (multidimensional) table version eijk of the permutation symbol.

EIGENMATH

F = (F1(),F2(),F3()) -- the vector-valued generic function F=(F1,F2,F3)

eijk = zero(3,3,3) -- the permutation symbol eijk

eijk[1,2,3] = 1

eijk[2,3,1] = 1

eijk[3,1,2] = 1

eijk[3,2,1] = -1

eijk[1,3,2] = -1

eijk[2,1,3] = -1

eijk

d(F,(x1,x2,x3)) -- the JACOBI matrix of F of type 3x3

5 CONTRACT 31

-- ------ A -> B -> C becomes the curl of F

A = outer(eijk, d(F,(x1,x2,x3)))

-- |

-- eijk , dF

-- |

-- outer

-- |

-- (eijk * dF_k /dx_j)

-- 123 4 5

-- A is now a multi-matrix of 27 elements, i.e. a 3 x 3x3 tensor

A -- take a look at A

-- 1st contraction on k, which is at index positions 3 and 4

-- | |

B = contract(A,3,4) -- i.e. EINSTEIN sum with index k

-- |

-- sum over k=3=4

-- Sum eij(k) dF_(k) /dx_j

-- 12 . . 3

-- j is now at index positions 2 and 3 (k is ’killed’)

B -- take a look at B

-- 2nd Contraction on j, which lives now at index positions 2 and 3

-- | |

C = contract(B,2,3) -- i.e. EINSTEIN sum with indes j

-- |

-- sum over j=2=3

-- Sum eij(k) dF_(k) /dx_j

-- 1. . . . (j is killed)

-- i.e. add (trace) all elements on the main diagonals of B

-- i.e. 0 + dF3/dx2 - dF2/dx3, ...

C -- is now the curl of F

• B Click here to run this script.

https://lindnerdrwg.github.io/tensor12.html

5 CONTRACT 32

Shorted version:

-- ijk k j -- 0. index list by equation (4.1)

A = outer(eijk, d(F,(x1,x2,x3))) -- 1. do all element-wise products

A -- ..3 4 .

B = contract(A,3,4) -- 2. sum across k

-- ij. . j

B -- 12. . 3

C = contract(B,2,3) -- 3. sum across j

C

Shortest version by concatenation of processes A-B-C:

curlF = contract(contract(outer(eijk, d(F,(x1,x2,x3))),3,4),2,3)

curlF

Exercise 24. Repeat the reasoning above using the concrete function F = (yez, xez, xyez).

6 THE METRIC TENSOR 33

6 The Metric Tensor

The so-called metric tensor4 g (or simply metric) plays an crucial role in Differential Ge-
ometry and General Relativity. It allows defining and calculate distances and angles on
surfaces (’manifolds’) in space, just as the inner product do it on a Euclidean space.
The components of a metric tensor g in a coordinate basis is a symmetric matrix (tensor),
whose entries transform ’covariantly’ under changes to the coordinate system. Thus a
metric tensor is a covariant symmetric tensor, cf.[18].

A metric tensor is heavily used to do so-called index juggling, cf. [1, p.88], i.e. the tensor
operations of raising or lowering an index. In this context is is essential to keep track of
the position of an index, i.e. if the index is superscripted (’upper index’) or subscripted
(’lower index’) in a tensor expression. For this purpose, the terms covariant (’lower’) resp.
contravariant (’upper’) index are introduced to distinguish between them and to use the
Einstein summation convention correctly.

The following lexicon helps to memorize thes conventions.

LEXICON Math Eigenmath
covariant tensor T of type (0,2): Tij Tdd

contravariant tensor T of type (2,0): T ij Tuu

mixed-variant tensor T of type (1,1): T ij or T i.j Tud

Remark. In Eigenmath we try to mimic the tensor notion of ij resp. ij resp. i
j by the

identifier dd (read: ’down down’) resp. uu (read: ’up up’) resp. ud (read: ’up down’).5

6.1 Definition

Let (Z1, ..,Zn)6 be an basis of the n-dimensional vector space V with inner product •.
Then, by definition, the (covariant) metric tensor gij consists ot the pairwise dot products
of the basis vectors, i.e.

gij := Zi • Zj

Remark. The metric tensor is also called Gram’s matrix, therefore the notion gij.
In what follows remember this lexicon:

LEXICON Math Eigenmath
metric tensor g: gij gdd

inverse of metric tensor g−1: gij guu

4aka first fundamental form or fundamental tensor
5G.Weigt introduced this notation in his script about the Schwarzschild metric tensor, cf. [15].
6We follow the notations in [1].

6 THE METRIC TENSOR 34

6.2 Implementation and Examples

Example 12. (The Metric g in Cartesian coordinates in IR2) The most elementary example
is that of the two-dimensional Euclidean geometry, the Euclidean metric tensor,

cf. [1, p.62]. Choose the canonical basis E = (E1, E2) = (
[
1
0

]
,
[
0
1

]
), then we have g =

[
1 0
0 1

]
.

EIGENMATH

-- basis in Euclidean vector space R^2

E=((1,0),(0,1))

-- metric tensor in R^2

gdd = zero(2,2)

for(i,1,2,

for(j,1,2,

gdd[i,j]= dot(E[i],E[j])))

gdd

-- Calculate guu, i.e. the inverse of gij

guu = inv(gdd)

guu

• B Click here to run this script.

Remark. Remember: the tensor notion gij resp. gij is noted here as gdd (read: ’g down
down’) resp. guu (read: ’g up up’).

Eigenmath output:

https://lindnerdrwg.github.io/tensor13.html

6 THE METRIC TENSOR 35

Example 13. (The metric tensor g in affine coordinates in IR2) The Euclidean metric in
an affine coordinate systems with basis Z1 = (2, 0) and Z2 = (cos(π/3), sin(π/3)) can be
calculated as follows, cf. [1, p. 64].

Figure 3:

R(x = −1, y = 0): position vector in ambient IR2.
Z1: 1st covariant basis vector at R.
Z2: 2nd covariant basis vector at R.
///..: the coordinate grid corresponding basis Z.

EIGENMATH

-- we introduce affine coordinates in R^2 by

Z1 = (2,0)

Z2 = (cos(pi/3),sin(pi/3))

Z1

Z2

-- the covariant basis in affine coordinates

Z=(Z1,Z2)

abs(Z1)

abs(Z2)

-- metric tensor in affine coordinates

gdd = zero(2,2)

for(i,1,2,

for(j,1,2,

6 THE METRIC TENSOR 36

gdd[i,j]= dot(Z[i],Z[j])))

gdd

-- Calculate guu, i.e. the inverse of gij

guu = inv(gdd)

guu

-- the contavariant basis is

E=((1,0),(0,1))

Zu1 = dot(guu, E[1])

Zu1

Zu2 = dot(guu, E[2])

Zu2

• B Click here to run this script.

Eigenmath output:

https://lindnerdrwg.github.io/tensor14.html

6 THE METRIC TENSOR 37

Example 14. (The metric tensor g in polar coordinates in IR2) The Euclidean metric in
polar coordinates (r, θ) can be calculated as follows, cf. [1, p. 65]. Look at the position
vector R(r, θ) = (r cos(θ), r sin(θ)). Then the basis vectors Zi are the tangential vectors
on the two coordinate lines, i.e.

Zr =
∂R

∂r

Zθ =
∂R

∂θ

Figure 4:
R(r = 2, θ = π/3): position vector in IR2.
∂r: 1st covariant basis vector Zr at R.
∂θ: 2nd covariant basis vector Zθ at R.

Let’s calculate the basis and the metric using

EIGENMATH

-- we introduce polar coordinates in R^2 by

R(r,theta) = (r cos(theta),r sin(theta))

R

-- the covariant basis in polar coordinates

Z = d(R,(r,theta)) -- both basis vectors are in the columns

Z = transpose(Z) -- therefore we have to transpose

Z

-- metric tensor gij in polar coordinates

6 THE METRIC TENSOR 38

gdd = zero(2,2)

for(i,1,2,

for(j,1,2,

gdd[i,j]= dot(Z[i],Z[j])))

gdd

gdd = simplify(gdd)

gdd

-- Calculate guu, i.e. the inverse of gij

guu = inv(gdd)

guu

• B Click here to run this script.

Eigenmath output:

https://lindnerdrwg.github.io/tensor15.html

6 THE METRIC TENSOR 39

Example 15. (The metric tensor g in cylindrical coordinates) The Euclidean metric in
the cylinder coordinate systems in IR3 can be calculated as follows, cf. [1, p.66, p.179].
Align a background Cartesian grid (x, y, z) with the cylindrical coordinates (r, θ, z). The
position vector R, pointing to a position on the cylinder, is then given by

R(r, θ, z) = (r cos(θ), r sin(θ), z)

The basis vectors Zi are the tangential vectors on the three coordinate lines, i.e. the
covariant basis is obtained by partial differentiation of R with respect to r, θ and z:

Zr =
∂R

∂r

Zθ =
∂R

∂θ

Zz =
∂R

∂z

Figure 5:

R(r = 1, θ = π/2, z = 2): position vector in IR3.
∂r: 1st covariant basis vector Zr at R.
∂θ: 2nd covariant basis vector Zθ at R.
∂z: 3rd covariant basis vector Zz at R.

We calculate the covariant basis and the metric using Eigenmath.

6 THE METRIC TENSOR 40

EIGENMATH

-- we introduce cylindrical coordinates in R^2 by

R(r,theta,z) = (r cos(theta),r sin(theta),z)

R

-- the covariant basis in cylindrical coordinates

Z = d(R,(r,theta,z)) -- basis vectors are in the columns

Z = transpose(Z) -- therefore we have to transpose

Z

Z[1]

Z[2]

Z[3]

-- metric tensor in cylindrical coordinates

gdd = zero(3,3)

for(i,1,3,

for(j,1,3,

gdd[i,j]= dot(Z[i],Z[j])))

gdd

gdd = simplify(gdd)

gdd

-- Calculate guu, i.e. the inverse of gij

guu = inv(gdd)

guu

• B Click here to run this script.

Eigenmath output:

https://lindnerdrwg.github.io/tensor16.html

6 THE METRIC TENSOR 41

6.3 The Contravariant Basis

With the help of the (covariant) metric tensor g = gij it is possible to define the so-called
contravariant basis Zi. This object plays a big role in the tensor oriented Differential
Geometry. In particular, it allows resp. facilitates the calculation of the Christoffel
tensor.

6.3.1 Definition: contravariant Basis

Let Zi be the covariant basis and gij be the covariant metric tensor with corresponding
contravariant metric tensor gij = (gij)

−1. Then we define the ith contravariant basis vector
Zi by the linear combination, cf. [1, p.58]

Zi := gij · Zi
Einstein

=
n∑
i=1

gij ∗ Zi

6.3.2 Examples: contravariant Basis

We test our definition on two of the examples above.

Example 16. (polar coordinates)

EIGENMATH

-- ff from example 15

-- calculate the contravariant basis Zu (’Z.upper i’)

do(Zu = zero(2,2),

for(i,1,2, Zu[i] = sum(j,1,2, guu[i,j]*Z[j])),

Zu)

Zu[1]

Zu[2]

simplify(abs(Zu[2]))

-- compare

Z[1]

Z[2]

• B Click here to run this script.

Eigenmath output:

https://lindnerdrwg.github.io/tensor17.html

6 THE METRIC TENSOR 42

Remark. The 1st contravariant basis vector Z1 in polar coordinates equals the first co-
variant basis vector Zi, whereas the 2nd contravariant basis vector Z2 is colinear with the
second covariant basis vector and has length |Z2| = 1/r.

Example 17. (cylindrical coordinates)

EIGENMATH

-- ff from example 16

-- calculate the contravariant basis Zu (’Z.upper’)

do(Zu = zero(3,3),

for(i,1,3, Zu[i] = sum(j,1,3, guu[i,j]*Z[j])),

Zu)

Zu

• B Click here to open the playground.

Eigenmath output:

Remark. The only difference is to be seen in the 2nd contravariant basis vector Z2: this
vector is colinear with the 2nd covariant basis vector, but has length |Z2| = 1/r.

Exercise 25. Calculate the contravariant basis vectors for the affine coordinate system of
example 13.

https://georgeweigt.github.io/eigenmath-demo.html

7 THE LEVI-CIVITA TENSOR 43

7 The Levi-Civita Tensor

The Levi-Civita tensor (symbol) acts like a metric and is often used to define tensorial
objects, cf. [10, p. 340] or [9, p.50] for an application in the Nambu mechanics. It may
per example also be used to define the curl operator or the cross product, cf. [1, p.148].
A heavy use is in the operation of lowering and raising the index in the so-called index
juggling.

7.1 Definition

We follow Grinfeld [1, p.148].

a. Let Z denote the determinant of the (covariant) metric tensor g = gij, i.e.

Z := det(g)

b. The square root of Z is called the volume element V of the metric, i.e.

V :=
√
det(g)

c. The Levi-Civita tensor (symbols) εijk resp. Eijk are defined as the volume scaled
permutation tensor eijk, i.e.

εijk := V · eijk

Eijk :=
eijk

V

Remark. We have

LEXICON Math Eigenmath
metric tensor g: gij g or gdd

inverse of metric tensor g−1: gij ginv or guu

volume element V :
√
det(g) sqrt(det(gdd))

Levi-Civita tensor εijk:
√
det(g) · eijk epsilon

Levi-Civita tensor Eijk: 1/
√
det(g) · eijk Epsilon

In Eigenmath’s output window the small Greek letter epsilon ε is printed as ε and the
big Greek letter Epsilon E is printed as E, not as E.

7 THE LEVI-CIVITA TENSOR 44

7.2 Implementation and Examples

Example 18. The Levi-Civita tensor in an affine coordinate systems in IR2 can be
calculated by Eigenmath as follows, cf. [1, p. 148].

EIGENMATH

-- metric tensor in affine coordinates, see example 14

gdd = zero(2,2)

gdd[1,1]= 4

gdd[1,2]= 1

gdd[2,1]= 1

gdd[2,2]= 1

-- volume element in affine coordinates

Z = det(gdd)

Z

V = sqrt(Z)

V

-- permutation tensor eij in R^2 as table

eij = zero(2,2)

for(i,1,2, for(j,1,2, eij[i,j]=j-i))

eij

-- LEVI-CIVITA tensor epsilon

epsilon = V * eij

epsilon

Epsilon = 1/V * eij

Epsilon

• B Click here to run this script.

Eigenmath output:

https://lindnerdrwg.github.io/tensor18.html

7 THE LEVI-CIVITA TENSOR 45

Example 19. The Levi-Civita tensor in polar coordinates in IR2 is calculated by Eigen-
math using the results of example 15.

EIGENMATH

-- metric tensor in polar coordinates

gdd = zero(2,2)

gdd[1,1]= 1

gdd[2,2]= r^2

-- volume element in affine coordinates

Z = det(gdd)

Z

V = sqrt(Z)

V

-- permutation tensor eij in R^2 as table

eij = zero(2,2)

for(i,1,2, for(j,1,2, eij[i,j]=j-i))

eij

-- LEVI-CIVITA tensor epsilon

epsilon = V * eij

epsilon

Epsilon = 1/V * eij

Epsilon

• B Click here to run this script.

Eigenmath output:

Exercise 26. Calculate the Levi-Civita tensor in cylindrical coordinates in IR3 by Eigen-
math using the results of example 16.

https://lindnerdrwg.github.io/tensor19.html

8 THE CHRISTOFFEL SYMBOL 46

8 The Christoffel Symbol

The Christoffel symbol plays a dominant role in Differential Geometry and General
Relativity, where we define the Riemann curvature tensor Ra

bcd, the Ricci tensor Rbd and
the Einstein curvature scalar R with the help of the Christoffel symbol of 1st and 2nd
kind. Then it is possible to calculate curvature variants of surfaces7 in space. We use the
results in [1, p.69] or [9, p.62] to implement the Christoffel symbols in Eigenmath.

8.1 Definition

Let g = gij be a metric tensor with inverse tensor gu = gij in the Cartesian coordinate
system (x1, x2, x3) in IR3.

a. The Christoffel symbol of 2nd kind is defined by (Einstein summation convention!)

Γkij :=
1

2
· gkm · (gmi,j + gmj,i − gij,m)

where

gmi,j :=
∂gmi
∂xj

denotes the partial derivative of gmi with respect to the coordinate xj. Expanding the
Einstein summation convention we write equation a. more explicit as

Γkij =
1

2
·

3∑
m=1

gkm · (gmi,j + gmj,i − gij,m)

b. The Christoffel symbol of 2nd kind is defined by (Einstein summation convention!)

Γi,jk := gli · Γl
jk

This last definition is an example of lowering the index l by multiplying with the metric
tensor g (’index juggling’).

c. If we denote the partial derivative with respect to the coordinate xj in short by ∂i, we
may write formula a. in better memorizable shape, cf. [4, p.91]:

Γkij =
1

2
·

3∑
m=1

gkm · (∂jgmi + ∂igmj − ∂mgij)

Implementing formulas a. and b. in Eigenmath should enhance a clear understanding of
these constructs.

7This will be done in the next script in this series with the title Elementary Differential Geometry of
Surfaces.

8 THE CHRISTOFFEL SYMBOL 47

Remark. We have

LEXICON Math Eigenmath
metric tensor g: gij g or gdd

inverse of metric tensor g−1: gij ginv or guu
Christoffel symbol of 1st kind : Γkij Gammaudd

Christoffel symbol of 2nd kind : Γi,jk Gammaddd

In Eigenmath’s output window the Γkij is printed as Γudd.

8.2 Implementation and Examples

We now demonstrate two implementations of the Christoffel symbols: one closely ori-
ented on formula a. and its term structure and the other using clever compact tensor
techniques such as contract and index juggling, with was given by G. Weigt. We test
our code in affine, polar and cylindrical coordinates in the plane IR2 resp. in space IR3.

8.2.1 Calculation of the Christoffel symbol using standard techniques

Example 20. The Christoffel symbol in affine coordinates in IR2 is calculated using
results of example 15. Let’s step through all coefficients of the Christoffel symbol using
a for-loop.

EIGENMATH

-- metric tensor in affine coordinates

gdd = zero(2,2)

gdd[1,1]= 4

gdd[1,2]= 1

gdd[2,1]= 1

gdd[2,2]= 1

-- use Cartesian coordinates

X = (x,y)

-- calculate inverse guu to gdd

guu = inv(gdd)

guu

-- calculate CHRISTOFFEL symbol

Gamma=zero(2,2,2) -- tensor shape

for(k,1,2, -- fill Gamma

for(l,1,2,

for(m,1,2,

Gamma[k,l,m] = -- (1)

sum(i,1,2, guu[k,i]/2 * -- (2)

(d(gdd[m,i], X[l]) + -- (3)

8 THE CHRISTOFFEL SYMBOL 48

d(gdd[l,i], X[m]) -

d(gdd[m,l], X[i]))

))))

Gamma -- (4)

Gamma[1,2,2] -- (5)

Gamma[2,1,2]

• B Click here to run this script.

Eigenmath output:

Comment. In (1) we give Gamma[k,l,m]= Γklm the value in accordance with formula 7.1.a.
By the way, we respect the Einstein summation convention by explicit summing the three
partial derivatives up. The resulting fully filled tensor is outputted in (4). (5) verifies that
all components of the affine Christoffel symbol Γ vanishes at all points. Later we will
argue, that therefore this space is ’flat’.

Example 21. Calculate the Christoffel symbol in a polar coordinate system in IR2

using results of example 16.

EIGENMATH

-- metric tensor in polar coordinates

gdd = zero(2,2)

gdd[1,1]= 1

gdd[2,2]= r^2

-- use polar coordinates

X = (r,theta)

X

https://lindnerdrwg.github.io/tensor20.html

8 THE CHRISTOFFEL SYMBOL 49

-- calculate guu = (gdd)^{-1}

guu = inv(gdd)

guu

-- calculate Gamma using a for-loop

Gamma=zero(2,2,2) -- tensor of type (2,2,2)

for(k,1,2,

for(l,1,2,

for(m,1,2,

Gamma[k,l,m] =

sum(i,1,2, guu[k,i]/2 *

(d(gdd[m,i],X[l]) +

d(gdd[l,i],X[m]) -

d(gdd[m,l],X[i]))

))))

Gamma --(1)

Gamma[1,2,2] --(2)

Gamma[2,1,2]

• B Click here to run this script.

Eigenmath output:

Comment. In (1) we see that the fully filled Christoffel symbol Γ has non-zero kom-
ponents. (6) picks two of these non-zero components of Γ, namely Γ1

22 and Γ2
12.

https://lindnerdrwg.github.io/tensor21.html

8 THE CHRISTOFFEL SYMBOL 50

Example 22. Calculate the Christoffel symbol in cylindrical coordinates in IR3 using
results of example 17.

EIGENMATH

-- metric tensor in cylindrical coordinates

gdd = zero(3,3)

gdd[1,1]= 1

gdd[2,2]= r^2

gdd[3,3]= 1

gdd

-- X is cylindrical coordinates, t means theta

X = (r,t,z)

X

-- calculate guu, i.e. the inverse of gij

guu = inv(gdd)

guu

n=3 -- we are now in a 3-dimensional world

Gamma=zero(n,n,n) -- tensor of type (3,3,3)

for(k,1,n,

for(l,1,n,

for(m,1,n,

Gamma[k,l,m] =

sum(i,1,2, guu[k,i]/2 *

(d(gdd[m,i],X[l]) +

d(gdd[l,i],X[m]) -

d(gdd[m,l],X[i]))

))))

Gamma --(1)

Gamma[1,2,2] --(2)

Gamma[2,1,2]

Gamma[2,2,1]

• B Click here to run this script.

Comment. Here we have metric g and Christoffel symbol Γ of 3 dimensions. Therefore
the Christoffel symbol is stacked with three 3-by-3 matrices. Only the first two Γ1

.. and
Γ2
.. has non-zero entries. We pick three of them in (2).

https://lindnerdrwg.github.io/tensor22.html

8 THE CHRISTOFFEL SYMBOL 51

Eigenmath output:

8.2.2 Calculation of the Christoffel symbol using tensor techniques

Example 23. Calculate the Christoffel symbol in affine coordinates in IR2 using the
results of example 15 and tensor techniques following G. Weigt.

EIGENMATH

-- metric tensor in affine coordinates

gdd = zero(2,2)

gdd[1,1]= 4

gdd[1,2]= 1

gdd[2,1]= 1

gdd[2,2]= 1

-- use Cartesian coordinates

X = (x,y)

X

-- calculate guu

guu = inv(gdd)

guu

-- calculate all partial derivatives w.r.t. x and y

gddd = d(gdd, X)

gddd -- a tensor with 2 Jacobi matrices

8 THE CHRISTOFFEL SYMBOL 52

-- Calculate so-called connection coefficients aka the

-- CHRISTOFFEL symbol of 1st kind along formula 7.1.b.

-- Gamma = 1/2 (g + g - g)

-- abc ab,c ac,b bc,a

-- 123 12 3 13 2 23 1

--

Gammaddd = 1/2*(gddd + -- Gab,c: correct order

transpose(gddd,2,3) - -- Gac,b: transpose c and b

transpose(gddd,2,3,1,2)) -- Gbc,a: transpose c and a,

-- then b and a

Gammaddd --(1)

-- Raise first index a (’index juggling’) using guu, see 7.1.b

--

-- a au

-- Gamma = g Gamma (2)

-- bc ubc

Gammaudd = dot(guu,Gammaddd) --(3)

Gammaudd --(4) CHRISTOFFEL tensor of 2nd kind

• B Click here to run this script.

Eigenmath output:

Comment. In (1) we give Gammaddd= Γabc the value in accordance with formula 7.1.b.
In formula (2) index u is both upper and lower to be seen, ergo there is an implicit
summation over u (’ contraction’) w.r.t. the Einstein summation convention. This is
done in (3). The resulting tensorial notation Gammaudd= Γabc is outputted in (4). It is the
affine Christoffel symbol Γ with the same result as in example 21.

https://lindnerdrwg.github.io/tensor23.html

8 THE CHRISTOFFEL SYMBOL 53

Example 24. Calculate the Christoffel symbol in polar coordinates in IR2 using the
results of example 16 and tensor techniques following G. Weigt.

EIGENMATH

-- metric tensor in polar coordinates

gdd = zero(2,2)

gdd[1,1]= 1

gdd[2,2]= r^2

-- use polar coordinates

X = (r,theta)

-- calculate guu

guu = inv(gdd)

-- calculate all partial derivations w.r.t. r, theta

gddd = d(gdd, X)

gddd --(1)

-- calculate CHRISTOFFEL symbol 1st kind

-- see explanation in previous example 24

Gammaddd = 1/2*(gddd +

transpose(gddd,2,3) -

transpose(gddd,2,3,1,2))

Gammaddd --(2)

-- raise first index using guu, i.e. .ddd -> .udd

Gammaudd = dot(guu,Gammaddd) -- (3)

Gammaudd

• B Click here to run this script.

Eigenmath output:

https://lindnerdrwg.github.io/tensor24.html

8 THE CHRISTOFFEL SYMBOL 54

Comment. In (1) we collect all partial derivatives w.r.t. r and θ, we then calculate
Gammaddd, which is the Christoffel symbol Γabc of 1st kind. Raising the first index
u (see previous example) results in an implicit summation over u in (3). The resulting
Christoffel symbol Gammaudd= Γabc of 2nd kind is outputted giving the same result as
in example 22.

Example 25. Calculate the Christoffel symbol in cylindrical coordinates in IR3 using
results of example 17 and tensor techniques following G. Weigt.

EIGENMATH

-- metric tensor in cylindrical coordinates

gdd = zero(3,3)

gdd[1,1]= 1

gdd[2,2]= r^2

gdd[3,3]= 1

-- use cylindrical coordinates

X = (r,t,z)

-- Calculate guu, i.e. the inverse of gij

guu = inv(gdd)

-- calculate all partial derivations w.r.t. r,t and z

gddd = d(gdd, X)

gddd

-- calculate CHRISTOFFEL symbol of 1st kind

Gammaddd = 1/2*(gddd +

transpose(gddd,2,3) -

transpose(gddd,2,3,1,2))

Gammaddd

-- Raise first index

Gammaudd = dot(guu, Gammaddd)

Gammaudd

• B Click here to run this script.

https://lindnerdrwg.github.io/tensor25.html

8 THE CHRISTOFFEL SYMBOL 55

Eigenmath output:

Comment. We repeat the same tensorial calculation as in the examples before. In contrast
to the classic solution using for-loops the higher dimension of Γ is automatically detected,
no special dimension marker like ’n = 3’ is necessary: the dimension of Christoffel
symbol Γ... is taken from the declaration X = (r, t, z), which is a 3-vector.

Exercise 27. Calculate the Christoffel symbol Γabc of 1st kind for the last three ex-
amples using the classical way via for-loops. Verify your calculation with a check of the
examples 24, 25 and 26.

♥

This ends our journey to the first elements of Tensor Calculus. See you again doing the
first steps into the Elementary Differential Geometry of Surfaces.

9 APPENDIX: SOURCE CODE OF TENSORBOX 56

9 Appendix: source code of tensorBox

This is a collection of the relevant definitions from the booklet. This file should be loaded
to do calculations with tensors using Eigenmath.

################ (2023) Dr.W.G. Lindner, Leichlingen DE

tensorBox Tensor box

################ for calculations with tensors

-- KRONECKER delta function d(i,j)

delta(i,j) = test(i=j, 1, 0)

- KRONECKER delta 2-symbol dij

deltaij = zero(2,2)

deltaij[1,1] = 1

deltaij[2,2] = 1

-- 2D permutation symbol als FUNCTION

Eij(i,j) = j-i

Eij(1,2)

Eij(1,1)

-- 2D permutation symbol eij as TABLE

eij = zero(2,2)

for(i,1,2, for(j,1,2, eij[i,j]=j-i))

-- 3D permutation symbol as FUNCTION

Eijk(i,j,k) = test(

or((i,j,k)==(1,2,3), (i,j,k)==(2,3,1), (i,j,k)==(3,1,2)), +1,

or((i,j,k)==(3,2,1), (i,j,k)==(1,3,2), (i,j,k)==(2,1,3)), -1,

or(i==j, j==k, k==i), 0)

-- 3D permutation symbol as TABLE

eijk = zero(3,3,3)

eijk[1,2,3] = 1

eijk[2,3,1] = 1

eijk[3,1,2] = 1

eijk[3,2,1] = -1

eijk[1,3,2] = -1

eijk[2,1,3] = -1

-- 4D permutation symbol as FUNCTION

Eijkl(i,j,k,l) = (i-j)*(i-k)*(i-l)*(j-k)*(j-l)*(k-l)/12

-- 4D permutation symbol as TABLE

9 APPENDIX: SOURCE CODE OF TENSORBOX 57

eijkl=zero(4,4,4,4)

for(i,1,4, for(j,1,4, for(k,1,4, for(l,1,4,

eijkl[i,j,k,l] = (i-j)*(i-k)*(i-l)*(j-k)*(j-l)*(k-l)/12))))

-- metric tensor g in 2D, an example

gdd = zero(2,2)

gdd[1,1]= 4

gdd[1,2]= 1

gdd[2,1]= 1

gdd[2,2]= 1

-- inverse guu to gdd

guu = inv(gdd)

-- volume element

Z = det(gdd)

V = sqrt(Z)

-- LEVI-CIVITA tensor epsilon in 2D

epsilon = V * eij

Epsilon = 1/V * eij

-- 2D/3D/nD CHRISTOFFEL symbol 2nd kind

-- specify dimension n = 2,3,..

n=3

Gamma=zero(n,n,n)

for(k,1,n,

for(l,1,n,

for(m,1,n,

Gamma[k,l,m] =

sum(i,1,2, guu[k,i]/2 *

(d(gdd[m,i],X[l]) +

d(gdd[l,i],X[m]) -

d(gdd[m,l],X[i]))

))))

• B Click here to get the code.

https://georgeweigt.github.io/eigenmath-demo.html

REFERENCES 58

References

[1] Grinfeld, P. (2013): Introduction to Tensor Analysis and the Calculus of Moving
Surfaces. New York: Springer.

[2] Lipschutz, M. M. (1969): Differential Geometry.
New York: McGraw-Hill (Schaums’ Outline Series)

[3] Marsden, J. & Weinstein, A. (21985): Calculus III. New York: Springer.

[4] Oloff, R. (62018): Geometrie der Raumzeit. [engl.: Geometry of Spacetime.]
Berlin: Springer Spectrum.

[5] Seeburger, P. (2018): CalcPlot3D.
url: https://c3d.libretexts.org/CalcPlot3D/index.html

[6] Sochi, T. (2017): Tensor Calculus Made Simple.
?: CreativeSpace. ISBN 9781541013636.

[7] Sochi, T. (2017): Principles of Tensor Calculus.
?: CreativeSpace. ISBN 9781974401390.

[8] Spiegel, M. R. (1963): Advanced Calculus.
New York: McGraw-Hill (Schaums’ Outline Series)

[9] Steeb, W.-H & Lewien, D. (1991): Algorithms and Computation with Reduce.
Mannheim: Bibliographisches Institut.

[10] Steeb, W.-H & Shi, T. K. (1998): Symbolic C++: An Introduction to Computer
Algebra Using Object-Oriented Programming.
Singapore: Springer.

[11] Steeb, W.-H (1991): Kronecker Product of Matrices and Applications.
Mannheim: Bibliographisches Institut.

[12] Steeb, W.-H, Hardy, Y. (2019): Kronecker Product. In: Matrix Calculus, Kro-
necker Product and Tensor Product.
url: https://www.worldscientific.com/doi/pdf/10.1142/9789811202520_0002

[13] Weigt, G. (2021): Eigenmath Homepage.
url: https://georgeweigt.github.io

[14] Weigt, G. (2021): Eigenmath online.
url: https://georgeweigt.github.io/eigenmath-demo.html

[15] Weigt, G. (2021): The Schwarzschild Metric.
url: https://georgeweigt.github.io/schwarzschild-metric.html

https://c3d.libretexts.org/CalcPlot3D/index.html
https://www.worldscientific.com/doi/pdf/10.1142/9789811202520_0002
https://georgeweigt.github.io
https://georgeweigt.github.io/eigenmath-demo.html
https://georgeweigt.github.io/schwarzschild-metric.html

REFERENCES 59

[16] WikipediA: Kronecker Product.
url: https://en.wikipedia.org/wiki/Kronecker_product

[17] WikipediA: Levi-Civita-Symbol.
url: https://de.wikipedia.org/wiki/Levi-Civita-Symbol

[18] WikipediA: Metric Tensor.
url: https://en.wikipedia.org/wiki/Metric_tensor

[19] WikipediA: Outer Product.
url: https://en.wikipedia.org/wiki/Outer_product

[20] WikipediA: Tensor Contraction.
url: https://en.wikipedia.org/wiki/Tensor_contraction

https://en.wikipedia.org/wiki/Kronecker_product
https://de.wikipedia.org/wiki/Levi-Civita-Symbol
https://en.wikipedia.org/wiki/Metric_tensor
https://en.wikipedia.org/wiki/Outer_product
https://en.wikipedia.org/wiki/Tensor_contraction

	What is a tensor?
	The Kronecker delta symbol
	Definition
	Applications

	The Permutation symbol
	Definition
	Implementation
	Applications

	The Kronecker product and the outer product
	outer
	kronecker
	Applications of kronecker

	contract
	A Potpourri of Tensor Operators - the case of the curl

	The Metric Tensor
	Definition
	Implementation and Examples
	The Contravariant Basis

	The Levi-Civita Tensor
	Definition
	Implementation and Examples

	The Christoffel Symbol
	Definition
	Implementation and Examples

	Appendix: source code of tensorBox

