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Preface

This is part 5 of a series of booklets, which want to introduce the reader to some topics of
(Multi)Linear Algebra and at the same time into the use of CAS Eigenmath.

About the content of the booklet

The first chapter constructs the well-known complex numbers C as an algebraic structure
using a 2D basis and a 2×2 multiplication table for it. Alternatively we compute in C as
a 2D Clifford algebra c`(2, 0) using the package EVA for the first time.
The second chapter introduces the not so known hyperbolic numbers IH. We realize these
numbers via an algebraic structure (a 2D basis and a 2×2 multiplication table) and also
model IH by means of the 2D Clifford algebra c`(1, 1) using the package EVA for the
second time. This chapter will also serve as an CAS Eigenmath companion to the article
[12] and the book [13, Ch. 1] by Garret Sobczyk.
The third chapter deals with the quaternions H. We construct these numbers again in tow
ways: as an algebraic structure (a 4D basis and a 4×4 multiplication table) and
by means of a 4D Clifford algebra c`(3)+ using the package EVA.
The fourth chapter abstracts the foregoing examples of number field constructions to the
concept of a Geometric Algebra and demonstrates the generalizing use of it in plane and
space geometry. This chapter will also serve as an CAS Eigenmath companion to the
books of Sobczyk[12] and Macdonald [8]. The first book does not use any CAS and
the second make use of the not so simple Python package galgebra.
In both cases Eigenmath should make things easier for the beginner.

Eigenmath

Eigenmath is a computer algebra system that can be used to solve problems in mathe-
matics and in the natural and engineering sciences. It is a personal resource for students,
teachers and scientists. Eigenmath is small, compact, capable and free. It runs best on
MacOS or as Online tool in your browser.
The considerations in this script would be difficult to elementize without the use of a
computer algebra system like Eigenmath, because heavy calculations of new kind of
products occur in the conceptual constructions. Therefore, in Eigenmath sessions we
explore decisive phenomena or verify or falsify hypotheses. We encourage the dialogical
practice in CAS language communication with the Eigenmath assistance. If possible, all
CAS dialog sequences - which are shown in typewriter font - should be performed live
on the computer. We give therefore many lively links to invocable Eigenmath scripts
that may be modified or amended by the user.

The booklet make full use of the Eigenmath package EVA2.txt, which was written by
Bernard Eyheramendy [5]. Without his work this booklet would had been not possible.
EVA2.txt itself is a fine opportunity to study programming in Eigenmath and the infos
and tutorials to be find at his homepage deserve your interest.
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The Eigenmath routines, which are especially written for this booklet, are collected in
four toolboxes cBox, hyBox, qBox, qcBox for the convenience of the user and are invoked
e.g. by the command run("cBox.txt") in a running Eigenmath Online1 session. These
CAS functions wish to train algorithmic oriented constructive thinking. The Eigenmath
commands used and the textual representation should be elementary enough to serve as
a good companion while reading basic or advanced courses on Linear Algebra. They may
also serve as a help system for independent individual work.

To use this booklet interactively

The social-constructivist APOS2 learning theory was in my mind throughout the construc-
tion of this booklet. Compared to classic learning theories, the APOS theory focuses on
the finding that the mental (re)construction process of mathematical knowledge is decisively
promoted by a mathematically oriented programming language as a medium in which the
knowledge constructions are represented as programming constructs (Dubinsky). So the
learning process is triggered by actions or manipulations on mental or virtual CAS objects.
Using this booklet
. . . you do not need to install any software to do the calculations. The CAS Eigenmath
works directly out of this text, on any operating system, on every hardware (Smartphone,
iPhone, tablet, PC, etc.), at any place: you only must be online and click on a link like
BClick here to invoke Eigenmath (C please click here! Really!). From this point on you
can run a given script or fork with own computations.
. . . you do not need to install any software to produce quality plots interactively. You only
must be online to press a link like CalcPlot3D (C please click here! Really!) in this script.
At this point you can make a 2D/3D–plot to visualize a concept or to make a calculation
visually evident.

I thank George Weigt for his friendly support, hints and help regarding his Eigenmath.
So it was a real pleasure to write down these notes.

Any feedback from the user is very welcome.

Wolfgang Lindner

Leichlingen, Germany
February 2021
dr.w.g.Lindner@gmail.com

1Running the Eigenmath app on the iMac this command has to be substituted through
run("Downloads/cBox.txt"). The file cBox.txt has therefore to be copied to the ’downloads’ folder.

2see Arnon et. al. [1]

https://georgeweigt.github.io/eigenmath-demo.html
https://c3d.libretexts.org/CalcPlot3D/index.html
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1 C – the complex numbers

It is well known that the solution set IL of a singular homogeneous 3×3 linear system
is often a straight line or a plane through the origin. The solution set IL is not just
a subset of the surrounding space IRn, but also has a linear structure: with each two
solution vectors ~v or ~w in IL there are also all linear combinations r · ~v + s · ~w (with
r, s ∈ IR) solutions again.3 Therefore, this property is particularly emphasized in a
central concept of linear algebra.

1.1 C as vectorspace

We already know the complex numbers C: the arithmetical playground (the ’underlying
set’) of C is the well known Euclidean plane IR2 with the two operations of addition and
forming ’multiples’ of column/row vectors (a, b), i.e. C ∼ IR2 or more precisely

C ' (IR2,+, ·) with the rules (1.1)

(a, b) + (c, d)
def
= (a+ c, b+ d) (1.2)

r · (a, b) def
= (r · a, r · b) for arbitrary a, b, c, d, r ∈ IR (1.3)

For example (1, 2) + (3, 4) = (4, 6) and 0.5 · (−2, 2) = (−1, 1).
Equipped with these two operations the set C is an ”2–dimensional vector space over the
reals”, i.e. the operations + and · respect the following rules of an abstract vector space.

Definition. Let V be a set on which there are defined two operations, one called addition
(’+’) and the other called multiplication by scalars (’·’). If the following 10 calculation
rules (’laws’, ’axioms’) holds, V ≡ (V,+, ·) is called a vector space:

For all ~u,~v, ~w ∈ V and r, s ∈ IR we have

(]) ~v + ~w ∈ V Closedness
(C) ~v + ~w = ~w + ~v Commutativity
(A) (~u+ ~v) + ~w = ~u+ (~v + ~w) Associativity

(N) ~v +~0 = ~v there exists such an +Neutral element ~0 ∈ V
(I) ~v + (−~v) = ~0 there exists the Invers element −~v ∈ V for every ~v

(∪̇) r · ~v ∈ V Closedness
(1) r · (~v + ~w) = r · ~v + r · ~w Distributivity I
(2) (r + s) · ~v = r · ~v + s · ~v Distributivity II
(3) r · (s · ~v) = (rs) · ~v Distributivity III
(4) 1 · ~v = ~v there exists such an �Neutral element 1

3This property did not apply to inhomogeous linear system!
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Exercise 1.1. Mental model of a vector space.

Figure 1:

Red: the vectorspace IL of solutions of 0.5x− y = 0.
Blue: the vector ~u = [−2,−1].
Green: the vector ~v = [1, 0.5].
Magenta: the vector w = −1 · ~u+ 1 · ~v = [3, 1.5].

a. Verify that ~u,~v and ~u+ ~v from Fig.1 are solutions of 0.5x− y = 0, i.e. ~u,~v ∈ IL.
b. Verify that ~b = [2t, t], t ∈ IR is a general solution vector in IL.

c. Verify that arbitrary multiples of ~b are in IL, i.e. r ·~b ∈ IL for arbitray r ∈ IR.
d. Verify: The set IL is a 1–dimensional vector space over IR with basis {(2, 1)}.
That is: the 10 vector space conditions ]CANI∪̇1234 are fulfilled for IL.
If it is tidy to do these tests by paper’n pencil, please use Eigenmath: BClick here.
♥ Keep e.g. this model in mind when thinking at the concept of a vector space.

Remark.

1. The first group of rules (C), (A), (N), (I) for the vector addition are the Commutat
ive law, the Associative law, the law of the existence of a Neutral element and the
law of the existence of Invers elements. (]) resp. (∪̇) is the so-called closeness of
the addition resp. multiple forming, i.e. with each pair of vectors their sum resp.
multiple lies in the vector space again.

(N) and (I) do not go without saying:

◦ (N) says more precisely: there is a certain element in V - which is denoted by ~0
and called the zero vector - with the property that ~v +~0 = ~v applies to any ~v.

https://lindnerdrwg.github.io//gaex11.html
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◦ (I) says more precisely: for every arbitrary ~v from V there is an element - which
is denoted by −~v and is called opposite vector or inverse element - in V with the
property: ~v + (−~v) = ~0.

2. The second group of calculation rules (1), (2), (3), (4) describes the formation of
multiples of vectors, i.e. the multiplication of vectors with real numbers. These rules
describe the distribution of numbers on vectors under ’·’ and therefore are called the
four distributive laws.

3. The 10 rules ]CANI∪̇1234 are also called the axioms of a vector space.

Exercise 1.2. The arithmetic rules of build–in C.
Verify the 10 vector space axioms ]CANI∪̇1234 for C, the build–in complex number
system of Eigenmath. Here is a start: BClick here.

1.2 C as algebra

To reconstruct the complex numbers inside IR2 we enhance the arithmetical playground
IR2 of (1.1) with a third operation – a special extraordinary version of an multiplication ’?’
of column/row vectors in IR2, called multiplication of complex numbers via the new rule

(a, b) ? (c, d)
def
= (a · c− b · d, a · d+ b · c) (1.4)

If we speak of the complex numbers we think in this section at the 2–dimensional number
plane IR2 equipped with the three operations (+, ·, ?) of (1.1 ff) and (1.4) and write

C ≡ (IR2,+, ·, ?)

We will motivate this strange operation ? very soon.

1.2.1 C as 2D algebra over the reals IR

For the new C–typical operation ? the following rules hold for arbitrary u, v, w ∈ IR2:

(
?
∪) v ? w ∈ C

(C?) v ? w = w ? v
(A?) (u ? v) ? w = u ? (v ? w)

(N?) z ? e1 = z with e1
def
= (1, 0)

(I?) z ? z−1 = e1 with z−1
def
= ( x

x2+y2
, −y
x2+y2

) for z 6= (0, 0)

◦ The complex number e1 = (1, 0) in rule (N?) is called the unit in C. It is C’s neutral
element with respect to the new multiplication ?.
◦ The complex number z−1 in rule (I?) is called the inverse of z in C.

Exercise 1.3. a. Verify the the above rules for ? by paper’n pencil..
b. Verify the the above rules by Eigenmath.

https://lindnerdrwg.github.io/gaex12.html
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Solution:

We define operation ’*’, check its commutativity, give the neutral element e1, define the
inverse element invC(z) and test it on a special case.. BClick here to run the script.

Exercise 1.4. Check with Eigenmath, that the following rules also hold for arbitray r, s ∈
IR and u, v, w ∈ C = (IR2,+, ·, ?)
a. (r · u+ s · v) ? w = r · (u ? w) + s · (v ? w)
b. u ? (r · v + s · w) = r · (u ? v) + s · (u ? w)
c. r · (u ? v) = (r · u) ? v = u ? (r · v)
BClick here to invoke Eigenmath

Remark. With both laws a.&b. of distribution, the operation ? is compatible with the
structure of the vector space C. A vector space together with a 3rd operation ?, for which
the above rules of distribution a.&b. hold, is called an IR–algebra. ? itself is called the
multiplication of the algebra C. (See e.g. Koecher & Remmert in [4, p. 127])

Therefore the title of this section.

Exercise 1.5. Calculate with/without Eigenmath:
a. (1, 2) ? (3, 4)
b. For which w ∈ C is (1, 2) ? z = (1, 0)?
c. 2 · (3, 4) ? (−1, 1)

https://lindnerdrwg.github.io/ga121.html
https://georgeweigt.github.io/eigenmath-demo.html
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Exercise 1.6. (How to motivate the construction of ? ?)4 The 2D vectorspace IR2 over the
scalar field IR has the canonical basis vectors e1 = (1, 0) and e2 = (0, 1). We want to have
the new multiplication ? to work such, that
(1) e1 should be the unit element i.e. should fulfill rule (N?) and
(2) e2 should be chosen so, that its square results in the negative unit i.e.

e22 = (0, 1)2
!

= −(0, 1) = −e1
Therefore for arbitrary u = (x1, y1), v = (x2, y2) ∈ C we have

(x1, y1) ? (x2, y2) = (x1 · (1, 0) + y1 · (0, 1)) ? (x2 · (1, 0) + y2 · (0, 1))
(1.2)
= x1 · x2 · (1, 0) + (x1 · y2 + y1 · x2) · (0, 1) + y1 · y2 · (0, 1)2

!
= x1 · x2 · (1, 0) + (x1 · y2 + y1 · x2) · (0, 1)− y1 · y2 · (0, 1)

= (x1 · x2 − y1 · y2) · (1, 0) + (x1 · y2 + y1 · x2) · (0, 1)

= (x1 · x2 − y1 · y2, x1 · y2 + y1 · x2)
Explain each line for yourself.

1.2.2 Introducing the imaginary unit i.

To emphasize that we calculate in IR2 using also the new multiplication rule ? one tradi-
tionally writes

i
def
= (0, 1) = e2

and name i the imaginary unit. In this context the unit e1 is identified with the number
1, i.e. we have 1 ≡ (1, 0) = e1. Therefore, per definition we have the facts:

i2 = −1 (1.5)

z = (x, y) = (x, 0) + (0, 1) ? (y, 0)
(1.2)
≡ x+ iy ∈ C (1.6)

◦ Beware: with this notation x+iy the use of the new multiplication ? in (1.4) is shadowed
behind the symbol i and our construction (IR2,+, ·, ?) is identified with build-in C.

◦ Fact (1.5) is equivalent expressed as i =
√
−1 . While

√
a exists in IR only for a ≥ 0,

we have now constructed a number system in which roots of negative real numbers exists.
◦ We have following important definitions for (Eigenmath’s build–in) complex numbers:

The C LEXICON I Math Eigenmath
complex number z ∈ C z = (x, y) = x+ iy z = x + iy

the real part of z Re(z) = x real(z)

the imaginary part of z Im(z) = x imag(z)

the magnitude (length) of z |z| def=
√
x2 + y2 mag(z)

the conjugate of z z̄
def
= x− iy conj(z)

4See e.g. Remmert in [4, p. 54]
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Exercise 1.7. Let u = 1 + 2i, v = −3− i, w = 1 + i. Calculate with paper’n pencil
a. real and imaginary part of u
b. the magnitudes of u, v, w
c. the conjugates of all three complex numbers
d. Draw a qualtity plot with CalcPlot3D [10] of u, |u|, Re(u), Im(u), ū.
Check the plausibility of the results using the plot.
e. Check the above calculations using Eigenmath’s build–in complex numbers.
BClick here to invoke Eigenmath

Exercise 1.8. (Quotient of complex numbers)
a. Calculate 1+i

3−4i .
b. Prove: Let z1 = x1 + y1i ∈ C and z2 = x2 + y2i ∈ C with x22 + y22 6= 0IR. Then

z1
z2

=
x1x2 + y1y2
x22 + y22

+ i · y1x2 − x1y2
x22 + y22

Exercise 1.9. (Arithmetic with complex numbers)
Let u = 2− 5i, v = 4 + i ∈ C.
a. Calculate u+ v, u− v, u ? v, u/v by paper’n pencil.
b. Determine Re(u), Im(v), ū, |u|.
c. Check the results of a. and b. by Eigenmath.

# EIGENMATH solution to a):

trace=1 -- trace=1=ON shows results in black

do( u=2-5i, v=4+i)

u + v

u - v

u-v

u*v -- *-product of complex numbers

u/v -- quotient resp. * of complex numbers

u*1/v -- quotient via reciprocal of v

u*v^(-1) -- quotient via *-inverse of v

BSee the solution to a. here.

Exercise 1.10. (Conjugate complex numbers)
Prove with/without Eigenmath that for arbitrary z ∈ C we have
a. Re(z) + Im(z) ∈ IR
b. Re(z) · Im(z) ∈ IR

https://lindnerdrwg.github.io/gaex17.html
https://lindnerdrwg.github.io/gaex19.html
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1.2.3 The complex scene : the complex number z = 4 + 3i ∈ C

Figure 2:

Red: the complex number 4+3i = (4, 3) ∈ C ≡ (IR2,+, ·, ?)
Green: the conjugate 4 + 3i = 4− 3i
Yellow: the real part Re(4 + 3i) = 4
Magenta: the imaginary part Im(4 + 3i) = 3
Red: the magnitude (length) |4 + 3i| =

√
42 + 32 = 5

Blue: the unit circle S1 : x2 + y2 = 1.
Blue: the argument ϕ = ](1, z) = arctan(3/4)=’part’ of S1

Exercise 1.11.
a. Check the results in Fig.2 by a paper’n pencil calculation.
b. Check the results in Fig.2 by Eigenmath. Solution:

# EIGENMATH

trace=1 -- trace=1=ON shows results in blue

z = 4+3i

conj(4+3i) -- conjugate of z

real(4+3i) -- real part of z

imag(4+3i) -- imaginary part of z

mag(4+3i) -- magnitude (= Euclidean length) of z

phi = arg(4+3i) -- argument (angle) of z

phi

arg(4.+3i) -- 4.=4.0 gives back decimal approximation

-- phi:(2*pi)=alpha:360 -> alpha=phi*180/pi

-- the argument (angle) measured in degrees:

alpha=float(phi*180/pi)

alpha -- = 36.9 deg (phi measured in radians)

BClick here to invoke the script.

https://lindnerdrwg.github.io/gaex111.html
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1.2.4 The complex exponential function

Definition. We define for arbitrary z ∈ C

ez ≡ exp(z)
def
=

∞∑
k=0

zk

k!
= 1 + z +

z2

2!
+ ...

◦ We get a function exp : C→ C, because the series is absolute convergent on C.
◦ Analog we define cos, sin, ... via convergent series, see . Calculus.

Exercise 1.12. (exp, cos, sin as complex functions)
Let z = 1 + i. Calculate ...
a. ... the partial sum 1 + z1

1!
+ z2

2!
+ z3

3!
∼ exp(1 + i). Calculate exp(1 + i) by Eigenmath.

How many summands must the partial sum have, such that her value coincide with the
first 3 decimals of exp(1 + i)?

BClick here to invoke Eigenmath for your own calculation.
BClick here to look at my solution.

b. ... the partial sum
∑5

k=0 (−1)k z2k+1

(2k+1)!
. Compare with sin(1 + i) using Eigenmath.

c. ... the partial sum
∑5

k=0 (−1)k z2k

(2k)!
. Compare with cos(1 + i) using Eigenmath.

We remind without proof to

Theorem I. (The Euler formula)
For arbitrary z ∈ C:

eiz = cos(z) + i sin(z) (1.7)

Theorem II. (The De Moivre formula)
For arbitrary n ∈ IN, φ ∈ IR we have for z = exp(iφ) ∈ C

zn = exp(i nφ) (1.8)

(cos(φ) + i sin(φ)n = cos(nφ) + i sin(nφ) ∈ C (1.9)

Exercise 1.13. Calculate
a. exp(i ? (1 + i)) ≡ ei?(1+i) =?
b. exp(2i)3

c. (1 + 2i)3

https://georgeweigt.github.io/eigenmath-demo.html
https://lindnerdrwg.github.io/gaex112.html
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1.2.5 The polar form of a complex number and their polar coordinates

Theorem III. (The polar form of a nonzero complex number)

Every z = x+ iy ∈ C− {0} can uniquely be written in the so–called polar form

z = r · (cos(ϕ) + i sin(ϕ)) = r · eiϕ (1.10)

for 0 ≤ ϕ ≤ 2π, where ϕ
def
= arg(z) = tan−1( y

x
) and r

def
= |z| =

√
x2 + y2.

◦ The real numbers (r, ϕ) ∈ IR2 are called the polar coordinates of z ∈ C.
◦ The number ϕ ∈ [0, 2π[ is called the argument or amplitude of z.
◦ The real number r is the distance of z to the origin O = (0, 0) and ϕ is the angle
between the positive x–axis and the direction arrow to z, see Fig.2.

◦ Often we use the abbreviation cis(ϕ)
def
= (cosϕ+ i · sinϕ). We then have z = cis(ϕ).

◦ We remind at

The C LEXICON II: Math Eigenmath
complex number z in polar form with .. z = r · eiϕ polar(z)

... r = |z| and = r · (cosϕ+ i · sinϕ)

... argument ϕ = arg(z) ∈ [0, 2π[ ϕ = ](e1, z) = tan−1( y
x
) phi = arg(z)

complex number z in rectangular form z = x+ i · y rect(z)

the complex root of z cis(ϕ) = (cosϕ+ i · sinϕ) cis(phi)=..

the complex power of z Im(z) = x real(z)

the νthcomplex unit root of zn = 1 ζnν = e
2πi
n
ν , ν = 0, 1, ...n− 1 exp(2 pi i nu/n)

Summary: we have therefore three different shapes of a complex number

rectangular trigonometric exponentially
.. alias Cartesian .. alias polar form

z = x+ iy = r · (cosϕ+ i · sinϕ) = mag(z) · exp(i · arg(z)) = r · ei·ϕ

◦ We visualize some polar factors exp(i · ϕ) = ei·ϕ as points at the unit circle S1:
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Exercise 1.14. (Polar vs rectangular form of a complex number)
a. What is the argument and the magnitude of z = 3 + 2i?
b. Give z in polar form e.... Check the equivalence of both representations.
c. Recover the rectangular form of z in a. back from its polar form in b..
d. Check your results by Eigenmath.
BClick here to look at the solution.

Exercise 1.15. (Visualization of the complex multiplication ?)
By means of the polar form of a complex number one can visualize the effect of the complex
multiplication.

Figure 3:

Red: the 1st factor u with his argument α = ](e1, u)
Green: the 2nd factor v with his argument β = ](e1, v)
Blue: the product u ? v has argument (angle) ](e1, α + β)
The arguments (angles) are best seen as arc pieces on the
unit circle S1 : x2 + y2 = 1 starting at e1 = (1, 0).

a. In Fig.3 we have u = 3 + i and v = 1 + i. What are the coordinates of the yellow point?
b. Transform the arguments α, β and α + β in degrees. Compare.
◦ Slogan: you get the product of two complex numbers by multiplying their magnitudes
and adding their arguments (angles).

Exercise 1.16. (Programming a polar1 function for Eigenmath)
Eigenmath has two functions for handling polar (”e...”) and rectangular (”a+ bi”) forms
of complex numbers:
◦ polar(z) awaits as input z = a+ bi in rectangular form and returns its polar form.
◦ rect(z) awaits as input z = e... in (exp=)polar form and returns its rectangular form.
Sometimes one has length r and angle ϕ = arg(z) as inputs and needs the polar term.
Therefore:

https://lindnerdrwg.github.io/gaex114.html
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a. Write a user defined function polar1, which awaits (r, ϕ) as input and returns the polar
expression ... · exp(..) as output.
b. What is polar1(sqrt(13), arctan(2/3)) in rectangular form? In decimals?
b. Using polar1, what result do you respect for the expressions

polar1(r,p)*polar1(s,q)

1/polar1(r,p)

polar1(r,p)^3

Check your guess by Eigenmath. BClick here to look at the solution.

Exercise 1.17. (Polar form of a complex product or quotient)
Let z, u, v ∈ C.
a. Determine the polar form of the complex numbers in rectangular form 1, i,−1,−i.
b. Determine the rectangular form of u = exp(1/3iπ) and v =

√
2 · exp(1

4
iπ).

c. polar(z̄) =?
d. polar(z−1) =?
e. Verify: polar(u ? v) = |u| · |v| · e(ϕ+ψ)·i = |u| · |v| · cis(ϕ+ ψ)
i.e. again: you get the product of two complex numbers by multiplying their magnitudes
and adding their arguments (angles).
f. polar(u

v
) =?

BClick here to see the solution.

Exercise 1.18. (The 3rd roots of a complex number)
We seek the complex solutions of the equation z3 = 2 + 11i. We know by the so-called
Fundamental Theorem of Algebra, that this equation must have exactly 3 solutions in C.
a. Verify by paper’n pencil that w1 = 2 + i is a solution of z3 = 2 + 11i.
b. Use Eigenmath to verify that w2 = (2+ i)?(−1

2
+
√
3
2
· i) and w3 = (2+ i)?(−1

2
−
√
3
2
· i)

are solutions, too.
c. Plot the three solutions. Solution:

BClick here to run the solution.

https://lindnerdrwg.github.io/gaex116.html
https://lindnerdrwg.github.io/gaex117.html
https://lindnerdrwg.github.io/gaex118.html
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Exercise 1.19. (Roots of complex numbers as edges of a regular polygon)
Let a = r · exp(iψ) ∈ C.
a. Verify, that

rootnk(a) ≡ n
√
a|k

def
= r1/n · exp(i

ψ + 2kπ

n
)

for k = 0, ..., n− 1 is the kth of the n complex roots of a, i.e. ( n
√
a|k)n = a.

◦ The nth root of a is therefore a whole set of complex numbers:

n
√
a| = { n

√
a|k ∈ C | k ∈ {0, .., n− 1}}

b. Determine 4
√

1|, 4
√
i|.

c. Determine 4
√

2| and visualize this root set.
d. Verify by an quality plot that the root (set) n

√
a| of a complex number a is the edge set

of a regular n-gon e.g. 3
√
a| = 4 or 4

√
a| = � or ...

1.2.6 Inner and outer products of complex numbers

Definition. Let u = (u1, u2) = u1 + i · u2 and v = (v1, v2) = v1 + i · v2 be in IR2.
◦ The scalar alias inner product of u and v in the real vector space C = IR2 is defined as

u • v def
= u1 · v1 + u2 · v2

◦ The outer alias wedge product of u and v is defined as

u ∧ v def
= Im(ū ? v)

Exercise 1.20. Given w = 2 + 3i, z = 3− 5i and u, v ∈ C.
a. Determine w • z, z • z and w ∧ z, w ∧ w.
b. Verify: u • v = Re(u ∗ v̄)
c. Proof: u ⊥ c · u⇔ c ∈ i · IR, i.e. if c is pure imaginary.
◦ Check your results by Eigenmath.
BClick here to look at the solution.

https://lindnerdrwg.github.io/gaex120.html
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1.2.7 Problems

P1. Complex square roots and the normed quadratic equation.
In C there exists always complex square roots. We have the fact 5

Theorem IV. (The complex square root formula)
For arbitrary c = a+ bi ∈ C, a, b ∈ IR define

ζ :=

√
1

2
(a+ |c|) +

b

|b|
·
√

1

2
(−a+ |c|) · i if b 6= 0. (1.11)

ζ :=
√
|c|) if b = 0, a ≥ 0. (1.12)

ζ :=
√
|c|) · i if b = 0, a < 0. (1.13)

Then ζ2 = c. – We write: ζ :=
√
c.

a. Program theorem IV in Eigenmath.
b. Determine the complex square roots of −2, 1 + i, exp(πi) by paper’n pencil and with
Eigenmath.
c. Using the ancient Babylonian trick of completing the square we get:
The standard quadratic equation z2 + az + b = 0 has the two solutions z1 and z2:

z1|2 := −1

2
· a± 1

2

√
a2 − 4 · b (1.14)

Program the solution formula (1.11) in Eigenmath.
d. Solve x2 − 10x+ 34 = 0.
e. Solve z2 + iz + 2− 4i = 0.
f. Solve 5z2 + 2z + 10 = 0.

P2. Solution of general quadratic equations.
Read more about the quadratic equation. E.g.

”Solution for complex roots in polar coordinates: If the quadratic equation ax2 +
bx+ c = 0 with real coefficients has two complex roots – the case where b2−4ac < 0,
requiring a and c to have the same sign as each other – then the solutions for the roots
can be expressed in polar form as x1, x2 = r(cos θ ± i sin θ), where r =

√
c
a and θ =

cos−1
(
−b

2
√
ac

)
. [See url: https://en.wikipedia.org/wiki/Quadratic_equation]

a. Solve x2 − 10x+ 34 = 0 using the polar form.
b. Solve equation a. using the standard solution formula (1.11).
c. Solve x2 − 10x+ 40 = 0.6

d. Solve 5z2 + 2z + 10 = 0 using the polar form.

5See e.g. Remmert in [4, p. 62]
6see Hoffmann at http://www.math.uni-konstanz.de/~hoffmann/Funktionentheorie/kap1.pdf

https://en.wikipedia.org/wiki/Quadratic_equation
http://www.math.uni-konstanz.de/~hoffmann/Funktionentheorie/kap1.pdf
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P3. Solution of cubic equations – Cardano’s formula.
Read about the cubic equation.
E.g. [◦] https://mathshistory.st-andrews.ac.uk/HistTopics/Quadratic_etc_equations/.

a. Program the algorithm for Cardano’s solution of the special cubic equation x3+mx = n
to be found in [◦] ”in modern notation”. Then:
Solve x3 = 15x+ 4.

b. Look at https://www.mathematik.ch/anwendungenmath/Cardano/FormelCardano.html.
Then solve x3 + 3x2 + 9x+ 9 = 0 using Eigenmath.

P4. Construction of the complex numbers via 2×2 matrices.
A well-known construction7 represents C as a special set of matrices using the matrix
multiplication ? as complex multiplication.
Let Ĉ ≡ ({

[
a b
−b a

]
∈ IR2×2 | a, b ∈ IR},+, ?) be the set of skew-symmetric 2×2 matrices

with equal diagonal elements. We abbreviate C(a, b) :=
[
a b
−b a

]
, which corresponds to the

usual complex number a+ bi.
a. Formulate this construction in Eigenmath.
b. Calculate the sum C(1, 2) + C(3, 4) and the product C(1, 2) ∗ C(3, 4).
Check the result using ’normal’ complex numbers C.
c. Verify: C(a, 0) + C(b, 0) = C(a+ b, 0) and C(a, 0) ? C(b, 0) = C(a · b, 0).
◦ Therefore Ĉ contains the real numbers IR identified as the diagonal matrices. The matrix C(a, 0) ”is”

the real number a.

d. Show: C(0, 1)2 ≡ −1.
Therefore C(0, 1) corresponds to i ∈ C and we have a isomorphism between Ĉ and C.

7See e.g. Remmert in [4, p. 56]

https://mathshistory.st-andrews.ac.uk/HistTopics/Quadratic_etc_equations/
https://www.mathematik.ch/anwendungenmath/Cardano/FormelCardano.html
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1.3 C as algebraic structure

Figure 4:
Blue: the point/vector (3, 2). The basis {e1, e2} of IR2

Red: the same basis noted {e0, e1} and (3, 2) = 3 ·e0 + 2 ·e1
Green: (3, 2) = 3 · E + 2 · I in basis noted {E, I}

To construct the complex numbers C in an alternative way, we enhance the arithmetical
playground IR2 again with a third operation – but this time by means of a ’multiplication
table’ for the operation (the ’algebra multiplication’), noted ’~’. This makes IR2 into the
structure (IR2,~) of an ’algebra’8. One can master the algebra multiplication of the new
IR–algebra by means of its property of bilinearity, if one knows its effect on all possible
22 = 4 9 pairs of the elements of a basis of the underlying vector space IR2, see e.g.[3, pp.
192–193] Here we use the fact that the algebra unit 1C = (1, 0) = 1IR2 also occurs naturally
in this basis.
Therefore, to construct the new multiplication rules we describe for the 2 basis vectors
e0 = (1, 0) and e1 = (0, 1)10 of the vector space IR2 the following results for the operation
~:

e0 ~ e0 = e0 (1.15)

e0 ~ e1 = e1 (1.16)

e1 ~ e0 = e1 (1.17)

e1 ~ e1 = −e0 (1.18)

8A IR-algebra is a pair (A,~), consisting of an IR-vector space and an IR-binlinear mapping ~ : A×A→
A defined through (a, b) 7→ a~ b

9in general n2, n = dimIRA, A being the algebra.
10Why we adopt the notation e0, e1 alias E, I instead of the usual notation e1, e2 for the two basis vectors

of IR2 will become clear later on.
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Remark. If we translate the 4th rule e1 ~ e1 = −e0 using the lexicon e0, e1
1, i in die language

of C, we get the desired relation
e1 ~ e1 = −e0
i ? i = i2 = −1 .

Noted as a compact multiplication table for the algebra multiplication ~, we have:

(~ e0 e1
e0 e0 e1
e1 e1 −e0

)
If we now speak of the complex numbers we think at the 2–dimensional number plane IR2

equipped with the three operations (+, ·,~) and write C̃ ≡ (IR2,+, ·,~).

Exercise 1.21. Calculate (1 + i) ? (−2 + 2i) using the multiplication table. Solution:

(1 + i) ? (−2 + 2i) ≡ (e0 + e1)~ (−2e0 + 2e1)

= −2e0 ~ e0 + 2e0 ~ e1 − 2e1 ~ e0 + 2e1 ~ e1
= −2e0 + 2e1 − 2e1 + 2(−e0)
= −4e0 = (−4, 0) ≡ −4

1.3.1 Implementing the algebra structure C̃ ≡ (IR2,+, ·,~) in Eigenmath

In order to effectively calculate in the new algebraic playground (IR2,+, ·,~) we have to
translate the construction above into Eigenmath command language.

Comment. In (1) we implement the multiplication table as a tensor, i.e. as a matrix

consisting of two 2×2 matrices. Function mu
def
= ~ defines in (2) the bilinear operation,

which uses the cool possibility of Eigenmath’s dot(.) to allow multiple inputs. (4)
verifies that the construction fulfills the desired relation e21 = −(1, 0) ≡ −1. For an
arbitrary input mu returns in (6) the well known formula for the complex multiplication.
BClick here to run the script.

https://lindnerdrwg.github.io/ga131.html
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Exercise 1.22. Verify the calculation in (5) by only using the multiplication table. �
To convince the reader that we calculate indeed in C, we spend a bit syntactic sugar and

set E
def
= e0, I

def
= e1 to get the usual appearance:

E = (1,0) # _E_mbedding of R in C

I = (0,1) # _I_maginary unit

-- C = R[i] multiplication table:

-- E*E = E, E*I = I, I*E = I, I*I = -E=-1

T = ((E, I), (I,-E))

B = transpose(T,2,3)

mu(x,y) = dot(x,B,y)

mu(I,I) -- = -E = -1 i.e. i^2=-1

mu( 2E+3I, 1E-2I) -- complex algebra via multiplication table T

(2*1+3i)*(1*1-2i) -- build-in complex algebra, returning 8-i = (8,-1)

BClick here to run the script.

1.3.2 Reengineering of some complex functions

Figure 5:

Blue: The unit circle S1 ⊂ IR2 with equation x2 + y2 = 1.
Red: The complex number/vector z = 2 + 1 · i = (2, 1)
Green: ... its conjugate z̄ = (2,−1) = 2− i
Green: ... and its inverse 1/z.
Magenta: The complex number w = 1135o ≈ (0.707, 0.707)
Cyan: .. and its inverse 1/w

https://lindnerdrwg.github.io/gaex122.html
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Exercise 1.23. Regarding Fig. 5, calculate using build–in complex functions of Eigenmath
for the complex numbers C ≡ (IR2,+, ·, ?)
a. the ?–inverse 1/z of z = 2 + i.
b. the rectangular form of w = 1135o = rϕ ∈ S1.
c. the inverse of w.

We now want to reconstruct the results of Ex.1.23 using the new IR–algebra C̃ def
=

(IR2,+, ·,~). Therefore we have to write functions e.g. to compute the conjugate,
the real and imaginary part, the length (alias norm), the reciprocal (inverse) and the
quotient resp. the table based multiplication operation ~.

Exercise 1.24. (Functions for the algebra C̃ ≡ (IR2,+, ·,~))

Let w = (w[1], w[2]) be a arbitrary ’new complex’ number, i.e. w ∈ IR2 ≡ C̃.
Use the Eigenmath playground to solve the following tasks.
BClick here to open the playground.
a. Copy/Write the following functions on the playground:

im(w) = w[2]

re(w) = w[1]

cj(w) = (w[1],-w[2]) -- conjugate of w

iv(w) = 1/(w[1]^2+w[2]^2)*cj(w) -- inverse of w

A = 2E+3I

B = 1E-2I

and test these functions on the C̃–numbers A and B.
b. Redo Ex.1.23 using the functions and notations from a..
c. Here is a definition to compute the quotient u/v of two new–complex numbers:

qu(u,v)= 1/(v[1]^2+v[2]^2) *

(u[1]*v[1] + u[2]*v[2],

v[1]*u[2] - u[1]*v[2])

◦ Calculate qu(A,B). Check the result using build–in functions of Eigenmath.
◦ Give an alternative definition of qu using the inverse function iv.
◦ Give an alternative definition of iv using the quotient function qu.
d. What does mu(A,iv(A)) test? Write this expression in math language.
e. Collect the functions of this exercise in a toolbox named cBox.txt for later use.
BClick here to see the solution.

https://lindnerdrwg.github.io/gaex124a.html
https://lindnerdrwg.github.io/gaex124e.html
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1.3.3 Problems.

P5. The norm of a number w ∈ C̃ ≡ (IR2,+, ·,~).

Let w be a arbitrary ’new complex’ numbers of C̃.
a. Define a function no(w) to calculate the norm alias the length of w.
b. Determine the norm of all 5 points in Fig. 5.
c. What is the length of A = 2E + 3I and B = 1E − 2I?
d. Check the results by interpreting and writing A and B as ’usual’ complex numbers. Use
paper’n pencil and Eigenmath.
BClick here to see the solution.

P6. The inner and outer products in C̃.
Let U, V ∈ C̃ be two arbitrary ’new complex’ number.
a. Define the two functions ip(U,V) and op(U,V) to compute the inner resp. outer product
of complex numbers through

ip(U,V) = inner(U,V) -- inner product alias scalar product

op(U,V) = U[1]*V[2] - V[1]*U[2] -- outer product

◦ Calculate the inner and outer product of U = 3E − 4I and W = −4E + 3I.
◦ Calculate the inner and outer product of A = 2E + 3I and B = 1E − 2I.
◦ Calculate the inner and outer product of z and z̄ of Fig. 5.
b. Prove: ip(U,W) = re(mu(cj(U),W)).
Formulate this formula in mathematical language. c. Formulate and prove a similar
formula for the outer product.
d. Verify the results of Ex.1.20 by arithmetic in C̃.
BClick here to see the solution.

Remark. The complete set of Eigenmath functions for this section are bundled in the
toolbox cBox.txt for convenience.

~

Summary : We have constructed a new algebra C̃ in the Euclidean plane IR2 by means of
a multiplication table for the basis vectors spanIR{e1, e2}. This construction was totally
independent of the ’old’ complex numbers build–in in Eigenmath. Nevertheless we get
also the desired relation I2 = −1 to have a root of

√
−1. We were able to define the crucial

C–typical functions like conjugate, imaginary part, reciprocal, norm etc. in this setting,
too.

https://lindnerdrwg.github.io/gap5.html
https://lindnerdrwg.github.io/gap6.html
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1.4 C as Clifford algebra c`(2, 0)

In this section we reconstruct the complex numbers C again, this time using a univer-
sal recipe, which we will use later to implement the hyperbolic numbers, the quater-
nions and the 2D/3D geometry with enhanced insights: the Geometric algebra ’GA’.

This time we will use the Eigenmath package EVA2.txt11 for the first time. We will use
it without to say e.g. what a ’graded algebra’ is. Later in Chapter 4 we have to say more
about this, telling the motivation behind the construction. But first we should make some
easy experiences in the mere using of EVA2 as another possibility to calculate with complex
numbers ...

1.4.1 A first look at the 4D-Clifford algebra c`(2, 0)

Here is our new algebraic playground:

BClick here to invoke this script and to experiment a bit.

Comment. The call cl(2) alias cl(2, 0) of the function cl(..) of the EVA package give the
output

[
+
+

]
. This means that the norm has the signature (+,+), i.e.

√
+x2+y2. In line

(2) we list the basis vectors spanIR{e0, e1, e2, e12}, which here have other names than the
usual e1, e2, e3, e4. Why? Wait.
But nevertheless we feel immediately at home in this 4D vector space c`(2) when studying
and looking at lines (3) until (8). Here magnitude, normalize, inp, and gp are functions of
the package EVA, which are not available outside of this package.

11EVA2 is an abbreviation for ’Euclidian Vector Algebra’ version 2. We have to thank Bernard Eyhera-
mendy [5] for this package. It is currently the biggest collection of user defined functions in Eigenmath.

https://lindnerdrwg.github.io/ga141.html
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Line (10) is crucial: it remembers at the characteristic feature i2 = −1 of the imaginary
unit i ∈ C of the complex numbers, i.e.

gp(e12, e12) = ” (e12)2 ” = (−1, 0, 0, 0)≡ −1

◦ This observation will lead to an realization of C inside the Clifford algebra c`(2, 0).
◦ For the moment we may think of the geometric product gp as given through a 4×4 =16
entry multiplication table a la ~ for the algebra C̃ in the last section.

Exercise 1.25.
a. Find two vectors u, v ∈ c`(2) which are orthogonal resp. the scalar product inp.
b. Do some more free experiments in the 4D algebra c`(2).

1.4.2 C as part of the Clifford algebra c`(2, 0)

Here is our realization of the complex numbers C as a 2D sub-algebra Ĉ def
= (IR4,+, ·, gp).

By sub-algebra we mean that we will only use linear combinations of the two basis vectors

e0, e12, i.e. with the alias E
def
= e0, J

def
= e12 we define

Ĉ = (spanIR{E, J},+, ·, gp)

Remark. The Clifford algebra multiplication, noted gp(a,b) in Eigenmath package
EVA, is often noted in mathematical texts as ab – without any separating multiplication
sign between the factors. We do not recommend that use for the beginner. Instead we use
a notation like a} b or a� b or a ◦ b for ab=gp(a,b).

geometric product:
Math Eigenmath
A ◦B gp(A,B)

run("EVA2.txt")

cl(2) -- invoke Clifford Algebra (2,0)

-- We give some syntactic sugar ..

E = e0 -- to Embed the real numbers R^1

J = e12 -- to have usual name for Jmaginary unit

gp(J,J) -- output: (-1,0,0,0) i.e. J^2 = -1

a = 1e0 + 2e12

b = -2e0 + 3e12

b -- output: b=(-2,0,0,3) == -2+3i

-- is now noted as

a = 1*E + 2*J

b = -2*E + 3*J

b -- output: b=(-2,0,0,3) == -2+3i

BClick here to invoke this script.

https://lindnerdrwg.github.io/ga142.html
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1.4.3 Clifford algebra cheatsheet for EVA2

Here is a cheatsheet of the main functions of the package EVA2 for future use:

Math Eigenmath EVA2

geometric product A B gp(A,B)

inner/scalar product A •B inp(A,B)

outer product A ∧B outp(A,B)

Clifford conjugation B̄ cj(B)

inverse 1/B = B−1 inverse(B)

magnitude |B| magnitude(B)

normalize B
|B| normalize(B)

• There are also the Clifford algebra versions12 for the regular build-in functions of the
complex domain, always noted with an ending 1 to distinct it from the C–functions:

imag1, real1, polar1, rect1, exp1, log1, sqrt1, power1, sin1, cos1, tan1,

sinh1, cosh1, tanh1, asin1, acos1, atan1, asinh1, acosh1, atanh1, ..

Exercise 1.26. (Wolfram|alpha for complex numbers)
Wolfram|alpha works with complex numbers: BClick here to invoke Wolfram’s page.
Check their examples and results using the EVA package. E.g.
a. Calculate 1/(12 + 7i) ∈ C inside c`(2) using EVA. Example solution:

run("EVA2.txt")

cl(2)

inverse(12E+7J) -- complex arithmetic in cl(2) with EVA

1/(12+7i) -- complex arithmetic in EIGENMATH

Visualize the result,
loc. cit. Wolfram|alpha:

b. Do the other calculations from that page.
BClick here to invoke the script.

c. Redo some of the exercises in section 1.5, 1.7–1.14, 1.17 and 1.20 of this booklet using
Eigenmath’s EVA.

12Most of these functions are implemented using partial Taylor sums, therefore giving ’only’ approxi-
mate decimal values.

https://www.wolframalpha.com/examples/mathematics/numbers/complex-numbers/
https://lindnerdrwg.github.io/gaex126.html
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2 IH – the hyperbolic numbers

”The hyperbolic numbers are blood relatives of the popular complex mum-
bers and deserve to be taught alongside the latter. They serve not only to put
Lorentzian geometry on an equal mathematical footing with Euclidean geometry, but
also help students develop algebraic skills and concepts necessary in higher mathe-
matics. Whereas the complex numbers extend the read numbers to include a new
number i =

√
−1, the hyperbolic numbers extend the real numbers to include a new

square root u =
√

+1, where u 6= ±1. [13, p. 2]

This new number u is named the unipotent. This u solves the equation x2 = 1, but has the
properties u 6= +1 and u 6= −1 and u 6∈ IR. Using the same pattern like the construction
of the complex numbers C in the last section, we build the hyperbolic numbers IH13 now
in two different ways: first by means of a special multiplication (table) for the 2D vector
space IR2 and second using the Clifford algebra c`(1, 1).

2.1 IH as algebraic structure

Figure 6:

The hyperbolic number plane IH.
Blue: The hyperbolic number 3 + 2u. Basis {e0, e1} of IR2.
Red: The unipotent u with u2 = 1, but u 6= ±1 ∈ IR.
Green: The hyperbolic basis {1, u} alias {e0, e1} or {E,U}.

To construct the hyperbolic numbers IH as an IR–algebra, we extend the real vector space
IR2 to include the unipotent element u together with a new third operation � : IR2× IR2 →
IR2 by means of a ’hyperbolic multiplication table’ for it. Analog to the reconstruction of
the complex numbers C, we will use the bilinearity of � and describe its action on all 4
possible pairs of basis elements.

13This chapter is inpired by the presentations of Garret Sobczyk in [12] and [13].
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Here are the multiplication rules for the hyperbolic multiplication �, acting on the two

basis vectors e0
def
= (1, 0)14 and e1

def
= (0, 1) of the vector space IR2:

e0 � e0 = e0 (2.1)

e0 � e1 = e1 (2.2)

e1 � e0 = e1 (2.3)

e1 � e1 = e0 (2.4)

• If we translate the 4th rule using the lexicon e0, e1
1, u into the language of IH, we get the

desired relation
e1 � e1 = e0
u� u = u2 = 1 .

• If we put the above rules in an hyperbolic multiplication table for this algebra multiplica-
tion � for IH, we have:

(� e0 e1
e0 e0 e1
e1 e1 e0

)

Definition. The hyperbolic numbers IH are the elements of the 2–dimensional number plane
IR2 equipped with the three operations (+, ·,�) and the unipotent element u ∈ IH with

u 6= ±1, but u2 = 1. We write: IH
def
= (IR2,+, ·,�).

Exercise 2.1. Calculate (1e0 + 2e1)� (−2e0 + 3e1) using the multiplication table for hyper-
bolic numbers. Solution:

(1e0 + 2e1)� (−2e0 + 3e1) = −2e0 � e0 + 3e0 � e1 − 4e1 � e0 + 6e1 � e1
= −2e0 + 3e1 − 4e1 + 6e0

= 4e0 − 1e1 = 4 · (1, 0)− 1 · (0, 1) = (4,−1)

2.1.1 Implementing IH alias the binarions in Eigenmath

Remark. Using the abbreviation E := e0, U := e1 the hyperbolic multiplication table reads

(� E U

E E U
U U E

)
and looks like a 2D analogue of the 4D table for the quaternions, which we discuss in the
next chapter. Therefore the name ’bi’narions for the hyperbolic numbers.
In order to calculate in the new algebra IH = (IR2,+, ·,�), we have to translate the table
above into Eigenmath command language.

14For systematically reasons, which will become clear later on, we again do not use the usual notation
{e1, e2} for the two basis vectors.
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Comment. Function M
def
= � realize the bilinear operation, i.e. the Multiplication of

hyperbolic numbers.. The checks in lines (0) verifies, that the operation M implements the
values of the IH–multiplication table and especially fulfills the desired relation U2 = e21 =
(1, 0) ≡ 1. Code line (2) verifies the result of Ex.2.1.
BClick here to run the script.

Exercise 2.2. (The algebraic characteristics of the hyperbolic number multiplication �)
The multiplication � is prescribed on its values on the finite 4 element table. Therefore it
suffices to check its properties like commutativity, associativity, distributivity etc. on the
muliplication table. E.g.

-- define 3 arbitrary hyperbolic numbers (’binarions’)

x = (x0,x1)

y = (y0,y1)

z = (z0,z1)

"Is multiplication M of hyperbolic numbers commutative?"

test( M(x,y)=M(y,x), "yes","no")

"Is multiplication M alternative?"

test( and(M(M(x,x),y)=M(x,M(x,y)),

M(M(y,x),x)=M(y,M(x,x))),"yes","no")

Eigenmath output: commutative: yes alternative: yes
BClick here to run the script.

a. Check the associativity of M ≡ �.
b. Check the distributivity of M .

https://lindnerdrwg.github.io/ga211.html
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Exercise 2.3. (An explicit formula for the hyperbolic number multiplication �)
We know the explicit formula (a+ bi) ? (c+ di) = (ac− bd) + (ab− cd)i for the complex multiplication ?.

Derive a similar formula for the hyperbolic multiplication � by Eigenmath.

Solution. First, let’s spend a bit syntactic sugar and set E
def
= e0 and U

def
= e1 to get a similar

appearance of hyperbolic numbers like the complex one’s, i.e. e0, e1
E, U and C : z = a · 1 + b · i

IH: w = a · E + b · U .

E = (1,0) -- _E_mbedding of R in H

U = (0,1) -- the _u_unipotent - the analogue to i in C

-- H multiplication rules:

-- E*E=E, E*U=U, U*E=U, U*U=E == 1

T = ((E, U), (U,E))

M(x,y) = dot(x,T,y) -- multiplication as bilinear operation on H

-- two arbitrary hyp.numbers:

x = a*E+b*U

y = c*E+d*U

y

M(x,y) -- explicit term for hyperbolic multiplication

Eigenmath output: y=(c,d) M(x,y)=(a c + b d, a d + b c)

BClick here to run the script.

Using the explicit formula for M we can forget about the construction of the algebra IH by
means of a multiplication table and think of the hyperbolic numbers as (IR2,+, ·,�) with

� : IR2 × IR2 → IR2 (2.5)

(a, b), (c, d) → (a, b)� (c, d)
def
= (a · c+ b · d, a · d+ b · c) (2.6)

Exercise 2.4. (The hyperbolic multiplication)
a. Write the following function in a toolbox named hyBox.txt for future use:

# multiplication of hyperbolic numbers

hymult(x,y) = (x[1]*y[1] + x[2]*y[2], x[1]*y[2] + x[2]*y[1])

hymult(e1,e1) -- result: (1,0) == 1

b. Solve Ex.2.1 using hymult(.).

2.1.2 Implementing specific user functions for IH

From now on we use the following lexicon for calculation in the hyperbolic number plane
IH with E = (1, 0) and U = (0, 1):

Math Eigenmath
standard basis (1, u) (E,U)

arbitrary hyperbolic number w = x+ yu w=x*E+y*U

https://lindnerdrwg.github.io/gaex23.html
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Definition. (the hyperbolic length)
The hyperbolic norm (modulus, length) of w = x+ y · u ∈ IH is defined as the real number

|w|h
def
=
√
|x2 − y2| (2.7)

The set H1 def
= {w ∈ IH | x2 − y2 = 1} is called the unit hyperbola.

Figure 7:
Blue: unit hyperbola H1 ⊂ IR2 with equation x2 − y2 = 1.
Green: the hyperbolic number/vector w = 3 + 2 · u = (3, 2)
with hyperbolic length |3 + 2 · u|h =

√
5 ≈ 2.24.

Exercise 2.5. (The norm of a hyperbolic number)
Let w = x+ yu ∈ IH be a arbitrary hyperbolic number.
a. Define a function hyno(w) to calculate the hyperbolic norm alias the length of w as
given in the definition previously.
b. Calculate the hyperbolic lenght of w = 3 + 2u in Fig.7 by paper’n pencil and hyno(..).
c. Determine the ’hyno’ of the points P = 1 + 0u, Q = −1 + 0u and R = −1 + u.
d. What is the hyperbolic distance betwenn A = 2E − 3U and B = 1E − 2U?
BClick here to see the solution.

Exercise 2.6.
a. Put the following functions for hyperbolic numbers in the toolbox hyBox.txt:

hyreal(w) = w[1] -- REAL part of hyperbolic number w

hyunip(w) = w[2] -- UNIPotent part of hyperbolic number w

hyconj(w) = (w[1],-w[2]) -- hyperbolic CONJugate of w

hyinv(w) = 1/(w[1]^2-w[2]^2)*hyconj(w) -- hyperbolic INVerse of w

hyquot(v,w) = hymult( v, hyinv(w)) -- QUOTient of v and w

hynorm(w) = sqrt(abs(w[1]^2-w[2]^2)) -- hyperbolic NORM of w

https://lindnerdrwg.github.io/gaex25.html
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b. Calculate the hyperbolic length of w = 3 + 2u of Fig.7.

-- EIGENMATH solution

do( E=(1,0), U=(0,1) )

w = 3E+2U

hynorm(w) -- output: 5^1/2 = 2.24

abs(w) -- the Euclidean length of w in R^2 is 13^1/2=3.6 !

BClick here to run the script.
c. Determine for w the hyperbolic real part, its unipotent part, its conjugate, the inverse.
d. Calculate the hyperbolic quotient of w = 3 + 2u and v = 1 + 2u.
e. Try to calculate the hyperbolic quotients of w = 3+2u and v = 1+1u resp. w/(2−2u).

2.1.3 Isotropic points in IH

Ex.2.6 showed, that there are hyperbolic numbers not equal 0 · E + 0 · U = (0, 0), for
which the calculation of the hyperbolic quotient ejected a ’division by zero’ error message.
We observed, that the denominators lie on the diagonals of the coordinate system. Those
points are called isotropic.

Definition. A hyperbolic number w 6= 0 s called isotropic, if its hyperbolic length is zero,
i.e. |w|h = 0.

Figure 8:

Blue: unit hyperbola H1 ⊂ IR2 with equation x2 − y2 = 1.
Red: the main diagonal y = x as isotropic point line
Green: the second diagonal y = −xx as isotropic points
Cyan ..: isotropic points 3 + 3u,−2 + 2u,−1− u, 1.5 + 1.5u.

Exercise 2.7. (isotropic points)
a. Verify, that the points (hyperbolic numbers) in Fig.8 are isotropic.
b. Prove: all points on the diagonals y = ±x are isotropic.

https://lindnerdrwg.github.io/gaex26.html
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Remark. This phenomenon of the existence of isotropic subvector spaces with respect to
the hyperbolic norm leads to a new non-Euclidean geometry, the Lorentzian geometry
on IR2. It plays a great role in Special Relativity, see [13, pp. 15 ff].

2.1.4 Problems.

P7. A scene for the hyperbolic number plane.

Figure 9:

Blue: unit hyperbola H1
+ ⊂ IR2 with equation x2−y2 = +1.

Red: unit hyperbola H1
− ⊂ IR2 with equation x2−y2 = −1.

Green: hyperbola H4
+ ⊂ IR2 with equation x2 − y2 = +16.

Yellow: hyperbola H4
− ⊂ IR2 with equation x2− y2 = −16.

Cyan: isotropic line y = −x. Magenta: isotropic line y = x.
w = 5 + 3u ∈ IH, Blue: w/|w|h Red: w−1h =hyinv(w).

a. Calculate the coordinates of the blue point w/|w|h ∈ H1
+ by paper’n pencil.

Check your result with Eigenmath.
b. Determine the hyperbolic distance and the Euclidean distance of w from the origin.
c. Determine the coordinates of the red point wo := w/|w|h ∈ H1

+ by paper’n pencil.
Check your result with Eigenmath. Determine the hyperbolic distance of wo from the
origin and from its ’father’ w.
c. Determine the coordinates of the hyperbolic inverse w−1h of w by paper’n pencil. How
long is the distance of this inverse to w? Check your results with Eigenmath.
d. Verify the result of c. by calculating the hyperbolic product w−1h � w.
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P8. Alternativ formula for the hyperbolic conjugate.
a. Argue, why the following function Cj(.) calculates the hyperbolic inverse.

-- EIGENMATH

do( E=(1,0), U=(0,1) )

w = 3E+2U

Cj(x) = 2*dot(x,E)*E - x

b. Calculate the hyperbolic conjugates of the three points (hyperbolic numbers) of Fig. 9.
Check your results with hyconj(.).
BClick here to run the script.

P9. The inner and outer product in IH.
Let U, V ∈ IH be two arbitrary hyperbolic numbers.
a. Define the functions hyinp(U,V) and hyoutp(U,V) to compute the inner resp. outer
product of two hyperbolic numbers U, V ∈ IH through

hyinp(U,V) = U[1]*V[1] - U[2]*V[2] -- inner product alias scalar product

hyoutp(U,V) = U[1]*V[2] - U[2]*V[1] -- outer product

◦ Calculate the inner and outer product of U = 3E − 4U and W = −4E + 3U .
◦ Calculate the inner and outer product of A = 2E + 3U and B = 1E − 2U .
◦ Calculate the inner and outer product of w and w̄ of Fig. 59.
b. Prove: hyinp(U,W) = hyre( hymult( hyconj(U),W)).
Formulate this formula in mathematical language.
c. Formulate and prove a similar formula for the outer product.
d. Find a hyperbolic number w⊥, which is hyperbolic orthogonal to w.
BClick here to see the solution.

P10. Realization of IH as matrix algebra.
Using the correspondence

IH −→ IR2×2
sym (2.8)

x+ y · u 7→
[
x y
y x

]
(2.9)

the hyperbolic numbers can be identified with the symmetric 2×2 matrices with equal
diagonal entries.
a. Why is this assignment an isomorphism?
b. The hyperbolic numbers w1 = 2 + 3u and w2 = 3 − 5u are represented via the
isomorphism (2.9) through W1 =

[
2 3
3 2

]
and W2 =

[
3 −5
−5 3

]
.

Calculate the values of w1 + w2, w1− w2, 2 · w1 by paper’n pencil and Eigenmath.

Partial solution:

https://lindnerdrwg.github.io/gap8.html
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W1=((2,3),(3,2))

W2=((3,-5),(-5,3))

W1+W2

W1-W2

2*W1

c. Verify, that the hyperbolic multiplication � alias hymult()|Eigenmath corresponds to the
usual matrix multiplication ? of symmetric 2×2 matrices, i.e.

hymult((2, 3), (3,−5))
Math
= W1 ? W2

Eigenmath
= dot(W1,W2)

Example:

W1=((2,3),(3,2))

W2=((3,-5),(-5,3))

dot(W1,W2) -- corresponds to (2+3u) hymult (3-5u)

d. Write corresponding Eigenmath functions for the hyperbolic real part, unipotent part,
the hyperbolic multiplication, quotient, conjugate, norm and the hyperbolic inverse of a
hyperbolic number. Here is a start: BClick here to start the start.

Hconj(z)=((z[1,1],-z[1,2]),(-z[2,1],z[2,2]))

Hnorm(z)=sqrt(abs(z[1,1]^2-z[1,2]^2))

Hinv(z)=1/(z[1,1]^2-z[1,2]^2)*Hconj(z)

# TEST

W1=((2,3),(3,2))

W2=((3,-5),(-5,3))

Hconj(W1)

Hinv(W1)

P11. More functions for IH.
Let U, V ∈ IH be two arbitrary hyperbolic numbers.
If you like it: derive functions for the hyperbolic polar form, the hyperbolic angle (argu-
ment) etc.

�

Summary : We have constructed a new algebra IH inside the Euclidean plane IR2 by means
of a special multiplication table for the basis vectors spanIR{e0, e1} alias spanIR{E,U}.
With this hyperbolic multiplication we got the desired relation U2 = 1 to have a root of√

+1, not being ±1 ∈ IR. We were able to define the crucial IH–typical functions like
hyperbolic conjugate, hyperbolic imaginary part, hyperbolic reciprocal, hyperbolic norm
etc. in this setting, too.
We did not give Eigenmath formulas e.g. for the hyperbolic polar form, because we
will show these constructs in a more general setting – viewing IH as a special Clifford
algebra. This is the done in the next section.

https://lindnerdrwg.github.io/gap10d.html
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2.2 IH as split-complex numbers – the Clifford algebra c`(1, 1)

In this section we reconstruct the hyperbolic numbers IH using the same universal
recipe, which we used to represent the algebra C and which is a second example of
an Geometric algebra ”GA”.

Here we use the Eigenmath package EVA2.txt for the second time. We want to broaden
our experience in the use of EVA as another possibility to calculate with hyperbolic numbers
in a more straight way.

2.2.1 A look at the 4D-Clifford algebra c`(1, 1)

Let’s look first at c`(1, 1), a part of it will soon become an algebraic modeling of the
hyperbolic numbers IH:

Comment. At first glance, all looks similar to the c`(2, 0) construction of C in §1.4.1. That’s
good, because we do not have to learn a new vocabulary and may use the same notations,
that we’re used to. But watch: The call cl(1, 1) in code line (2) of the constructor function
cl(..) of the EVA2 package give the output (+,−)! This means, that the norm of cl(1, 1)
has the signature (+,−), i.e. the norm has now the term

√
+x2−y2. Therefore the name

’split-complex’. In line (3) we list the basis vectors spanIR{e0, e1, e2, e12} of c`(1, 1) ∼ IR4,
which have the expected canonical coordinates of the 4D vector space IR4. In line (4) we
embed the real number line IR by means of E and his multiples into c`(1, 1).
Line (6) is crucial and shows, why we will later chose a part of c`(1, 1) as model for IH: it
verifies the characteristic feature u2 = 1 of the unipotent element u ∈ IH of the hyperbolic
numbers is fulfilled with respect to the geometric product of c`(1, 1), i.e.

gp(U,U) = U2 = (1, 0, 0, 0)≡ 1

◦ This observation (6) leads to a realization of IH inside the Clifford algebra c`(1, 1).
◦ For the moment we may think of the geometric product gp as given through the 4×4
= 16 entry multiplication table for the hyperbolic multiplication � for the algebra IH in
the last section or as a re–construction of the function hymult(.) inside c`(1, 1).
BClick here to invoke cl(1,1).

https://lindnerdrwg.github.io/ga221.html
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Exercise 2.8.
First, do some free experiments in the 4D algebra c`(1, 1). – A possible Solution.

run("EVA2.txt") # load package EVA

cl(1,1) # specify the Clifford Algebra

do( E=e0, U=e12 ) # set (E,U) 2D sub-algebra

A = 1e0+2e1+3e2+4e12 -- an element in full cl(1,1), but not in H

B = 1E+2e1+3e2+4U -- the same in other notation

A

B

a = 3E+2U -- an element in H

b = -2E+U

a+b -- normal 4D addition in H

a-b -- normal 4D subtraction in H

2a+3b -- usual linear combination

magnitude(a) -- hyperbolic length, see Fig.2

abs(a) -- Euclidean length

inp(U,U) -- feel at home

BClick here to invoke this script.

2.2.2 IH as a 2D sub-algebra of the 4D Clifford algebra c`(1, 1)

After Ex.2.8 we feel immediately at home in this 4D vector space c`(1, 1). The functions
magnitude, normalize, inp, and gp (geometric product) are available by means of the
package EVA2 and work as expected. Therefore we make the

Definition: The hyperbolic number plane IH is the the 2D sub-algebra

IH := (spanIR{e0, e12},+, ·,�)

of c`(1, 1) with algebra multiplication �.

Math IH Eigenmath EVA2 c`(1, 1)
A�B gp(A,B)

.. and we can use the same EVA2–functions as for the complex numbers:

https://lindnerdrwg.github.io/gaex28.html
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Math Eigenmath EVA2

geometric product A B gp(A,B)

inner/scalar product A •B inp(A,B)

outer product A ∧B outp(A,B)

Clifford conjugation B̄ cj(B)

inverse 1/B inverse(B)

magnitude ‖B‖ magnitude(B)

normalize B
‖B‖ normalize(B)

• The Clifford algebra functions are usable also for the hyperbolic domain, they are
noted with an ending 1 to distinct them from the Eigenmath build–in functions for the
complex domain, e.g. imag1, real1, polar1, rect1, exp1, log1, sqrt1, power1,

sin1, cos1, tan1, sinh1, cosh1, tanh1, asin1, acos1, atan1, atanh1, ..

Exercise 2.9. (Using c`(1, 1) for arithmetic with hyperbolic numbers)
a. Re–do Ex.2.5 and Ex.2.6 calculating in the Clifford algebra c`(1, 1) using EVA2.
b. Re–do problems P.10 and P.12 calculating in the Clifford algebra c`(1, 1) using EVA2.

2.2.3 The hyperbolic polar form in IH ∼ c`(1, 1)

Figure 10:

Blue: unit hyperbola H1
+ ⊂ IR2 with equation x2−y2 = +1.

Red: conjugate hyperbola H1
− with equation x2− y2 = −1.

Green: first asymptote with equation y = x.
Yellow: second asymptote with equation y = −x.
Four hyperbolic quadrants Hi, Hii, Hiii, Hiv, demarcated by
the two asymptotes..
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For the use of the hyperbolic polar form polar1, we divide the hyperbolic plane IH in 4
hyperbolic quadrants Hi, Hii, Hiii, Hiv, see Fig.10, with the asymptotes as axes. The set of
all points w ∈ IH in the hyperbolic plane that fulfill the relation ‖B‖ = |w|h = ρ for an
hyperbolic radius ρ > 0 is a four branched hyperbola. For a hyperbolic number w = x+yu
we therefore have

polar1(w) = { +ρ · exp1(φ · u) : for w in Hi (pol1)

−ρ · exp1(φ · u) : for w in Hiii (pol3)
resp.

polar1(w) = { +ρu� exp1(φ · u) : for w in Hii (pol2)

−ρu� exp1(φ · u) : for w in Hiv (pol4)
.

Example. (the hyperbolic polar form of w = 5 + 3u ∈ IH, see [13, p. 6]) For analogy and
contrast we look at the point (5, 3) ∈ IR2 of the Euclidean plane from the viewpoints of C,
i.e. z = (5, 3) = 5 + 3i and IH, i.e. w = (5, 3) = 5 + 3u.
(5, 3) = z = 5 + 3i ∈ C: First we calculate the polar form of w seen as complex number.
The radius is r =

√
+52 + 32 =

√
34 ≈ 5.83.

The argument (angle) is ϕ = arctan(3/5) =≈ 0.54042, i.e. ϕ ≈ 31o.
Therefore polar(z) =

√
34 · exp(0.54042 · i).

Let’s control it using Eigenmath...

.. and by means of a plot:

Figure 11:
Blue: unit circle S1 with equation x2 + y2 = 1.
Red: circle Sr of radius r =

√
34 ≈ 5.83

Cyan: the complex number z = 5 + 3i with ϕ = ] = 31o.
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(5, 3) = w = 5 + 3u ∈ IH: Now we calculate the polar form of w as a hyperbolic number.
The hyperbolic radius is ρ =

√
+52 − 32 =

√
16 = 4.

The hyperbolic argument (angle) is φ
Hi= arctanh(3/5) ≈ 0.6931. No degree!

Therefore the hyperbolic polar form is polar1(z)
Hi= 4 · exp(0.6931 · u).

Let’s control it using Eigenmath:

Comment. The hyperbolic number w = 5 + 3u is represented in IH ∼ c`(1, 1) as a 4D
vector, where only the 1st and the 4th entry is used, therefore working in a 2D sub-algebra.
The EVA function magnitude returns the hyperbolic length of w alias the hyperbolic radius.
The complete polar form of w is calculated by the EVA function polar1, which returns the
hyperbolic angle (alias the hyperbolic argument) as the real part 0.693147 of the 4th entry.
Because for w ∈ Hi we verify the result using formula (pol1) and get back the rectangular
form of w. Ok. BClick here to invoke this script.
Let’s look at the geometric situation.

Figure 12:

Blue: hyperbola H4
i , H

4
iii : x

2 − y2 = 16. w is a point on it.
Red: conjugate hyperbola H4

i i,H
4
iv : x2 − y2 = −16

Cyan: the hyperbolic number w = −5 − 3u and its three
branch ”brothers” with same hyperbolic angle (argument).

https://lindnerdrwg.github.io/ga223.html
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Exercise 2.10. (branch points and their hyperbolic polar forms)
a. Verify, that the hyperbolic conjugate of w = 5+ 3u is cj(w) = 5−3u. Use Eigenmath.
Calculate its hyperbolic polar form.
b. There are 3 more points on the 4 branched hyperbola Hρ=4, to be seen in Fig. 12.
Give their polar1 forms and their rectangular forms. Hint : use symmetry. Here is a start.

run("EVA2.txt")

cl(1,1)

do( E = e0, U = e12)

w = 5E+3U

w3 = -magnitude(w)*exp1(0.693147 U) -- use formula (pol3) with ..

w3 -- .. same hyperbolic angle !

w2 = +gp(magnitude(w)*U, exp1(0.693147 U))

w2 -- use (pol2), because w2 on 2nd branch

BClick here to invoke this script.

Exercise 2.11. (The hyperbolic polar form)
a. Express each of the following the hyperbolic numbers (points) in hyperbolic polar form:
A = 2E +

√
12U, B = −5E + 5U, C = −

√
6E −

√
6U, D = −3U

and plot them on the hyperbolic number plane. Use Eigenmath.
b. Interpret the points of Ex.a. as complex numbers, using their real and imaginary parts.
Plot the points on the complex number plane. Use paper’n pencil and/or Eigenmath.

Exercise 2.12. (An Eigenmath function for the hyperbolic polar formulas)
Bundle the four branched separated hyperbolic polar formulas (pol1), (pol2), (pol3), (pol4)
in one function Eigenmath polH(w), which checks beforehand to which branch the hy-
perbolic number w belongs and than choses the appropriate formula (poli).
Check your function on the 4 points of Ex.2.11.a.

In section 2.2.3 we have read of the value of the hyperbolic argument of a hyper-
bolic number at the output of EVA2–function polar1(.), see the screenshot of the
Eigenmath session before Fig.12. This hyperbolic angle was ’hidden’ in real part of
the complex number of the 4th coordinate entry of the result. We therefore will give
some possibilities of a direct calculation of the hyperbolic argument (angle). This
will need a little knowledge from calculus, e.g. [9, p. 500 ff].

https://lindnerdrwg.github.io/gaex210.html
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Figure 13:

Blue: unit circle S1 : x2 + y2 = 1.
Cyan: complex number z = 5 + 3i.
Right: a microscopic view at the complex number angle.
Best mental image as length of the arc from •_ • in rad.

2.2.4 The hyperbolic angle (argument) in IH ∼ c`(1, 1)

For analogy and contrast we look again at the point (5, 3) ∈ IR2 of the Euclidean plane
from the viewpoints of C, i.e. z = (5, 3) = 5 + 3i and IH, i.e. w = (5, 3) = 5 + 3u.
(5, 3) = z = 5 + 3i ∈ C: First we calculate again the arg(ument, angle) of w interpreted
as complex number z in an alternative way to gain an appropriate mental image of the
concept ’argument of z’. We calculate this angle as a proportional piece of the plane unit
circle curve S1 : x2 + y2 = 1 as seen in the microscopic view in Fig.13.right:

BClick here to invoke this script.

Comment. In the Eigenmath realization, we first (1) calculate the normalized point

https://lindnerdrwg.github.io/ga224a.html
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z◦ = z
|z| ∈ S1, i.e. the coordinates of the green point in Fig.13. Second we define a

parametrization g : IR → IR2of the unit circle, i.e. starting from the equation x2 + y2 = 1
we gain y2 = 1− x2 and therefore g(t) = (1,

√
1− t2). Third we calculate the argument of

z realized as the arc length L of g between the magenta point (1, 0) and the green point
z◦ ≈ (0.86, 0.51), i.e. we have the integral15

L
(4)
=

x=1∫
x=0.8574

|g′(t)|dt ≈ 0.5404
def
= arg(z)

We give a second interpretation of the complex arg (angle) as area of the sector ^ =
((0, 0), (1, 0), z◦) (’trigonometric triangle’). If we express the unit circle S1 in polar coordi-
nates by the equation r = f(θ), together with the rays θ = α to θ = β we enclose a region,
whose area A is given by16

A =
1

2

θ=β∫
θ=α

f(θ)2dθ
S1

=
1

2

θ=0.5404∫
θ=0

12dθ =
1

2
· arg(z)

We have the fact:
arg(z) = 2 · ^

i.e. the double area of the sector of the unit circle with central angle θ equals arg(z).

# EIGENMATH

# Express the unit circle by equation r = f(theta) in polar coordinates.

f(theta) = r

r = 1

argZ = 2*1/2 * defint( f(theta)^2, theta, 0, 0.5404)

argZ -- result 0.5404

BClick here to invoke this script.

In summa: besides the usual trigonometric definition of arg(z) = arctanh( y
x
)17 we have

two more possibilities to calculate the complex angle: first as length of an arc and second
as area of a sector. This will help us to gain insight into the concept of the hyperbolic
angle (argument) of an hyperbolic number.

Exercise 2.13. Use the arc length construction of the complex argument to program an
alternative Eigenmath– function argC(z) for the calculation of arg(z).

15I thank G. Weigt for a work around to calculate the intergral L with Eigenmath.
16see e.g. [9, p. 502], where the authors also give a nice infinitesimal argument of this formula.
17cum grano salis, because one has to chose the correct order of nominator and denominator ..

https://lindnerdrwg.github.io/ga224b.html
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(5, 3) = w = 5 + 3u ∈ IH: Now we look at the argument (angle) of w = x + yu as
hyperbolic number. Because the formal definition via analogy argH(w) = arctanh( y

x
)18

gives no geometric insight we try to go the alternative ways.

Figure 14:

Blue: hyperbola H1
i : x2 − y2 = 1.

Green: hyperbolic number w = 5E + 3U
and its hyperbolic conjugate w−h = 5E − 3U .
Right: a microscopic view at the hyperbolic angle of w.
Best mental image as area of the sector formed by ◦↗↘(

1st: We calculate the hyperbolic arc length as length of the blue arc ◦↗→( on the unit
hyperbola H1

i using Eigenmath.

18cum grano salis, because one has to chose the correct order of nominator and denominator fitting to
the correct hyperbolic quadrant Hi,..
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BClick here to invoke this script.

Comment. Invoking cl(1,1) we first beam us into the hyperbolic plane. Because the
hyperbolic length (magnitude) of w is ‖w‖ = 4, the normalized hyperbolic number is
w/‖w‖ = 1/4·w and lies on H1, i.e. the point (5

4
, 3
4
) ∈ IR2. Second we define a parametriza-

tion g : IR→ IR2of the unit hyperbola, i.e. starting from the equation x2−y2 = 1 (therefore
the choice of cl(1,1)!) we gain y2 = x2 − 1 and therefore g(t) = (1,

√
t2 − 1). Now we

calculate the argument (hyperbolic angle) of w realized as the arc length Lh of g of the
half sector ”(”, i.e. we have the integral

Lh
(4)
=

x=5/4∫
x=1

|g′(t)|dt = log(2)
def
= argH(z) ≈ 0.6931

2nd: We use the fact

argH(z) = area of sector ◦ ↗
↘

(

The area of the sector of the unit hyperbola between w◦ and its conjugate (w−h )◦ equals argH(z).

# EIGENMATH

-- 5/4 and 3/4 are the edges of a box

-- from the normalized wn on H^1. Therefore:

Lh = 5/4*3/4 - 2*defint(sqrt(x^2-1), x,1,5/4)

Lh

Lh = mag(defint( sqrt(-1/(x^2-1)), x,1,5/4))

Lh

float

BClick here to invoke this script.

Exercise 2.14. Use the trigonometric definition argH(w) = arctanh( y
x
) for the hyperbolic

argument in the quadrant Hi to program an Eigenmath– function arg2(z), which works
for all four quadrants.

Exercise 2.15. Use the arc length definition via the integral to program a function argH(w)

for the hyperbolic argument in the quadrant Hi. Try to make it work for all four hyperbolic
quadrants.

Exercise 2.16. The polar1 function of EVA2 often gives back the argument of its input in
complex number form. If you like to have only the real part, you can try the following
function. Explain.

https://lindnerdrwg.github.io/ga224c.html
https://lindnerdrwg.github.io/ga224d.html
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# EIGENMATH

run("EVA2.txt")

cl(1,1)

do( E = e0, U = e12)

phiH(c) = arctanh( mag( magnitude(imag1(c))) / magnitude(real1(c)))

w = 5E+3U

phiH(w)

BClick here to invoke this script.

2.2.5 Problems.

P12. The cubic equation x3 + 3ax+ b = 0.
The usefulness of the complex hyperbolic numbers is shown by G. Sobczyk in [13, p. 13
ff.]. On p. 14 there is the solved example:
◦ find the solutions of the reduced cubic equation x3 − 6x+ 4 = 0.
Calculate the solutions by Eigenmath.

P13. The Special relativity and Lorentzian Geometry.
Sobczyk shows [13, p.15 ff.] the application of hyperbolic numbers IH resp. c`(1, 1) in
Lorentzian Geometry. There you will see e.g. the spacetime distance aka. the hyperbolic
norm in action. Read about it. Use Eigenmath and its package EVA2 as companion.
In the abstract of his thesis Borota [2] writes:

”The most useful aspect of spacetime [i.e. hyperbolic numbers, wL] numbers is in solving
problems in the areas of special and general relativity. These areas deal with the notion
of space-time, hence the name ”spacetime numbers.” [...] and show unusual features of
spacetime arithmetic. A spacetime version of Euler’s formula is then presented and then the
solutions to the one-dimensional wave equation.

�

Summary : We have constructed the new algebra IH of the hyperbolic numbers in the
Euclidean plane IR2 by means of a multiplication table for the basis vectors spanIR{e0, e12}.
This way we get also the desired relation u2 = 1 to have a root of

√
1, not being an element

of IR. This construction is also known as the algebra of the binarions.
We did a second realization of the hyperbolic numbers IH by invoking the Clifford
algebra c`(1, 1) of the Eigenmath package EVA2 and using a 2D sub-algebra of it. This
package defines in this setting all crucial IH–typical functions like conjugate, imaginary
part, reciprocal, norm, polar form etc.

Meanwhile the user should have gained a working knowledge of the hyperbolic numbers IH
and the use of the package EVA2. We now turn to a last low dimensional special example
of a Clifford algebra – the famous quaternions.

https://lindnerdrwg.github.io/gaex216.html
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3 H – the quaternion numbers

Please: distinct the symbol IH as notation of the hyperbolic numbers and the symbol H
for the Hamiltonian quaternions.

Math concept notation
hyperbolic numbers IH alias c`(1, 1)

Hamilton’s quaternions H alias c`(3)+

Quaternions are a 4-dimensional number system. It is an extension of the complex number
system. The (algebra) multiplication of quaternions is non-commutative, i.e. the order
of the factors matters. Quaternions are used to describe and effectively do rotations of
vectors in 3 dimensions. For an algebraic construction of Hamilton’s quaternions H in
Eigenmath by means of a multiplication table for the basis vectors, see G. Weigt19.
Therefore we will restrict our treatment of Hamilton’s quaternions on its realization in
two other ways:
1st: as a 4D vector space enhanced with a special algebra multiplication,
2nd: as a special Clifford algebra using Eigenmath’s package EVA2.

3.1 H as a 4D algebra with algebra multiplication }

First we implement the quaternions H as a 4D algebra build on the vector space IR4.

3.1.1 H as a 4D vector space (IR4,+, ·)

# QUATERNIONs as vector space - NO use of EVA

tty=0 -- compact notation OFF

E = (1,0,0,0) -- (1) basis

I = (0,1,0,0)

J = (0,0,1,0)

K = (0,0,0,1)

x = (x0,x1,x2,x3) -- (2) a arbitrary quaternion as 4D vector

x

xQ = a*E + b*I + c*J + d*K -- (3) arbitrary quaternion in basis E,I,J,K

xQ

y = (y1,y2,y3,y4)

addQ1(x,y) = (x[1]+y[1],x[2]+y[2],x[3]+y[3],x[4]+y[4]) --(3)

addQ(x,y) = (x[1]+y[1])*E + (x[2]+y[2])*I+

(x[3]+y[3])*J + (x[4]+y[4])*K -- (4)

19see [18]. This demo of George was the inspiration for our construction of C and IH via multiplication
tables in §2.2.
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scalQ(r,x) = r*x[1]*E + r*x[2]*I + r*x[3]*J + r*x[4]*K -- (5)

x = (1,2,3,4) -- example quaternion as vector in R^4

y = 5E+6I+7J+8K -- example quaternion in basis {E,I,J,K} representation

addQ1(x,y)

addQ(x,y)

x+y -- (6)

scalQ(2,x)

2*x -- (7)

Eigenmath output:

BClick here to invoke this script.

Comment. The abbreviation in (1) marks the connection to the usual notion for quater-
nions. Therefore it is allowed to note a quaternion in two ways, see (2) and (3). In (3)
and (4) we formulate the operation of the addition of quaternions, which is only given to
demonstrate the operation as purely ’quaternionic’. In fact, the addition is inherited from
the addition ’+’ of vector space IR4, see (6). The same works for the scalar multiplication
of quaternions, see (7).

3.1.2 H as a 4D algebra with special multplication (IR4,+, ·,})

We now implement the algebra multiplication20 } of quaternions in Eigenmath. The
explicit formula given here follows directly from the multiplication table in [18] in the
same way as e.g. the hyperbolic multiplication � in §2.2.

# QUATERNION algebra multiplication

multQ(x,y)= (x[1]*y[1]-x[2]*y[2]-x[3]*y[3]-x[4]*y[4])*E +

(x[1]*y[2]+x[2]*y[1]+x[3]*y[4]-x[4]*y[3])*I +

(x[1]*y[3]-x[2]*y[4]+x[3]*y[1]+x[4]*y[2])*J +

(x[1]*y[4]+x[2]*y[3]-x[3]*y[2]+x[4]*y[1])*K

tty=0 -- pretty print output

x = (x1,x1,x2,x3)

y = (y1,y2,y3,y4)

20sometimes called the Grassmann multiplication or Hamiltion product.

https://lindnerdrwg.github.io/ga311.html


3 H – THE QUATERNION NUMBERS 48

multQ(x,y) -- (x)

a = 1E+2I+3J+4K

b = 5E+6I+7J+8K

multQ(a,b)

Eigenmath output:

BClick here to invoke this script.

Exercise 3.1. (Derivation of the explicit Hamiltion product formula for })
Look back at Ex.2.3 and verify the explicit formula multQ() in a similar way.

Exercise 3.2. (Algebraic properties of the quaternion multiplication })
a. Following [18], quaternion multiplication is not commutative. Verify this.
Hint : use the basis quaternions, e.g. check E } J etc.
b. Check more algebraic properties e.g. associativity.

Exercise 3.3. (How to memorize the quaternion multiplication?)
To get a memorizable mental structure into the unusual and complicated quaternion mul-
tiplication } =multQ do the following:

1. split up: the arbitrary quaternions x = (x1, x1, x2, x3) and y = (y1, y2, y3, y4) into an
1D real number line part in IR and a 3D part in IR3, i.e. x = (x1, x1, x2, x3) = (a, u)
with a = x1 and u = (x2, x3, x4).

2. verify: (a, u)} (b, v) = (a · b− u ∗ v, a · v + u · b+ u× v)

3. memorize: ”(first’s minus last’s, outer’s plus . inner’s plus . outer’s cross)”.

Implement this rule as function multQ1 in Eigenmath. Don’t forget to check your function
on examples.

We now indicate the implementation of further functions in this setting in a series of
exercises. For actual use, we recommend to use the next realization of the quaternions
as a Clifford algebra and then use their build-in functions, see §3.2.

https://lindnerdrwg.github.io/ga312.html
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Exercise 3.4. (Conjugate - length - normalize)
Put the follwing functions in a toolbox qBox.txt. Run the test on more quaternions.

# QUATERNION conjugate, length, magnitude

x = (x1,x1,x2,x3) -- arbitrary test inputs

y = (y1,y2,y3,y4)

a = 1E+2I+3J+4K -- concrete test inputs

b = 5E+6I+7J+8K

conjQ(q) = q[1]*E-q[2]*I-q[3]*J-q[4]*K -- conjugate quaternion

conjQ(x)

conjQ(a)

magQ(q) = sqrt(q[2]^2+q[1]^2+q[3]^2+q[4]^2) -- length of quaternion

magQ(x)

magQ(a)

normalQ(q) = q/magQ(q)

normalQ(x)

normalQ(a)

unitQ(q) = normalQ(q) -- alias

BClick here to invoke this script.

Exercise 3.5. (inverse quaternion and the quotient of two quaternions)

# inverse QUATERNION

x = (x1,x1,x2,x3) -- arbitrary test input

a = 1E+2I+3J+4K -- concrete test input

invQ(x) = (x[1]*E - x[2]*I - x[3]*J -x[4]*K) /

(x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2)

invQ(x)

invQ(a)

BClick here to invoke this script.
a. Put the function invQ in your toolbox qBox.txt. Run the test on more quaternions.
b. Shorten the code of invQ by use of magQ.
c. Implement a division function quotQ of quaternions using invQ.

Remark. The division of two quaternions is not done with a fractional bar, but using
negative exponents. The reason for this is that the multiplication of two quaternions x
and y is not commutative and one therefore must distinguish between x ? y−1 and y−1 ? x.

https://lindnerdrwg.github.io/gaex34.html
https://lindnerdrwg.github.io/gaex35.html
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Exercise 3.6. (Project : Rotations in IR3 by means of quaternions)
– There is a vast literature on this topic. We will give here only a very first impression. –21

Quaternions can be used to represent rotations in three-dimensional space IR3. Rotations
will be carried out with the help of multiplications of quaternions. Such rotations can
be represented by the three vector space variables x, y, z or as ’three degrees of freedom
(i.e. rotation angles)’ γ, φ, θ. Each individual degree of freedom stand for one individual
rotation around one of the axes.
A quaternion q, which should represent a rotation R, must be normalized so that we have

R : p′ = q } p} q̄

The rotation with the help of such a normalized quaternion q ∈ H1 multiplied by a point
p ∈ IR3 and the conjugated quaternion q̄ gives the new position p′ of the point p.
No matrices are required with this type of rotation.
We have the fact:

R : p′ =


q1
q2
q3
q4

}


0
x
y
z

}

q1
−q2
−q3
−q4


We translate this formula into Eigenmath’s script language:

pRq( p, q ) = multQ(q[1]*E+q[2]*I+q[3]*J+q[4]*K , -- q

multQ(0*E+p[1]*I+p[2]*J+p[3]*K, -- p

q[1]*E-q[2]*I-q[3]*J-q[4]*K)) -- conjQ(q)

a = 1E+2I+3J+4K

b = 5E+6I+7J+8K

pRq( a, b)

x = (x1,x1,x2,x3)

y = (y1,y2,y3,y4)

pRq( x, y)

BClick here to invoke this script.

Remark. (Axis angle representation) A quaternion qr, which represents a rotation, is nor-
malized and is represented in the axis angle representation as follows:

qr = q1 · E + q2 · I + q3 · J + q4 ·K ∈ Sr=1
H i.e. ‖qr‖ = 1 (3.1)

qr = cos(α/2) · E + x · sin(α/2) · I + y · sin(α/2) · J + z · sin(α/2) ·K (3.2)

with

21The following short exposition is based e.g. on https://mathepedia.de/Quaternionen.html

https://lindnerdrwg.github.io/gaex36.html
https://mathepedia.de/Quaternionen.html
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◦ α is the angle of rotation
◦ (x, y, z) ∈ IR3 is a normalized vector that represents the axis of rotation, e.g.

– X = (1, 0, 0) represents a rotation Rx around the x–axis and
– Y = (0, 1, 0) a rotation Ry around the y–axis.

# EIGENMATH - very preliminary implementation; to be enhanced

run("qBox.txt")

Raxis(q) = (unitQ(q)[2],unitQ(q)[3],unitQ(q)[4])

-- axis of corresponding 3D rotation

Rangle(q) = 2*arccos(q[1]) -- angle of corresponding 3D rotation

q = 0E+2I-J-3K

Raxis(q)

Rangle(q)

BClick here to invoke this script.
Visualisation of the above result by [19]:

↑ 3D transformation corresponding 3D rotation ↑

a. Put the function pRq in your toolbox qBox.txt. Run the test using the toolbox.
b. Verify: The quaternion I represents a rotation of 180◦ around the X-axis, J a rotation
of 180◦ around the Y-axis and K a rotation of 180◦ around the Z-axis.
c. Verify: I } I = J } J = K }K = −1 gives of a rotation of 360◦ around the axis.
b. Do a quality plot of the geometric situation using CalcPlot3D.

Exercise 3.7. (Wolfram|alpha: quaternions.)
Verify the examples of [19] by means of the functions of our quaternion toolBox qBox.txt.
Check norm, unit quaternion, conjugate, inverse, 3D rotation angle etc. of these examples.
BClick here to invoke this script.

https://lindnerdrwg.github.io/gaex36R.html
https://lindnerdrwg.github.io/gaex37.html
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Exercise 3.8. (Project : Polar form of a quaternion.)
– There is a vast literature on this topic. We will give here only a very first impression. –22

Each quaternion q can be represented in polar form. This requires the scalar amplitude
‖q‖, the associated angle θ and a three-dimensional direction vector U :

q = ‖q‖ · (cosθ + sinθ · U) (3.3)

with θ
def
= arccos(

q + q̄

2 · ‖q‖
) (3.4)

and U
def
=

q − q̄
‖q − q̄‖

(3.5)

The last part of formula (3.3) has to be interpreted! Therefore we do three help steps.
1◦ scalarQ: The scalar part is simply the first coordinate of the quaternion. It could be
obtained by adding the conjugate value to the quaternion i.e. in (3.4) . The scalar part is
in IR and is used to determine the angle.
2◦ vectorQ: The vector part simply collects the last but first coordinates of the quaternion.
It could be obtained by subtracting the conjugated quaternion from the quaternion itself,
see (3.4). The vector part is our implementation in IR4.
3◦ argQ: The quaternion argument function returns the angle between the scalar value (i.e.
the real plane) and the vector represented by the quaternion.
Therefore we interpret formula (3.3) in Eigenmath as follows:

BClick here to run the script.
22The following short exposition is based e.g. on https://mathepedia.de/Quaternionen.html

https://lindnerdrwg.github.io/gaex38.html
https://mathepedia.de/Quaternionen.html
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3.2 c`(3)+ – the Clifford algebra realization of H
In the previous section we worked with the quaternions only be means of bulid-in functions
of Eigenmath and a small collection of user defined functions to implement quaternion
specific operations in the vector space IR4. In this section we construct the quaternions
H using the same universal construction, which we used for the algebra C of the complex
numbers and for the hyperbolic numbers IH: an appropriate Clifford algebra.

3.2.1 A look at the 4D-Clifford algebra c`(3)+

Let’s look at c`(3) and let us ask for some info about that algebra:

Comment. The call cl(3) in code line 3 of the constructor function cl(..) of the EVA2 package
gives the output (+,+,+). This means roughly, that the norm of ”the vectors in cl(3)”23

has the term
√
r2 + x2 + y2 + z2 with 3 plus signs. The 8 basis vectors are listed as

spanIR{e0, e1, e2, e3, e12, e13, e23, e123}

Obviously c`(3) ∼ IR8, because e.g. e1 and e123 have the expected 8 canonical coordinates
in the 8D vector space IR8.24

Because we need a 4D vector space to represent the 4D algebra H of the quaternions, we
chose 4 special basic vectors out of the 8: we take spanIR{e0, e12, e13, e23}. With e1 we
embed the real number line IR and his multiples into H < c`(3). The other tree vectors
{e12, e13, e23}with two lower indices will produce the vector part of the quaternions.
We say: the quaternions are an even subalgebra of c`(3), noted c`(3)+ or sometimes G+

3

for a Geometric Algebra (GA). In summa:

H ≡ c`(3)+ ≡ G+
3 = (spanIR{e0, e12, e13, e23},+, ·,})

BClick here to invoke cl(3).

23this is explained more explicit in the section on Geometric Algebra.
24Vector j = e123 would play the role of an imaginary unit, but we do not need this here.

https://lindnerdrwg.github.io/ga321.html
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3.2.2 Doing algebra in the 4D-Clifford subalgebra H = c`(3)+

Let’s become trusted at c`(3)+ as an realization of the quaternion algebra. The functions
magnitude, normalize, inp, and gp (geometric product) are available by means of the
package EVA2 and we will see, that they work as expected. Therefore we do not have to
learn new symbols or new notations. To make available the usual notation q = a+bi+cj+dk
for a quaternion, we rename the basis vectors {e0, e12, e13, e23} to {E, I,K, J} and get
the setting H := (spanIR{E, I,K, J},+, ·,}) inside c`(3).

Math H Eigenmath EVA2 c`(3)
A}B gp(A,B)

We can use the same EVA2–functions as usual for the quaternions:

Math Eigenmath EVA2

quaternion product A}B gp(A,B)

inner/scalar product A •B inp(A,B)

outer product A ∧B outp(A,B)

quaternion conjugation B̄ cj(B)

inverse quaternion 1/B inverse(B)

magnitude ‖B‖ magnitude(B)

normalize B
‖B‖ normalize(B)

• The Clifford algebra functions of the EVA2 package are usable also for the quaternions.
They are noted with an ending 1 to distinct them from the Eigenmath build–in func-
tions for the complex domain, so the complex numbers C are also usable at the same time
(e.g. to use complex quaternions): imag1, real1, polar1, rect1, exp1, log1, sqrt1,

power1, sin1, cos1, tan1, sinh1, cosh1, tanh1, asin1, acos1, atan1, asinh1,

acosh1, atanh1 ...

Here is the setting to calculate with quaternions in Eigenmath’s package EVA2:

BClick here to invoke this script.

https://lindnerdrwg.github.io/ga322.html
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Remark.
• We use the alias names E, I,K, J in uppercase for the basis vectors instead of the usual
1, i, j, k. Therefore we can also use the complex numbers noted a+ bi (reserved symbol i)
to compute with complex quaternions.
Beware: this convention is distinct from the ordering EIJK in the last section.
• We do not use the symbol e for the Hamiltonian unit, because e is a reserved symbol
for exp(1).
• There is no typo in the correspondence {e0, e12, e13, e23} 7→ {E, I,K, J}: it must be
K = e13 and J = e23, because of the non-commutativity of the Hamiltonian multiplica-
tion. The 8 slots (coordinates) for a quaternion using EVA2 are therefore filled as follows,
demonstrated for the quaternion a:

basis c`(2) : e0 e1 e2 e3 e12 e13 e23 e123
basis H : E - - - I K J -

a = 2 - - - 4 1 -3 -
b = 5 - - - -2 -3 1

a+b = 7 - - - 2 -2 -2

All calculations with quaternions are played only at the positions 1− 5− 6− 7. You can
watch it in the 8-tupel of the representation. To read off the correct coefficients with your
eyes, you only have to remember the correct ’non-alphabetical’ ordering, e.g.

basis H : E - - - I K J -
a+b = 7 - - - 2 -2 -2

↓ ↓ ↘ ↙
a+b = 7e +2i -2j -2k

Therefore we have: a+ b = 7E + 2I − 2K − 2J ≡ 7 + 2i− 2j − 2k in usual notation.25

Remember : the input is ”twisted” saved, so read off the results also ”twisted”.

Exercise 3.9. (Hamiltonian rules) Verify the relations

i2 = j2 = k2 = ijk = −1, ij = −ji = k

Start, but be careful: the Hamiltonian multiplication } is noted gp!

run("EVA2.txt")

cl(3)

do(E = e0, I = e12, K = e13, J = e23 )

gp(I,I) -- i^2=-1

gp(I,gp(J,K)) -- ijk=-1

gp(I,J) == - gp(J,I) -- 1 = OK

BClick here to invoke this script.
25If you don’t like this en-twisting and de-twisting you may use the ordering EIJK, but then the following

mathematical check of the Hamilton multiplication rules in Ex.3.9 is disturbed. But see P.13.

https://lindnerdrwg.github.io/gaex39.html
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Exercise 3.10. (elementary operations with quaternions)
We continue our experiments with addition, quaternion multiplication, real and (’imagi-
nary’ alias) vector part of a quaternion.

Comment. We show again how to read off with your eyes the result of the Hamiltonian
multiplication gp(a,b) of the quaternions a and b:

basis c`(2) : e0 e1 e2 e3 e12 e13 e23 e123
basis H : E - - - I K J -

a = 1 - - - 2 4 3 -
b = 5 - - - 6 8 7

a} b = -60 - - - 12 24 30

.. giving the result a} b = −60E + 12I + 24K + 30J
reorder

= −60 + 12i+ 30j + 24k.
BClick here to invoke this script.

Exercise 3.11. (Wolfram|alpa example of quaternion multiplication)
On the internet page https://www.wolframalpha.com/examples/mathematics/algebra/quaternions/

you find the reference example
”quaternion -Sin[Pi]+3i+4j+3k multiplied by -1j+3.9i+4-3k”.

Reproduce it in Eigenmath and check the result.
BClick here to invoke this script.

https://lindnerdrwg.github.io/gaex310.html
https://www.wolframalpha.com/examples/mathematics/algebra/quaternions/
https://lindnerdrwg.github.io/gaex311.html


3 H – THE QUATERNION NUMBERS 57

Exercise 3.12. (magnitude, normalization, inverse, quotient in H)
We continue to calculate the length (magnitude, norm) of a quaternion, normalize a quater-
nion, forming their inverse resp. } and do the quotient of two quaternions.

run("EVA2.txt")

tty=0

cl(3)

do(E=e0, I=e12, J=e23, K=e13 )

x = x1*E+x2*I+x3*J+x4*K -- arbitrary quaternion

a = 1E+2I+3J+4K -- concrete quaternion

magnitude(x) -- here we see (+,+,+)!

magnitude(a)

tty=1

normalize(x)

normalize(a)

inverse(x)

inverse(a) -- result: 1/a = 1/30-1/15i-1/10j-2/15k

quot1(q,n) = gp(q, inverse(n)) -- division of quaternions

a = 1E+2I+3J+4K

b = 5E+6I+7J+8K

quot1(a,b) -- read off result: ca. 0.402+0.046i-0.000j+0.091k

Eigenmath output:

Comment. The call magnitude(x) in line (1) shows, how the cl(3) info (+,+,+) has to
be interpreted: the norm of H has a term with 3 plus signs between the 4 squares.
BClick here to invoke this script.

https://lindnerdrwg.github.io/gaex312.html
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In section §3.2 we have verified that we can do the arithmetic and algebra of
the quaternion numbers by means of a Clifford algebra, in this case using
a 4D subalgebra H of the 8D algebra c`(3). Therefore you can forget about
the construction of H by the multiplication table in §3.1 and use this universal
construction to have the same means at hand which are usable also in other
mathematical contexts.

3.2.3 Problems.

P14. Choosing the basis order EIJK.
The use of the basis elements {e0, e12, e13, e23}, abbreviated as {E, I,K, J}, fulfilled the
Hamilton rules in Ex.3.9 – but had the uncomfortable effect of saving the results of
linear combinations in two twisted coordinate slots. If we nevertheless use the ordering
{E, I, J,K} we may avoid this and write and read the coordinates in an untwisted way,
bearing in mind that the Hamilton rules had to be reflected otherwise and could not be
verified in this setting. Therefore using H := (spanIR{E, I, J,K},+, ·,}) inside c`(3) we
get a more comfortable ’usual’ basis ordering. For this we have to use the preamble

do(E=e0, I=e12, J=e13, K=e23)

Example.

Now:

basis c`(2) : e0 e1 e2 e3 e12 e13 e23 e123
basis H : E - - - I J K -

a = 1 - - - 2 3 4 -
↓ ↓ ↓ ↓

cj(a) = 1 - - - -2 -3 -4

The critical Hamilton multiplication works also.We then have the correspondence

EVA2 | Math

aE + bI + cJ + dK = a+ bi+ cj + dk

1E + 2I + 3J + 4K = 1 + 2i+ 3j + 4k

◦ We use and demonstrate this in the solution of the next problem.
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P15. Checking the MatLAB Aerospace demo.
Here you find the MatLAB Aerospace Toolbox:
https://de.mathworks.com/help/aerotbx/ug/quatmultiply.html

Do all the examples with Eigenmath EVA2 toolbox. Don’t miss their examples (at the
bottom) for quatconj | quatdivide | quatinv | quatmod | quatmultiply | quatnormalize

BClick here to invoke this script.

P16. Wolfram|alpha Quaternions examples.
Here you find the Wolfram|alpha Quaternions examples:
https://www.wolframalpha.com/examples/mathematics/algebra/quaternions/

Do all the examples with Eigenmath EVA2 toolbox.

P17. Equivalence of the two constructions of H.
Redo the exercises Ex.3.5 to Ex.3.8 using the Eigenmath EVA2 toolbox i.e. using the
Clifford algebra realisation of H.

}

Summary.

We first have constructed the well-known algebra H of the quaternion numbers as a 4D
vector space extended by a special multiplication }. This way we realized also the desired
Hamilton rules.

Second ly, we gave also a realization of the quaternions by invoking the Clifford alge-
bra c`(3) of the Eigenmath package EVA2 and choosing a 4D subalgebra. This package
provides all important H–typical functions like quaternion multiplication (gp), quaternion
conjugate, quaternion ’imaginary’ part (figuratively, i.e. the vector part of the last 3 com-
ponents), quaternion reciprocal, quaternion norm and allows to enhance with user-defined
functions like quaternion division etc.

Meanwhile the user should have gained a working knowledge of the quaternions H and the
use of the package EVA2. We now turn to the generalization of all the our lower dimensional
example constructions like the complex numbers C, the hyperbolic numbers IH and the
quaternion numbers H and turn to the topic of the famous Geometric Algebra (GA).

https://de.mathworks.com/help/aerotbx/ug/quatmultiply.html
https://lindnerdrwg.github.io/gap15.html
https://www.wolframalpha.com/examples/mathematics/algebra/quaternions/
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4 G – the 3D and 2D Geometric Algebra

We now reconstruct the well-known vector space IR3 as a Clifford algebra. This way
we have all important c`–typical functions at our disposal e.g. the Clifford algebra
multiplication gp, the geometric product, we had used so often in the chapters before. Let
us see, if we get a surplus to the usual view at IR3!
We start with the 3D vector space IR3, because we can describe the ’graded ’ algebra
construction more clear. Then we turn to the 2D vector space IR2 to do some elementary
linear algebra from this new viewpoint.
In both cases we use Eigenmath’s package EVA2 as our working engine. Our presentation
is especially inspired by the books of Macdonald [8], Sobczyk [13], the presentation of
Eyheramendy in [5] and the student guide of Lounesto’s CLICAL computer program,
see [7].

4.1 IR3 as Geometric Algebra G3

To start let’s take a curious and innocent look at the implemented Clifford algebra c`(3)
and call the info() command in EVA package. This gives back some information about the
Signature (three plus sign), the oriented volume j and the names e0, e1, e2, e3,e12, e13, e23,
e123 of the 8 basis vectors of this 8D vector space.

4.1.1 Some a priori info() about the Clifford algebra c`(3)

BClick here to invoke this script. – We comment on the output.

• The oriented volume j plays the same role as the imaginary unit i in C:

https://lindnerdrwg.github.io/ga411.html
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because j2 = gp(j, j) ≡ −1. Why the name ”or.volume”? Wait a moment. The result of
”j2” is placed in slot 1, i.e. the slot of the embedded real numbers IR ⊂ c`(3). Therefore
j is also called the pseudoscalar.

• As an example input we define M = (0, 1, 1, 1, 2, 2, 2, 3) ∈ c`(3) as a ”full” element of
c`(3), which has components in every dimension. This is done in the form

M=0*e0+1*e1+1*e2+1*e3+2*e12+2*e13+2*e23+3*e123

Why are the basis vectors not called e0,e1,e2,e3,e4,e5,e6,e7? Isn’t it simpler?
That would be possible, but it would hide the implicit structure of the Clifford number!
Therefore we repeat the input of M , but this time structured and sorted and spread over
4 lines of input.
◦ The e0 line collects the real number parts of M.
◦ The e1,e2,e3 line collects the 1D vector parts of M.
◦ The e12,e12,e23 line collects the 2D number parts of M.
◦ The e123 line collects the 3D number parts of M.
The EVA command dispgrd (short for ’display grade’) gives an unstructured input back in
a ’graded sorted structured form’.

4.1.2 A concept image of the objects in c`(3)

We elaborate a bit on the graded output and try to give more feeling and insight to it.

basis c`(3) : e0 e1 e2 e3 e12 e13 e23 e123 Think of ...

M = 0 1 1 1 2 2 2 3
point 0 •
vector 1 1 1 ↗↗↗

bivector 2 2 2 ���
trivector 3 ↑C

basis c`(3) : e0 e1 e2 e3 e12 e13 e23 e123 object typ

M = 0 -1 1 -1 2 -2 2 -3
point 0 •
vector -1 1 -1 ↙↗↙

bivector 2 -2 2 	 � 	
trivector -3 ↓C

The coefficients 0, 1, 2, 3 are chosen to remember at the dimension.
The ± sign chose the orientation of every component.
↗ means an oriented line segment.
	 means an oriented plane segment
↑C means an oriented space element.
This points to the ”Ausdehnungslehre” (extension theory) of Grassmann, because the

involved objects have growing dimensionality (
DE∼ ”Ausdehnung”).
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Example. The input ’multi’vector M=0*e0+1*e1-2*e12+3*e123 ∈ c`(3) could
mentally be thought of

M = 0 •+1↗ −2 	 +3 ↑C
or viewed as concept by invoking mental images like

M = 0 · e0 +1 · e1 −2 · e12 +3 · e123
= 0 · • +1· ↗ −2· 	 +3· ↑C

scalar vector bivector trivector
= 0s +1v -2B +3T

or.point or.lenght or.area or.solid

0 · • +1· −2· +3·

In words: the object M consists of no points, but has one positiv oriented line segment,
two opposite oriented plane segments and tree positive oriented volume segments.26

Seems strange? Listen to Macdonald [8, p.81]:

” How can we add, e.g a scalar and a vector? Are we not adding apples and oranges?
Yes, but there is a sense in which we can add apples and oranges: put them together
in a bag, which is analogous to M . The apples and the oranges retain their separate
identities, but there are ”apples + oranges” in the bag.

In this sense we have the

Definition. The Geometric Algebra G3 is the vector space c`(3) with the additional
operation gp, called the geometric product.

Remarks.

1. The Geometric Algebra is indeed a vector space. A proof is in [8, p.81].

2. The members of the Geometric Algebra G3 in IR3 are called multivectors (Macdon-
ald) or g-numbers (Sobczyk) or Clifford numbers (if you think at c`(3)).

3. The geometric interpretation of the different elements of G3 for the dimensions n = 0
(signed point), 1 (oriented length), 2 (oriented area), 3 (oriented solid) make up its
’grades’.

4. Thought in concepts of programming languages, a vector in IR8 is an array of objects
(real numbers) of the same kind, whereas an Geometric number in G3 is similar to
an record of objects of different kinds.

5. In a nutshell: The ”k-vectors” of grade k are sums of products of k vectors. When
elements of different grades are multiplied, the grades add like multiplication of poly-
nomials. It is in this sense that the Geometric Algebra is a graded algebra.

26Figures cut from https://en.wikipedia.org/wiki/File:N_vector_positive.svg

https://en.wikipedia.org/wiki/File:N_vector_positive.svg
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We do not explore or use these technical aspects in this introduction.

Example. We have predicates to decide, whether a member of G3 is a scalar, a vector, a
bivector or trivector (or in general: a multivector).

run("EVA2.txt")

cl(3)

s = 3*e0

isScalar(s) -- output: 1 = yes

v = 2*e1+3*e2+4*e3

isVector(v) -- output: 1 = yes

B = 4*e23

isMvector(B) -- output: 1 = yes

T = 3*e123

isMvector(T) -- output: 1 = yes

M = s+v+B+T

isMvector(M) -- output: 1 = yes

Exercise 4.1. Maybe you miss special predicates to check, if a g-number is a pure bivector
or a pure trivector. Here is the code for isVector:

isVector(u) = test(u==grade(u,1), 1, u=0, 1)

Write analogous checks for isBivector and isTrivector.
Test your code on the g -numbers s, v, B, T .
BClick here to invoke this script.

Exercise 4.2. Sometimes you wish the output of Eigenmath’s EVA not in 8-slots coordinate
form. To have the output in multivector symbolic form (but not in space consuming graded
form), you may use the following helper function disp3(.):

# display symbolic u, code from b.E.

disp3(u) = do( isMvector(u),

print(u[1]*"e0"+u[2]*"e1"+u[3]*"e2"+u[4]*"e3"+

u[5]*"e12"+u[6]*"e23"+

u[7]*"e13"+u[8]*"e123"))

BClick here to invoke this script.

https://lindnerdrwg.github.io/ga412.html
https://lindnerdrwg.github.io/gaex42.html
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4.1.3 Inner, outer, geometric product – inp, outp, gp

A. The vector space IR3 is equipped with the standard scalar product •, i.e. (IR3,+, ·, •)
is an inner product space aka Euclidean vector space. Therefore the name EVAlgebra♥
.. and we have the geometric concepts of orthogonality, angle etc. at our disposal. For
the Clifford algebra c`(3) we have an adapted version of •=dot(.)=inner(.), which is
called inp(.) and which is per definitionem compatible with the algebra multiplication
table for the 8 basis vectors.

Example.

# EIGENMATH

run("EVA2.txt")

cl(3)

v = 2*e1+3*e2+4*e3 -- a vector in G3

v

-- dot(v,v) -- dot does NOT work

inp(v,v) -- inner product in cl(3)=G3

v8 = (0,2,3,4,0,0,0,0) -- v as vector in R^8

dot(v8, v8) -- here dot does work as inner product in R^8

BClick here to invoke this script.

B. The Clifford algebra equivalent to the 3D cross product of IR3 is the outer (alias
exterior alias wedge) product of G3 = (IR8,+, ·, inp, outp).

# EIGENMATH

# .. preamble omitted

u = 2e1+3e2+4e3 -- (1) has 8 coordinate slots

v = 4e1+1e2+3e3

outp(u,v) -- (2) invoke OUTER alias WEDGE product u^v

magnitude(outp(u,v)) -- (3) output: 15

u3 = (2,3,4) -- pendant in 3D space R^3

v3 = (4,1,3)

cross(u3,v3) -- (3) invoke CROSS product, gives (5,10,-10)

abs(cross(u3,v3)) -- (4) output: 15 = area of parallelogram u3.v3

BClick here to invoke this script.

https://lindnerdrwg.github.io/ga413A.html
https://lindnerdrwg.github.io/ga413B.html


4 G – THE 3D AND 2D GEOMETRIC ALGEBRA 65

C. The Clifford algebra geometric product gp has no pendant in the real vector space
IR3. It is defined as a special multiplication construct via a clever multiplication table
’Gtable’ on the 8 basis vectors using dot(.).27 With it we extend the well-known inner
product space IR3 to a full blown geometric algebra

G3 = (IR8,+, ·, inp, outp, gp)

We will give two hints as a possible motivation28 of the geometric product. For a detailed
mathematical oriented exposition see e.g. [8, pp. 93–117].
1st: We have the so-called ’fundamental identity’29, which describes a famous connection
between the tree products. In a special case for g-vectors u, v we have:

The Fundamental Identity
Math G3 Eigenmath EVA2 c`(3)

u v = u • v + u ∧ v gp(u,v)=inp(u,v)+outp(u,v)

2nd: In Ex.3.3.2 we have see (a, u) } (b, v) = (.., av + ub + u × v), which may shed some
light on the fundamental identity.

Example. # EIGENMATH

# .. preamble omitted

u = 2e1+3e2+4e3

v = 4e1+1e2+3e3

gp(u,v)

inp(u,v)+outp(u,v)

Eigenmath output:

BClick here to invoke this script.

Exercise 4.3.
a. Give two g-vectors, which are orthogonal resp. inp. Check with dot and inp!
b. Calculate the volume of the 3D spare spanned by A = (1, 2, 0), B = (0, 3, 4), C = (2, 0, 3)
first using methods of IR3 and second by interpreting A,B,C as members of G3.
c. Calculate the area of the triangle with edges A,B in two ways: working in IR3 and then
in G3.

27We have shown similar constructions for C, IH, H. Here the construction is
gp(u,v) = do( isMvector(u), isMvector(v), dot( Gtable(u), transpose(v)))

28A very convincing derivation can be found in Sobczyk [13, pp. 24–32].
29see [8, p. 111]

https://lindnerdrwg.github.io/ga413C.html
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4.2 An Potpourri of applications: getting a working knowledge of G3

4.2.1 Doing parts of the tutorial of Lounesto

In 1987 Pertti Lounesto published an Clifford algebra calculator for the MSDOS world,
named CLICAL, see [7]. We follow here some steps of his tutorial using Eigenmath’s
package EVA2. Here is an impression of CLICAL:

Exercise 4.4. (Lounesto I)

# EIGENMATH

run("EVA2.txt")

cl(3)

u = 2e1+3e2+4e3

v = 4e1+1e2+3e3

magnitude(outp(u,v)) -- wedge = outer product

BClick here to invoke this script.

Exercise 4.5. Do the exercise given in the screenshot.

https://lindnerdrwg.github.io/gaex44.html
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Exercise 4.6. (Lounesto II)

Solution. with Eigenmath. – A detailed discussion is given below in 4.3.4 for G2.

BClick here to invoke this script.

Exercise 4.7. (Lounesto III)

Solution. with Eigenmath

run("EVA2.txt")

cl(3)

https://lindnerdrwg.github.io/gaex46.html
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a=1.5e1+2e2

a

s=exp1(gp(j,a/2))

sDownloads

dispgrd(s)

r=2e1+e2+2e3

r

quot1(a,b)= gp(a, inverse(b)) -- ad hoc definition of quotient

gp(s, quot1(r,s))

BClick here to invoke this script.

4.2.2 The stereographic projection

The stereographic projection30 has the formula

projS : S2 ⊂ IR3 → IR3

a 7→ projS(a) :=
2

a+ e3
− e3

for the unit sphere centered at the origin. The following task is from [13, p.111 ff].
a. Verify that in cartesian coordinates (x, y, z) on the sphere and (X, Y, 0) on the xy-plane,
the projection is given by the formula(

x

1− z
,

y

1− z
, 0

)
=: (X, Y, 0)

a. Verify that a = 1
4
(
√

3, 2, 3) ∈ S2.
b. Find the corresponding point a′ ∈ IR2 using methods of IR3 resp. G3.
c. Verify your result by a quality plot using CalcPlot3D.

30picture found at https://de.m.wikipedia.org/wiki/Datei:Stereogr-proj-netz.svg

https://lindnerdrwg.github.io/gaex47.html
https://de.m.wikipedia.org/wiki/Datei:Stereogr-proj-netz.svg
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4.2.3 Problems.

P18. Matrix representation of G3 via Dirac matrices.

The following project31 would make no fun, if you do not use a CAS like Eigenmath. Using
square matrices to represent vectors enables us to define a new multiplication of vectors,
which would be impossible inside IR3.

Let e1, e2, e3 ∈ IR4×4 be the following matrices:

e1 =

[
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

]
, e2 =

[
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

]
, e3 =

[
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

]
For the following tasks represent e1, e2, e3 in Eigenmath.
Then use Eigenmath to prove the following properties.

a. Show, that every vector x in IR3 is a linear combination of e1, e2, e3,
i.e. x = x1 · e1 + x2 · e2 + x3 · e3 with x1, x2, x3 ∈ IR.

b. Show: e21 = e22 = e23 = E, E being the unity matrix unit(4,4).

c. Show: e2 ? e3 + e3 ? e2 = e3 ? e1 + e1 ? e3 = e1 ? e2 + e2 ? e1 = O,
O being the zero matrix zero(4,4) and ? the matrix multiplication dot(.).

Therefore this set of matrices form the basis for the Clifford algebra associated with
the innerproduct space (IR3,+, ·, •).

d. Let y = y1 · e1 + y2 · e2 + y3 · e3 be another arbitrary vector written in the basis
e1, e2, e3. Define the ”geometric” product } of x and y through

x} y
def
= (x1y1+x2y2+x3y3)E+(x2y3−x3y2)e2?e3+(x3y1−x1y3)e3?e1+(x1y2−x2y1)e1?e2

and the inner product

x ◦ y def
=

1

2
· (x} y + y } x)

and the wedge product

x ∧ y def
=

1

2
· (x} y − y } x)

◦ Show: x} y = x ◦ y + x ∧ y (Fundamental Identity)

◦ Verify that the coefficients of the wedge product are the same coefficients like the
cross product.

◦ Give an explicit formula for wedge showing the coefficients.

◦ Calculate (1, 2, 3)} (4, 5, 6) and (1, 2, 3) ◦ (4, 5, 6) and (1, 2, 3) ∧ (4, 5, 6) via that
definitions using Eigenmath.

31This is condensed from a detailed presentation in Snygg [11, pp. 3–6].
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e. By considering all possible products of e1, e2, e3 one obtains an 8D vector space
spanned by {I, e1, e2, e3, e1 } e2, e2 } e3, e3 } e1, e1 } e2 } e3}.
◦ Let Eigenmath write down all 8 basis vectors in 4×4 matrix form.

◦ Define the alias e0 := E, e1 := e1, e2 := e2, e3 := e3, e23 := e2 } e3, , e31 :=
e3 } e1, e12 := e1 } e2, e123 := e1 } e2 } e3 for the geometric products of Dirac
vectors e1, e2, e3.

Verify: ({e0, e1, e2, e3, e12, e23, e31, e123},+, ·,}) is an 8-dimensional vector space
closed under }, i.e. it is a realization of the Clifford algebra G3.

Remark.
� An 0-vector (alias scalar) is any scalar multiple of e0 = E.
� An 1-vector (alias vector) is any linear combination of the Dirac vectors e1, e2, e3.
� An 2-vector (alias bivector) is any linear combination of vectors e12, e23, e13.
� An 3-vector (alias trivector alias pseudoscalar) is any scalar multiple of e123.
� An M-vector (alias multiivector) is any linear combination of vectors of any type,
i.e. an arbitrary linear combination of the 8 basis vectors.

P19. Project: Representation of G3 by Pauli matrices.
Let’s take another representation32 for the three Dirac vectors e1, e2, e3.
Define the Pauli matrices e1, e2, e3 ∈ C2×2 through

e1 :=

[
0 1
1 0

]
, e2 :=

[
0 −i
i 0

]
, e3 :=

[
1 0
0 −1

]
Redo P.21 in this setting, i.e. show that ({e0, e1, e2, e3, e23, e31, e12, e123},+, ·,}) is an
8-dimensional vector space closed under }, i.e. it is a realization of the Clifford algebra
G3. Use Eigenmath.

P20. Project: Representation of the quaternions H by Pauli matrices.
Following the setting in P.18 realize the basis quaternions I, J,K through33

I := −e23, J := −e31, K := −e12. Let e0 := E =
[
1 0
0 1

]
.

a. Verify

I :=

[
0 −i
−i 0

]
, J :=

[
0 −1
1 0

]
, K :=

[
−i 0
0 i

]
b. Redo P.22 in this setting, i.e. show that ({E, I, J,K},+, ·,}) is an 4-dimensional vector
space closed under }, i.e. it is a realization of the Clifford algebra of the quaternions
H. Use Eigenmath.

32See Snygg [11, p. 12, problem 2]
33See Snygg [11, p. 12, problem 4] or [14, pp. 32–33]
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4.3 IR2 as Geometric Algebra G2

All concepts and constructions are known, so we go directly in medias res.

4.3.1 First contact with the Clifford algebra c`(2) alias G2

Invoking the info() we get presented: the Signature, which is ’two plus sign’, the oriented
volume j as abbreviation for the pseudoscalar e12 with the property j2 = −1 and the
members e0, e1, e2, e12 of the basis, which make up the 4D vector space G2. For a test we
input a multivector M and display it in tree different shapes. BClick here to run the script.
Finally we invoke a small cheatsheet for Clifford algebra with the command helpCL.
Because there is nothing new, we dive directly into some applications.

4.3.2 Determinants and the oriented volume element j

BClick here to run the script.

https://lindnerdrwg.github.io/ga431.html
https://lindnerdrwg.github.io/ga432.html
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Comment. We start in (1) with a arbitrary 2×2 matrix A and calculate their determinante.
We get back the well-known Leibniz formula a11a22−a12a21. In (3) we interpret the elements
of the rows of A as coefficients of multivectors in G2 by defining A1 = a11 ∗ e1 + a12 ∗ e2
for the first row of matrix A and A2 = a21 ∗ e1 + a22 ∗ e2 for the second. We then call the
outer alias wedge product and let the result showin (4) via Det:

Math EigenMath

wedge outer product

A1 ∧ A2 = outp(A1,A2)

= (0, 0, 0, det(A))

In (5) we pick off the real value det(A), which resides in the 4th slot, i.e. in the position
of the basis vector pseudoniverse j. In (6) we factor out the det(A) ∈ IR value of j ∈ G2

slot. Because det gives the area res. volume of the 2D resp. 3D parallelogram resp. spare
one calls j = 1 ∗ j the oriented (unit) volume element of G2 resp. G3.
We memorize the fact: for arbitrary a, b ∈ G2 = c`(2) and the unit bivector j

a ∧ b = det(a, b) · j EV A
= outp(a,b)

Exercise 4.8.
a. Calculate the determinant of A =

[
1 2
3 4

]
via multivectors of G2.

b. Determine the area of the plane triangle
4(3, 3)(4, 2)(6, 4) using g-numbers.

Exercise 4.9. Verify using Eigenmath the 3D version: for a = a1∗e1+a2∗e2+a3∗e3, b =
b1 ∗ e1 + b2 ∗ e2 + b3 ∗ e3, c = c1 ∗ e1 + c2 ∗ e2 + c3 ∗ e3 ∈ G3 = c`(3) and the unit trivector
j ∈ G3 we have

a ∧ b ∧ c = det

a1 a2 a3
b1 b2 b3
c1 c2 c3

 · j EV A
= outp(a,b)

Exercise 4.10. Calculate the determinant of the 4×4 matrix B = ((1,2,5,2), (0,1,2,3),

(1,0,1,0), (0,3,0,7))∈ IR4×4 by interpreting their rows as multivectors in G4 and using
the unit pseudoscalar alias oriented 4D volume element j.
BClick here to see the solution.

Remark.
◦ The wedge product ∧ (i.e. outp) is also called the exterior or Grassmann product in
the exterior algebra c`.
◦ Calculating in the Geometric Algebra Gn with the outer product as operation of mul-
tiplication one does not need a special theory of determinants anymore. All rules and
properties (e.g. orientation, multilinearity, anti-commutativity etc.) of the determinants
are perfect integrated into the concept of a Geometric Algebra c`(p, q).

https://lindnerdrwg.github.io/gaex410.html
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4.3.3 The Geometric Algebra version of the Cramer rule

# EIGENMATH

A = ((1,2),(3,4)) -- (1)

B = (5,6)

det(A)

X = dot(inv(A),B) -- (2)

X

run("EVA2.txt")

cl(2) -- calculate in G^2

A1 = 1e1+3e2 -- (3) columnwise structure!

A2 = 2e1+4e2

B = 5e1+6e2

Det = outp(A1,A2) -- (4)

Det

Det[4] -- (5)

x = outp(B,A2)[4]/outp(A1,A2)[4] -- (6)

x

y = outp(A1,B)[4]/outp(A1,A2)[4]

y

Eigenmath output:

BClick here to run the script..

Comment. We are given the 2×2 linear system
[
1x + 2y = 5
2x + 3y = 6

]
. The solution X =

[
x
y

]
is calcu-

lated traditionally as X = A−1 ? B =
[
−4
4.5

]
. This is done in (2). We alternatively invoke

the Geometric Algebra G2 = c`(2) and write the linear system in the Cramer way as 3
multivector ’column’s. Then we express the solution as quotient of determinants - whereby
the determinants are ’hidden’ in 4th coordinate of the outer (wedge) product.
We know: The solution is geometrically interpretable as the quotient of the areas (outp!)
of the depicted parallelograms.

https://lindnerdrwg.github.io/ga433.html
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4.3.4 Projections and rejections in Geometric Algebra

Vector projection is used in physics when force and
work are involved. If the green box is pulled by

”force” (i.e. vector)
−−→
OF with F = (3, 2) (blue vec-

tor), some of the force is wasted pulling up against
gravity and we only use that part of the force, which
is working to move the box horizontally in direc-
tion of the ground (in our model along the x–axis
e1 = (1, 0)).

◦ Determine the portion of force F , which acts in
direction of the x–axis by using high school math.

Example. Projection and rejection are important concepts of analytic geometry. We first
demonstrate how to use c`(2) concepts to calculate the vector projection of vector a =
(3, 2) ∈ IR2 onto the x-axis and onto the red vector b = (1, 3) ∈ IR2. We use the G2

analogue to the well-known projection resp. rejection formulas34 denoted by a‖b and a⊥b:

Math EigenMath c`(2) (4.1)

a‖b
def
=

a · b
‖b‖

b

‖b‖
= gp(inp(a,b), inverse(b)) = project(a,b) (4.2)

a⊥b
def
= a− a · b

‖b‖
b

‖b‖
= gp(outp(a,b), inverse(b)) = reject(a,b) (4.3)

Therefore we have

BClick here to run the script..

Comment. First (1) we put in the vectors a and b as elements of G2. We then use the
formula (4.2) explicit and in (3) as the EVA build-in function project. In (4) we calculate
a‖b = (3, 2)‖(1,3) = (0.9, 2.7). Both results can be checked for plausibility in the figure.

34see e.g. https://en.m.wikipedia.org/wiki/Vector_projection or https://www.ck12.org/book/
ck-12-college-precalculus/section/9.6/

https://lindnerdrwg.github.io/ga434p.html
https://en.m.wikipedia.org/wiki/Vector_projection
https://www.ck12.org/book/ck-12-college-precalculus/section/9.6/
https://www.ck12.org/book/ck-12-college-precalculus/section/9.6/
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Whereas the projection of a vector a onto a vector b is the component of a parallel to b,
the rejection is defined as the perpendicular component of a resp. to b. Let’s calculate the
rejection with EVA-function reject:

# EIGENMATH

a=3e1+2e2

b=1e1+3e2

gp(outp(a,e1), inverse(e1)) -- (5)

rae1=reject(a,e1) -- (6)

rae1

disp2(rae1)

rab=reject(a,b) -- (7)

rab

disp2(rab)

a - project(a,e1) -- (8) alternative formula for rejection

a - project(a,b)

Eigenmath output:

BClick here to run the script..

Exercise 4.11. a. Calculate the scalar projection of a onto b as length of the vector projec-
tion. Use alternatively the formula a•b

|b‖ .
b. Calculate the scalar projection of a onto e1. Verify the result in the figure.
c. Determine the area of the plane triangle 4(3, 3)(4, 2)(6, 4) using a projection to deter-
mine its height.

Exercise 4.12. (Tutorium of Lounesto, p.5)

a. Redo this CLICAL example using Eigenmath.

https://lindnerdrwg.github.io/ga434r.html
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b. Under the figure in a.35 the Fundamental Identity, see §4.1.3C, is used to derive the
rejection formula. Explain. Elaborate on it.36

Exercise 4.13. (Projection and rejection as consequence of the Fundamental Identity.)
Looking at (4.2) and (4.3) we have for arbitrary a ∈ Gn, n = 2, 3

Math EigenMath c`(2)

parallel and perpendicular component of a

a = a‖b + a⊥b = project(a,b)+ reject(a,b)

Show, that this decomposition is a consequence of the Fundamental Identity 4.3.1.C.
Hint : Take b ∈ Gn and normalize b to b◦ := b

‖b‖ .

Let } denote the geometric product. Then p.d. b◦ } b◦ = ‖b◦‖ = 1.

Therefore a = a } 1 = a } b◦ } b◦. Now use the Fundamental Identity for the first two factors

a} b◦.

♥

Let’s close here our short introduction to Geometric Algebra using Eigenmath.
Much more could be say about rotations, transformations, conformal geometry,
spacetime geometry (Minkowski space with Lorenz metric) etc. using Eigen-
math’s EVA package. But this would be a nice topic for a another paper. Indeed,
you will find some pointers and first steps on these topics in the demos of [5] and in
the student guide of Lounesto [7, last line of the page].

4.3.5 Problems.

P21. Straigth lines and distance to a line.
Let a = e1 + 2e2 + 3e3, b = −2e1 + 3e2− e3, c = 2e1 + e2− 3e3 be multivectors in G3.37

a. Explain, that the equation of the line L through point x0 in the direction of a is
(independent of the underlying dimension)

L : (x− x0) ∧ a = 0, for x ∈ L

b. Find the equation of the line L in direction of a passing through b.
What is the distance of c to the this line L?
c. Give the equation of the plane E passing through a in ”direction” of the bivector a∧ b.
What is the distance of c to this plane E?

Here are some suggestions for further study.
35See e.g. https://users.aalto.fi/~ppuska/mirror/Lounesto/kuvat/Pp4-5.jpg
36See e.g. [13, pp. 38–39]
37This exercise is from [13, p. 43]

https://users.aalto.fi/~ppuska/mirror/Lounesto/kuvat/Pp4-5.jpg
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P22. Student guide of Lounesto: plane geometry.
Read the text and do the examples of the student guide of Lounesto [7, p. 2, 4–5] using
Eigenmath’s EVA.

P23. Student guide of Lounesto: space geometry.
Read the text and do the examples of the student guide of Lounesto [7, p. 2, 7–9] using
Eigenmath’s EVA.

P24. Student guide of Lounesto: Geometric Algebra.
Read the text and do the examples of the student guide of Lounesto [7, p. 20–26] using
Eigenmath’s EVA.

P25. Student guide of Lounesto: selected exercises.
Do some of the exercises No.11 to No.32 of the student guide of Lounesto [7, p. 26]. You
find selected solutions on page 1.

P26. Further reading: Lorentzian 2-space and Special Relativity.
Read the text of Sobczyk [13, pp. 15–20] about Clifford algebra in Lorentz plane
and Special Relativity. Use Eigenmath’s EVA along your way.

P27. Further reading: Minkowski 4-space and Special Relativity.
Read the text of Snygg [11, pp. 27–37] about Clifford algebra in Minkowski 4-space
and get a ”small dose of Special Relativity”. Use Eigenmath’s EVA along your way.
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