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About this Booklet

This is part 5 of a series of booklets, which want to introduce the reader to some topics of
elementary Linear Algebra and at the same time into the use of CAS Eigenmath.
This booklet grew out from a series of papers that I developed around 2000 mainly at
the University of Duisburg in Germany, but it is revised, renewed and adapted to Eigen-
math. It is based on an educational study, which I carried out as part of a high school
experiment for mathematics lessons with the use of computer algebra systems (CAS) in
the state of North Rhine-Westphalia (NRW) and was published in [6]. The material was
repeatedly tested at a German hight school resp. college. The learning parcourses were
originally developed using notebooks compiled with various versions of the CAS Derive
and accompanying learning materials in paper form.

About the content of the booklet

The compact solution formula of G. Cramer for regular linear systems of equations is
explored and gradually programmed in Eigenmath. The analysis of the associated solu-
tion process naturally leads to the development of the cofactor concept of a determinant
and to the adjugate of a matrix. We then gain a dimension-independent formula for the
Cramer rule and a deeper insight into the structure of the inverse of a matrix. Spe-
cializations and Eigenmath experiments in the associated collection of exercises discuss,
among other things, the wedge product of two–dimensional vectors (with application to
the intersection formula for straight lines in the plane) as well as the cross and the Box
product of three–dimensional vectors.
The often isolated introduction of the mentioned concepts (cross product, spar alias Box
alias triple product) is avoided and here genetically arises from the investigation of the
linear system solution process. The teaching units offers a geometrically oriented alterna-
tive to the treatment of linear system via the Gauss-Jordan method. At the same time,
algebraic and geometric insights are linked, since the special 3D Cramer rule turns out
to be geometrically interpretable as the ratio of the volumina of two parallelepipeds.
An interdisciplinary aspect occurs through the use of elementary methods of software en-
gineering in the bottom-up development and step-by-step refinement of the diverse Cramer

functions. Techniques of this kind can often be used in CAS and train algorithmic oriented
constructive thinking. The Eigenmath commands used and the textual representation
should be elementary enough to serve as a good companion while reading basic or advanced
courses on Linear Algebra or as a help system for independent individual work.

A short sketch of the APOS learning theory

The social-constructivist APOS1 learning theory was in my mind throughout the con-
struction of these booklets: as a theoretical research approach, for the practical curricu-
lum development and as a computer-aided, cooperative teaching–learning method. Com-
pared to classic learning theories, the APOS theory focuses on the finding that the mental

1see for example Arnon et. al. [1] or my thesis for a German introduction [9, pp.16–48]
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(re)construction process of mathematical knowledge is decisively promoted by a mathemat-
ically –oriented programming language as a medium in which the knowledge constructions
are represented as programming constructs (Dubinsky). Starting with the epistemologi-
cal reflection of a mathematical concept with the aim of a ’genetic decomposition’ of the
concept in question, specific mental constructions are suggested that a learner needs to ac-
quire the concept and these are represented in the CAS. The learning process is triggered
by actions or manipulations on mental or virtual CAS objects (actions); these actions are
interiorized (’internalized’) by the learning subject into processes, that are finally encap-
sulated in the form of objects. It should be possible to decompress such objects back into
the processes from which they were constructed. Processes or objects are thematically net-
worked and structured in the form of schemas, stored in the learner’s knowledge network
- hence the acronym A.P.O.S.
In the A.P. phase the individual learning trajectories of the learners meander around the
hypothetical learning trajectory, which was designed by the instructor resp. teacher. An
”object” understanding of a mathematical concept may also be interpreted as a concept
definition and an ”schema” forming as a concept image in terms of Tall and Vinner,
[17]. In the APOS theory, learning difficulties are preferably explained with an unsuccessful
interiorization of actions into processes or the failed encapsulation of processes into objects
or an inadequate structuring of objects into a schema.
The chapters of the booklet also partially represent so-called ’microworlds ’ (e.g. model
problems) in which a local mathematical knowledge domain with its manipulable objects
(here: matrices) and operations (here: dot(), adj(), etc.) is mapped into the language of
the CAS Eigenmath.

Eigenmath

The considerations in this script would be difficult to elementarize without the use of a
computer algebra system like Eigenmath, because heavy calculations of products and
inverses of matrices occur in the conceptual constructions. Therefore, in Eigenmath
laboratories we explore decisive phenomena or verify or falsify hypotheses and would like
to encourage ongoing dialogical practice in CAS language communication skills with the
Eigenmath assistance.
The accompanying colloquial comments are deliberately short. If possible, all CAS dialog
sequences - which are shown in typewriter font - should be performed live on the com-
puter. We give therefore many lively links to invocable Eigenmath scripts. The Eigen-
math routines, which are written for this Part 5, are collected in the toolbox craBox.txt

for the convenience of the user and are invoked by the command run("craBox.txt") in
a running Eigenmath Online2 session. In this way you can s(t)imulate this communica-
tion process at the Eigenmath prompt region in the input (”Run”) window and allow a
dynamic interactive ’reading act’ with spontaneous deviations, additional inquiries or ad
hoc explorations, which would otherwise be not possible.

2Running the Eigenmath app on the iMac this command has to be substituted trough
run("downloads/craBox.txt"). The file craBox.txt has therefore to be copied to the ’downloads’ folder.
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Eigenmath is a computer algebra system that can be used to solve problems in math-
ematics and the natural and engineering sciences. It is a personal resource for students,
teachers and scientists. Eigenmath is small, compact, capable and free. It runs on Win-
dowsOS, MacOS, Android and online in a browser. It is in the opinion and experience of
the author very well suited for doing linear algebra from the viewpoint of APOS theory.

To use this booklet interactively
. . . you do not need to install any software to do the calculations ! The CAS Eigenmath
works directly out of this text, on any operating system, on every hardware (Smartphone,
iPhone, tablet, PC, etc.), at any place: you only must be online and click on a link like
BClick here to invoke Eigenmath (C please click here! Really!). From this point on you
can run a given script or fork with own computations.
. . . you do not need to install any software to produce quality plots interactively ! You only
must be online to press a link like CalcPlot3D (C please click here! Really!) in this script.
At this point you can make a 2D/3D–plot to visualize a concept or to make a calculation
visually evident.

I thank George Weigt for his friendly support, hints and help regarding his Eigenmath.
So it was a real pleasure to write down these notes.

Any feedback from the user is very welcome.

PS: Being retired and no native speaker, I have no support from colleges at high school or
university anymore, therefore the reader may excuse me for my grammatical and spelling
mistakes.

Wolfgang Lindner
dr.w.g.Lindner@gmail.com
Leichlingen, Germany
February 2021

https://georgeweigt.github.io/eigenmath-demo.html
https://c3d.libretexts.org/CalcPlot3D/index.html
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15 Cramer rule, Determinants and Products

If a system of linear equations A ∗X = B is regular 3, then we know that one can find the
unique solution X through the well-known formula X = A−1 ∗B, i.e. the system of linear
equations is multiplied for the unique solution on both sides with the inverse matrix A−1.
In part 3 of this series we looked at the solution process from a constructive computa-
tional point of view using the Gauss-Jordan algorithm and the associated Eigenmath
procedure RREF to solve such equations and to describe the solution set.
In this chapter we look at the solution process from an algebraic point of view using
determinants as main means. By the way we network diverse algebraic concepts like the
adjoint, cofactors and minors and we obtain a new handy solution formula for regular
linear equations: the famous so–called Cramer rule, which allows a nice geometrical
interpretation.

Let’s start an first exploration in 3 steps.

15.1 Preimage I – the 2D Cramer rule

How to calculate the preimage of a figure under an reversible linear mapping?
Or: From which unknown original point X does point P = (6, 4) come from under the
map M : (x, y) 7→ (3x + 2y, x + 2y)?
Short in matrix language:[

3 2
1 2

]
∗
[
x
y

]
=

[
6
4

]
with x =?, y =?

Shorter:
M ∗X = P with X = [x, y] =?

15.1.1 calculate concrete example preimage

We calculate the unknown point X with X
M7→ P using the inverse matrix method.

3e.g. unique solvable, that means the determinant of A is non-zero.
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That is: Since the linear mapping is reversible because of its non-vanishing determinant,
we solve by multiplying the matrix equation from the left with the inverse mapping matrix.
Here is the Eigenmath calc sheet:

M=((3,2),(1,2))

P=(6,4)

X=dot(inv(M),P)

X -- returns (1, 1.5)

dot(M,X) -- check ok

Try it: BClick here to run the calc sheet.

Exercise 15.1. Read off the coordinates of the two other points Q,R of the triangle 4PQR
and determine their unknown preimage points Y, Z, too. Use it to complete the sketch
around the starting triangle in CalcPlot3D

Exercise 15.2. Set up an Eigenmath solution, which calculates the complete preimage
4XY Z simultaneously in one equation. Plot both triangles wit CalcPlot3D.
BLook up solution sheet. Eigenmath output:

15.1.2 analyze of the solution process with a general matrix

We now study a generalization of the situation in order to gain a general pattern. In order
to be able to follow the solution process in this laboratory in detail, we have to replace
the specific numerical values with placeholders, so that interim calculations become visible
and the results can be analyzed.

M ∗X = P[
a b
c d

]
∗
[
x
y

]
=

[
p
q

]
with x =?, y =?

We assume, that det(M) 6= 0 and determine a ’general’ solution for X using Eigenmath’s
build–in function inv(.) to calculate the inverse matrix of M . Think about the output!

https://lindnerdrwg.github.io/laif11a.html
https://lindnerdrwg.github.io/laif11b.html
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We see some patterns evolve. First all denominators as well in M−1 as in the solution point
X has the same term ad− bc. How is the term of the denominator to be interpreted? We
invoke Eigenmath’s det function to look at his general term:

We see in (1), that Eigenmath returns the term ad − bc = det(M). To verify, that this
term is in coincidence with our definition of Det we row-reduce matrix M via Ge, i.e. via
the Gauss algorithm. According to our definition we then have to multiply the diagonal
elements in (2), which results in the same term. Ok.
We draw two consequences.

1. The term for the inverse of M Math: M−1

EigenM: inv(M) can be written as 1
det(M)

·
[
d −b
−c a

]
.

2. The x–coordinate of the solution vector X = (x, y) is

x =
−bq + dp

ad− bc
=

dp− bq

det(M)

=

det

[
p b
q d

]
det

[
a b
c d

] (Cr22)

Try it: BClick here to run the script.
◦ Consider the result (Cr22): how were the numerator and denominator systematically
formed from the 6 data a, b, c, d, p, q? The result is the so-called Cramer rule:
• The 1st coordinate x of the solution point X = [x, y] can be calculated as the quotient of
two determinants: the denominator is the determinant of the matrix A and the numerator
is the determinant of the modified matrix, in which the 1st column of the matrix was
replaced by the given point (= right side of the equation).
• The 2nd coordinate y of the solution point X = [x, y] is also obtained as the ratio of
two determinants: the denominator is again the determinant of the matrix A and the
numerator is the determinant of the modified matrix, in which this time the 2nd column
has been replaced by the given point.
• By the way, we have the following mnemonic pattern, the so-called rule of Leibniz, to
calculate the determinant of a 2×2 matrix: :

https://lindnerdrwg.github.io/laif12.html
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Exercise 15.3 (Geometrical interpretation of determinant as area of a parallelogram).

The Leibniz formula for the determinant det
[
a b
c d

]
= ad − bc of a 2×2 matrix M =[

a b
c d

]
allows a geometrical interpretation. Show:

Let the columns A =
−→
OA = (a, b) and C =

−→
OC = (c, d) of matrix M be drawn as the

sides of a parallelogram4 OABC with vertices at O = (0, 0), A = (a, b), B = (a + c, b + d),
and C = (c, d). Verify by an elementary geometric argument, that the (oriented) area of
parallelogram OABC equals det(A), i.e.

area(OABC) = |det(
−→
OA,

−→
OC )|

• Therefore we can interpret formula (Cr22) now in geometric language: The 1st coordinate
x of the solution point X = [x, y] of the regular 2×2 linear system A ∗X = B is the ratio
of two parallelogram areas.

Exercise 15.4. Calculate the solution of the linear system in Ex.15.1 using 2-dimensional
determinants, i.e. the rule of Cramer and the Leibniz formula.

The calculation of the solutions of a linear system of equations as the quotient of
two determinants is a new, unexpected solution method that we will study in more
detail below and also automate with the help of Eigenmath. We also strive for a
geometric understanding. That is the aim of the following section.

15.1.3 automatize the solution process – the 2×2 Cramer rule

In order to calculate the solution of regular 2×2 linear systems of equations fully automat-
ically with Eigenmath, we must be able to carry out the observed column replacement
process in formula (Cr22), when modifying the system matrix M . To do this, we create a
new Eigenmath command Replace.

# EIGENMATH is row oriented.

4We cite the figure from https://en.wikipedia.org/wiki/Determinant

https://en.wikipedia.org/wiki/Determinant
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# But we have to Replace the 1st column.

# Therefore we must transpose and re-transpose.

Replace(pp,M,i) = do(X = M, --(1)

Xt = transpose(X), --(2)

Xt[i] = pp, --(3)

transpose(Xt)) --(4)

# implement the 2x2 Cramer rule (Cr22) --(5)

Cramer22(A,B) = ( det(Replace(B,A,1))/det(A),

det(Replace(B,A,2))/det(A) )

--- (6) (7)

c22 = Cramer22( ((3,2),(1,2)), (6,4) )

c22

Comment. To replace the i–th column of M with the RHS pp of the linear system, we first
(1) save a copy of matrix M in the container variable X. Then (2) we transpose X alias
M to focus on the column structure of M . In step (3) we transfer the RHS pp into the
i–th column Xt[i] of X. Step (4) returns the transposed transpose, i.e. the original row
structure. The implementation of the Cramer rule in (5) follows 1:1 the mathematical
observation in formula (Cr22), where the first line calculates the x component of the solu-
tion as a fraction with nominator equals the determinant of the matrix Replace(B,A,1),
i.e. the matrix A, whose 1st column is replaced with the RHS B.
In c22 we see an example invocation of function Cramer22 with the mapping matrix and
the image point of 15.1. The result is c22 = (1, 1.5) = X.
Try it: BClick here to run the example above.

./

P133. Cramer rule I. For an first exercise, solve the following 2×2 linear systems
I, II and III using the Cramer rule by paper’n pencil and controll your calculation by
Eigenmath:

https://lindnerdrwg.github.io/laifCr22.html
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P134. Cramer rule II.
Consider again the system of linear equations[

3 2
1 2

]
∗
[
x
y

]
=

[
6
4

]
a. Interpret the determinant of the mapping matrix M as area of the parallelogram, whose
sides are spanned by the columns of M . Do the same for the nominator in Cramer rule
formula. Draw both parallelograms in CalcPlot3D’s graphics window and try to ”read”
the solution x = 1 off the graphic.
To what extent does the x–coordinate of the solution point appear as an area ratio, when
changing the mapping matrix with the result point [6, 4]?
b. Similarly to a), determine the y–coordinate of the solution point graphically.

P135. Solution calculations.
a. Under what conditions is the Cramer rule formula applicable?
In the case of inapplicability, add an output of the form ”LS with CRAMER rule not
solvable” to the Eigenmath function formula.
b. Choose some problems from your textbook to solve 2×2 – LS with Cramer22.
Occasionally check the result with a paper’n pencil calculation.

P136. Solution invariance.
The LS

[
1 2
3 5

]
∗
[
x
y

]
=
[
3
6

]
has the unique solution x = −3 and y = 3.

Does the solution change, when the LS is multiplied with the matrix
[
1 0
1 1

]
from the left?

What is the geometric effect of this matrix?

P137. Parameter dependency.
For which values of k does the following 2×2 – LS have a unique solution?[

1 2
1 k

]
∗
[
x
y

]
=

[
5
6

]
P138. Line fitting.
If one wants to lay a straight line y = a0 + a1 · x through two points P1 = [x1, y1] and
P2 = [x2, y2], one has to find a solution [a0, a1] of the two linear equations[

a0 + a1x1 = y1
a0 + a1x2 = y2

]

a. Explain, that a solution exists if and only if det(

[
1 x1

1 x2

]
) 6= 0.

b. Which line goes through [2,1] and [5, -1]?

c. Draw a figure with CalcPlot3D to verify your solution.



15 CRAMER RULE, DETERMINANTS AND PRODUCTS 11

15.1.4 The wedge product of two vectors in the plane IR2

For two vectors A = [a1, a2] and B = [b1, b2] of the plane, one defines its so-called wedge
product A ∧B (read: ’A wedge B’) as the real number defined by the formula:

A ∧B
def
= det[A,B]= a1 · b2 − a2 · b1

Note: det[A,B] is meant as the determinant of the matrix M = [A,B], whose columns (or
rows) are the vectors A and B.

Exercise 15.5. Implement an Eigenmath function wedge(A,B), which returns the value
A ∧B.

a. Calculate with and without Eigenmath:

◦ [1, 2] ∧ [2, 4] =?

◦ [1, 2] ∧ [1, 2]

◦ 2 · [−2, 4] ∧ [1, 0].

b. Show (maybe using Eigenmath), that the name wedge product is justified, because
– among other things – the following rules apply.

The wedge product is

◦ homogeneous : A ∧ (kB) = k(A ∧B) with k ∈ IR

◦ distributive: A ∧ (B + C) = (A ∧B) + (A ∧ C)

In contrast to the ’normal’ multiplication of numbers, however, the following applies:

◦ anticommutative: A ∧B = −(B ∧ A)

◦ alternating : A ∧ A = 0

◦ Does: A ∧ (B ∧ C) = (A ∧B) ∧ C?

Give a numerical example for each of the properties of the wedge product.

c. Find and prove more laws.

d. Show: the area F of the triangle 4ABC with A = [a1, a2], B = [b1, b2], C = [c1, c2] is

2 · F = (A ∧B) + (B ∧ C) + (C ∧ A)

Calculate the area of triangle 4[(1|1), (4, 2), (3|5)] according to d.
Verify the result with a calculation by paper’n pencil and a quality plot with Cal-
cPlot3D.

e. Find Q = (x, y), such that the triangle 4OPQ with O = (0, 0), P = (4, 1) has the
area F = 5. Give all solution points Q.
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f. Write the 2×2 Cramer rule using the wedge product notation,
i.e. show for A ∗X = B:

x =
B ∧ A1

A1 ∧ A2

where the matrix A = [A1, A2] has rows A1 and A2. Derive an formula for y.

g. Implement an Eigenmath function Cramer22wedge(A,B), which returns the com-
plete solution vector (x, y) of an regular 2×2 –linear system A ∗ X = B using the
wedge product.

Remark.
The wedge product is sometimes also called the outer product or cap.
Note: the wedge product is a real number, that equals to the determinant value; however,
their factors are interpreted as isolated vectors and not as a 2×2 matrix!

The wedge product has numerous applications in elementary geometry and in com-
puter graphics for generating direct solution formulas. For example:

P139. Intersection formula: line–line–intersection.
Two straight lines g and h are given in the plane IR2 by two points on each of them, i.e.
A,B ∈ g and C,D ∈ h, then their point of intersection Sgh is calculated using the following
explicit formula

Sgh(A,B,C,D) =
(C ∧D) • (B − A)− (A ∧B) • (D − C

(B − A) ∧ (D − C)

a. Implement the intersection formula in Eigenmath as function Sgh(A,B,C,D).

b. Test the intersection formula on self-chosen examples.
Verify your results using a figure with CalcPlot3D.

c. Under what condition does no intersection exist?
Interpret the condition geometrically!

◦ Argue: vectors, whose wedge product is zero, are linearly dependent.
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15.2 Preimage II – the 3D Cramer rule

How to calculate the preimage of a figure under an reversible affine mapping?
Or: From which unknown original point X does point P = (6, 4) come from under the
map M : (x, y) 7→ (3x + 2y−1, x + 2y+2)?
We formulate the map M in matrix language, with the added ’translation’ vector T =

[
−1
2

]
:

M ∗X + T = P with X = [x, y][
3 2
1 2

]
∗
[
x
y

]
+

[
−1
2

]
=

[
6
4

]
with x =?, y =?

Verify, that this equation can be written as a 3D matrix equation A ∗X = B , where the
translation vector of the map M is integrated in a 3×3 matrix:

A ∗X = B with X = [x, y, 1]3 2 −1
2 1 2
0 0 1

 ∗
xy
z

 =

6
4
1

 with x =?, y =?, z = 1

This ’trick’ is called a homogenization5 of the affine map or a lifting into IR3. We now try
to solve this 3×3 linear system with an adapted Cramer rule.

15.2.1 Solution of 3×3 linear systems by modified Cramer rule

In order to calculate the solution of this regular (argue!) 3×3 linear systems of equations,
we make a conclusion by analogy and lift our Cramer rule also in the 3rd dimension
using the recipe of the column replacement process. The Eigenmath command Replace

remains unchanged and we try:

# CRAMER 3x3 rule

Replace(pp,M,i) = do(X = M,

Xt = transpose(X),

5i.e. we transform the affine map M into a linear one. See my booklet about Linear Transformations
with Eigenmath.
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Xt[i] = pp,

transpose(Xt))

Cramer33(A,B) = ( det(Replace(B,A,1))/det(A),

det(Replace(B,A,2))/det(A),

det(Replace(B,A,3))/det(A) )

A = ((3,2,-1),(2,1,2),(0,0,1))

B = (6,4,1)

c33 = Cramer33(A,B)

c33

Eigenmath output: c33 = (−3, 8, 1) = X.
Try it: BClick here to run the example above.

Exercise 15.6. a. Check the result using the direct method X = A−1 ∗B.
b. Solve the following 3×3 linear system with Eigenmath function Cramer33(..) ...
and by paper’n pencil. 2 2 4

1 2 −5
3 1 −3

 ∗
xy
z

 =

5
4
5


15.2.2 Diving deeper into the 3×3 Cramer rule

Solving Ex.15.6.b by paper’n pencil turned out to be very troublesome, because of the
calculation of the many 3×3 determinants! So we ask:

is there an analogy to the 2×2 Leibniz rule det
[
a b
c d

]
= ad− bc ?

Let’s start an exploration with Eigenmath.6

BClick here to run the example.
The first two calculations verify, that the linear systems from 15.2.1 are indeed regular,
because of det(A) 6= 0. To get the determinant of a general 3×3 matrix, Eigenmath
returns a 6 summands formula, the 3×3 Leibniz rule:

det

a b c
d e f
g h i

 = aei− afh− bdi + bfg + cdh− ceg (Leibniz3)

6In the Eigenmath script we run the command (1) to quote the identifiers e = exp(1) and i =
√
−1,

i.e. to decouple them from the primary binding.

https://lindnerdrwg.github.io/laifCr33.html
https://lindnerdrwg.github.io/laiF22.html
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Exercise 15.7. Try to detect a pattern in the determinant formula (Leibniz3).

Eigenmath returns the (Leibniz3) formula in an evaluated and automatically simplified
shape. Therefore a possible structure is hidden behind this long term, which we try to
shed some light on. So let’s go back to the 90’s of the last century and look at a screenshot
of the ancient CAS Derive forWindows on the same theme:

We know, that the denominator in command line #18 must be the determinant of the
system matrix M . We conclude, that the (Leibniz3) formula should be

det

a b c
d e f
g h i

 Leibniz3
= aei− afh− bdi + bfg + cdh− ceg (15.1)

#18
= a · (ei− fh) + b · (fg − di) + c · (dh− eg) (15.2)

Leibniz2
= a · det

[
e f
h i

]
− b · det

[
d f
g i

]
+ c · det

[
d e
g h

]
(15.3)

Equation (15.3) shows the structure, we are looking for. This structured formula for the
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calculation of the 3×3 determinant is known as the Laplace expansion of the determinant
and is good to memorize and easily generalizable.

Exercise 15.8. Argue, why we introduce the ’-’ sign in the middle term of equation (15.3).
Argue, why the explicit Eigenmath term (15.1) seems to come from in intern simplification
of (15.3). Why can formula (15.1) be memorized with this knowledge in mind?

Example.

det

1 2 3
4 5 6
7 8 9

 (15.3)
= 1 · det

[
5 6
8 9

]
− 2 · det

[
4 6
7 9

]
+ 3 · det

[
4 5
7 8

]
(15.4)

Leibniz2
= 1 · (−3)− 2 · (−6) + 3 · (−3) (15.5)

= 0 (15.6)

Exercise 15.9. Here is the so-called rule of Sarrus7, which is a pattern to memorize the
calculation of the determinant along the (Leibniz3) formula (15.1), explain:

det

 2 3 5
−1 4 6
3 −2 7

 = = 2 · 4 · 7 + · · · −(3 · (−1) · 7) = 105

Check the calculation with BEigenmath.

15.3 Laplacian expansion – the nD Cramer rule

With the insight gained into the apparatus of the determinant formulas in its different
characteristics of the Leibniz sum or Laplace expansion, we are now able to formulate
general rules as well as for the Cramer rule as for the calculation of determinants.

15.3.1 The nD Cramer rule

Because our Eigenmath function Replace(..) works independent of the dimension of
the matrix, we only have to generalize the Cramer rule implementation and orientate us

at 15.2.2 code line #9. We have the lexicon Derive : vector(.., i,1,DIMENSION(a))
EigenM: for(i,1,dim(A,1), ..)

## CRAMER rule for n x n matrices

Cramer(A,B) = do( n = dim(A,1), --(1)

Z = zero(2,n), --(2)

Y = Z[1], --(3)

7we borrow the aij pattern from https://wiki2.org/en/Determinant

https://georgeweigt.github.io/eigenmath-demo.html
https://wiki2.org/en/Determinant
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for( i,1,n, --(4)

Y[i] = det(Replace(B,A,i))/det(A) ),

Y ) --(5)

A = ((3,2,-1),(2,1,2),(0,0,1))

B = (6,4,1)

cNN = Cramer(A,B) --(6)

cNN

Cramer(A,B)[2] --(7)

Try it: BClick here to run the script.

Comment. In (1) we say, that the for–loop will use all n columns of matrix A. (2) installs
a 2×n container matrix Z, who is initially filled with zeros. But we use only the first row
Z[1] of it to save the calculated solution components in variable Y . The calculation is done
in (4) and the full result is returned in (5).

Exercise 15.10. Use Cramer(..) to solve Ex.15.9.

15.3.2 The Laplacian expansion of a 3× 3 determinant

We recall the structure formula (15.3) to compute a 3×3 determinant, the so-called Laplace
expansion:

det

a b c
d e f
g h i

 Leibniz3
= a · det

[
e f
h i

]
− b · det

[
d f
g i

]
+ c · det

[
d e
g h

]
(15.7)

Each of the 1D–smaller 2×2 determinants on the RHS of (15.8) is called a minor of the
original matrix on the LHS. It is this pattern, which can easily be extended to a general
procedure (e.g. a definition) to calculate the determinant of a matrix, know as its Laplace
expansion. Let’s first formulate the Laplace equation (15.7) using Eigenmath:

A = ((a,b,c),(e,f,g),(h,i,j))

detLap(A) = A[1,1] * minor(A,1,1) -

A[1,2] * minor(A,1,2) +

A[1,3] * minor(A,1,3)

detLap(A)

The Eigenmath output shows the expected value: aei− afh− bdi + bfg + cdh− ceg
Here we show the full session and comment a bit about it:

https://lindnerdrwg.github.io/laiF231.html
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Comment. We define a general 3×3 matrix A, calculate its determinant using Eigen-
maths build-in function det(..) and pick out two scaled down quadratic sub-matrices
of A using Eigenmaths build-in function minormatrix(..), see (1). The correspond-
ing minor(A,i,j) is defined to be the determinant of this 2 × 2–submatrix that results
from A by removing the i–th row and the j–th column, see (2). In (3) we compute the
RHS of formula (15.7) and check in (4) with success (”1”), that both terms are equal, i.e.
LHS = RHS. Formula (3) was abstracted above to an explicit executable function.
Try it: BClick here to run the test.

15.3.3 The Laplacian expansion of a general n× n determinant

In 15.3.1 we gave the general version of the Cramer rule in Eigenmath. We now show
the Eigenmath implementation of the Laplacian expansion of the determinant (along
the elements of the i-th row) of a general n×n matrix. This is a straight forward translation
of the corresponding mathematical formula.

Math: for A = (ai,j)i=1..n
j=1..n

we have with Mij = minor(A,i,j)

det(A, i) =
n∑

j=1

(−1)i+jaijMij

Eigenmath:

detLaplace(A,i) = sum(j,1,dim(A,1), (-1)^(i+j)*A[i,j]*minor(A,i,j) )

https://lindnerdrwg.github.io/laiF32.html


15 CRAMER RULE, DETERMINANTS AND PRODUCTS 19

A = ((3,2,-1),(2,1,2),(0,0,1))

detLaplace(A,1)

detLaplace(A,2)

Try it: BClick here to run the script.
• Remember : The Laplace expansion expresses the determinant of a matrix in terms
of its minors. The minor Mi,j = minor(A,i,j) is defined to be the determinant of the
(n − 1) × (n − 1) submatrix that results from A by removing the i–th row and the j–
th column. The signed expression (−1)i+jMi,j is known as a cofactor, in Eigenmath
language more precise as cofactor(A,i,j).
• If we are only interested in the calculation of det without the possible choice of a suitable
row i to expand along, we may fix the first row and write:

deti(A) = sum(j,1,dim(A,1), (-1)^(1+j)*A[1,j]*minor(A,1,j) )

• Here is the Laplace expansion in its compact cofactor version:

detCofactor(A,i) = sum(j,1,dim(A,1), A[i,j]*cofactor(A,i,j) )

15.4 Concept net with the Adjugate

Now we understand the systematic process of the recursive determinant computation via
the Laplace expansionand want to reflect again the calculation of the solution vector
X of an linear system of the form A ∗X = B using Cramer rule with the new insights.
According to the Cramer rule, certain substitutions were made to construct the numerator
determinant of the solution vector. Let’s look at this first.
For this exploration a new mathematical concept is appropriate: the so-called adjugate.
This concept will lead to a coherent network and distillates out the core part of the concepts
inverse or the Cramer rule.

15.4.1 Exploring the Adjugate

We do the following exploration in shape of a socratic dialog with our CAS Eigenmath
and use the method of pattern matching. We start with a question to Eigenmath:
what is the” adjugate” of a general matrix A?

# Adjugate = adj

A = ((a,b,c),(d,e,f),(g,h,i))

adj(A)

Eigenmath answer:

adj(A) =

https://lindnerdrwg.github.io/laif33a.html
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The entries inside the 3×3 adj – matrix reminds of the Laplace expansion of the de-
terminant of A. We go a step backwards and construct a helper function MiMa, which
returns all 9 minormatrixes of A.

# helper function to output all minormatrix’es

MiMa(A)= do( e = quote(e), i = quote(i), --(1)

MM = zero(3,3,2,2), --(2)

for(k,1,3,

for(j,1,3,

MM[k,j] = minormatrix(A,k,j))), --(3)

MM) --(4)

A = ((a,b,c),(d,e,f),(g,h,i))

MiMa(A)

BClick here to run the script.
Eigenmath answer:

MiMa(A) =

Comment. Here are some comments about the implementation of MiMa, a pre–version of adj.
Code line (1) detaches the identifiers e and i from being e = exp(1) and i =

√
−1. In (2)

we define a ’tensor’ MM as a 3×3 matrix, whose entries are itself 2×2 matrices. The for–loop
in 3 fills alls 9 elements of tensor MM with the minormatrix’es. In (4) we return the tensor
matrixf MM.

What do we observe?

1. The 1st entry adj(A)[1,1] equals the determinant of the 1st entry matrix

of MiMa(A)[1,1], i.e. adj(A)[1, 1] = det(MiMa(A)[1, 1]).

2. But: The 1st row adj(A)[1] matches the 1st column of MiMa(A).

3. Therefore: the transpose of MiMa(A) matches in pattern with adj(A).

4. Why? Wait, see below. You can only understand the adjugate in retrospect.

https://lindnerdrwg.github.io/laif41a.html
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We now look back at the nominator of the 3×3 Cramer rule, see e.g. 15.2.2 #18.

BClick here to run the script.
What do we observe here?

1. Formulas (2) .. (5) give back the same term, i.e. they are equivalent.

2. All 4 terms give back the x–coordinate of the solution vector X using Cramer rule.

3. (2) resp. (3) corresponds to the 1st row of adj(A).
It is like a linear combination of these entries with the factors p, q, r.

4. (4) calculates the x–value of the solution vector in the Cramer rule using the de-
terminants of the 1st column of the minormatrix tensor MiMa.

5. (5) encodes expression (4) using the cofactor abbreviation and allows to forget about
the minus sign in (4).

Exercise 15.11. Give analogous formulas, if [p, q, r] replaces the 2nd or 3rd column of A.

Exercise 15.12. Repeat the exploration above using the concrete linear systemA ∗X = B
e.g. 2 2 4

1 2 −5
3 1 −3

 ∗
xy
z

 =

5
4
5


Exercise 15.13. For matrix A =

[
2 2 4
1 2 −5
3 1 −3

]
, what is using paper’n pencil

◦ cofactor(A, 3, 1)
◦ adj(A)[1] ∗ [5, 4, 5]
◦ adj(A) ∗B
Do this exercise with Eigenmath.

15.4.2 The Cramer rule and the Adjugate

How is the Cramer rule formula hidden in the adjugate8?
How can one calculate the solution X of a linear system A ∗X = B with the help of the
adjugate of the system matrix A?

8alias ”accompanying matrix”, ”adjunct”

https://lindnerdrwg.github.io/laif41b.html
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So we explore how we can re-formulate the Cramer rule formula using the adjugate adj

and dive into a Eigenmath session:

A = ((2,2,4),(1,2,-5),(3,1,-3))

B = (5,4,5)

CoMa(A) = do( e = quote(e), i = quote(i),

MM = zero(3,3),

for(k,1,3,

for(j,1,3,

MM[k,j] = cofactor(A,k,j))),

MM) --(1)

cA = CoMa(A) --(2)

cA

aA = adj(A) --(3)

aA

CoMa(A) == adj(A) -- 0 = No

transpose(CoMa(A)) == adj(A) -- 1 = Yes (4)

# Term (5) of last session is nominator of x-value

# = (1st column of CoMa(A)) * B

# = (1st row of adj(A)) * B

# i.e. in EIGENMATH:

dot(transpose(CoMa(A))[1], B) --(5)

dot( adj(A)[1], B)

# In summa we have:

-----------------------------------------------------

CramerAdj(A,B)= dot(adj(A),B)/det(A)

-----------------------------------------------------

CramerAdj(A,B) --result: X=(55/46,...)

Eigenmath output:

X =
[
x
y
z

]
=

BClick here to run the session.

Comment. CoMa is the matrix, whose elements are the (i, j)–cofactors of A, i.e. the signed determinants

of the 2 × 2 submatrices (’minormatrix ’), that results from A by removing the i–th row and the j–th

https://lindnerdrwg.github.io/laif42a.html
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column. Comparing (2) and (3) we see, that the adjugate is the transpose of the cofactor–matrix. In (5) we

compute the x-value of the solution vector X two way, both returning −55. Then we define the Cramer

rule using the adjugate.

As a result, we get the following dimension-independent solution Cramer rule formula
for uniquely solvable linear systems of equations A ∗X = B:

Math Eigenmath

X = adj(A)•B
det(A)

Cramer(A,B) = dot(adj(A),B)/det(A)

Remark. With this dimension-independent solution Cramer rule formula for uniquely
solvable linear systems of equations A ∗X = B we do not need the mental helper function
Replace any more, which was useful for paper’n pencilcalculations using the Cramer rule.

Exercise 15.14. Compute the y, z–components of the linear system of 15.4.2 analog to code
line (5) using first paper’n pencil and then Eigenmath.

15.4.3 The inverse A−1 and the Adjugate

Question: if the solution of a linear system with the inverse of A can be calculated via the
Cramer rule also with the adjugate, what is then the relationship between the inverse of

A and the adjugate of A, i.e. A−1 ?∼ adj(A)?
In the Cramer rule process, the formation of the inverse of the matrix must be implicitly
hidden. In conclusion, we want to explore this and detect a famous connection between
the determinant det(A), the adjugate adj(A) and the inverse A−1 of a given matrix A.
Enjoy the following short reflection in Eigenmath. Without words.
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BClick here to run the session.

Exercise 15.15. Comment exploration 15.4.3 in your own words.

Exercise 15.16. In which line of the session you are able to conclude that adj(A)
det(A)

is the
inverse of A. Why?.

Exercise 15.17. Verify each of the first 4 code line through a calculation by paper’n pencil.

Fact: For any invertible square matrix A

Math Eigenmath

A−1 = adj(A)
det(A)

inv(A) == adj(A)/det(A)

Remark. The construction of the inverse matrix for a given matrix A is now divided in its
main parts: the inverse of matrix A is the quotient of the adjugate of A and its determinant.
In particular it can be seen that the determinant plays a decisive role for the existence of
the inverse matrix. Memorize:
◦ The adjugate of a matrix is the transpose of its cofactor matrix.
◦ The inverse of a matrix is the quotient of its adjugate and its determinant.
◦ The adjugate of a matrix is the transpose of its cofactor matrix.

https://lindnerdrwg.github.io/laif43.html
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Exercise 15.18. The Cramer rule says:

X =
adj(A) •B
det(A)

=
adj(A)

det(A)
•B = A−1 ∗B

What do you answer, if someone argue, we had gone into a circular reasoning9, because we
know

A ∗X = B  X = A−1 ∗B

Exercise 15.19. In your own words: what is the adjugate of a matrix useful and valuable
for?

15.4.4 Concept map:

Matrix minorMatrix cofactorMatrix Adjugate Inverse· · ·· · ·
· · ·

 
� � �
� � �
� � �

 
det� det� det�

det� det� det�
det� det� det�

 �t

−→ adj(�)−→ �−1

↓
Cramer(A,B)

◦ Explain for yourself. Think about it. Watch: �t !

9https://en.wikipedia.org/wiki/Circular_reasoning

https://en.wikipedia.org/wiki/Circular_reasoning
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Problems.

P140. Multi–variant solution of a 3×3 linear system
Consider the following system of linear 3x3 equations in matrix form A.X = B given by:2 1 −1

1 −3 2
0 1 6

 ∗
xy
z

 =

4
2
3


a. Solve the linear system with RREF(..) function.
b. Just determine the x-coordinate using the Cramer rule function.
c. Determine the complete solution vector [x, y, z] using the Cramer rule function.
d. Solve the LS by multiplying by the inverse A−1.
◦ What is the advantage of Cramer rule compared to a solution using A−1 or RREF()?

P141. Parameter dependency
For which values of k does the following 3x3-LGS have a unique solution?kx + y + z = 2

x + ky + z = 3
x + y + kz = 4


P142. Quadratic fitting.
If one wants to lay a parabola y = a0 + a1x + a22 through three points P1[x1, y1], P2[x2, y2]
and P3[x3, y3], one looks for a solution [a0, a1, a2] of the following three linear equations

a0 + a1x1 + a2x
2
1 = y1

a0 + a1x2 + a2x
2
2 = y2

a0 + a1x3 + a2x
2
3 = y3

a. Explain that a solution exists if and only if

det

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

 6= 0

b. Which parabola goes through [2,1] and [5, -1] and [-1,0]?
Try drawing the parabola you are looking for with CalcPlot3D.

P143. Straight line equation via det.
a. Show with/without Eigenmath that the straight line `PQ through the points P (p1, p2)
and Q(q1, q2) is determined through the following equation:

det

1 x y
1 p1 q1
1 p2 q2

 = 0
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b. According to a) give the straight line through P (2, 1) and Q(4, 5).
c. Make a quality plot of ` with CalcPlot3D.
d. Calculate the equation of ` alternatively using the point-slope approach or the two-point
approach.

P144. Lines of adjugate.
Consider the following fragment of an Eigenmath script:

A=((2,2,4),(1,2,-5),(3,1,-3))

dot( adj(A)[1], (5,4,5)) /det(A)

First formulate an assumption in words what is to be calculated, then do the math by hand
and finally check the result with Eigenmath. What is the result of the code snippet?

P145. Chessboard rule.
When forming the adjugate of a matrix one must carefully pay attention to the signs of
the sub-determinants, i.e. the minors. The sign of the minor changes according to the
following easily noticeable pattern:

a. Explain.
b. To what extent is this sign pattern already taken into account in cofactor expansion?
c. The formula for the inverse

A−1 =
1

det(A)
·
[
d −b
−c a

]
of a 2×2 matrix A was determined by solving a 2×2 linear system.
Derive this formula as a special case of A−1 = adj(A)

det(A)
observing the chessboard pattern.

P146. Determinant definition.
Discuss whether you can compute the det function for a matrix M also through the term

DET (M) = adj(M)1 •M1

Study examples. Explain and defend your opinion. Write DET in Eigenmath’s program-
ming language.

P147. Relationship between determinates, adjuncts and inverses
Consider the following 2×2 or 3×3 matrices:

A =

[
1 3
2 1

]
B =

[
2 1
1 3

]
U =

1 4 5
0 2 4
0 0 3

V =

1 2 3
4 5 6
7 8 9

W =

1 3 4
2 2 4
1 1 2





15 CRAMER RULE, DETERMINANTS AND PRODUCTS 28

a. Calculate the determinants of A,B, U, V and W .
b. Which of the matrices A,B, U, V and W has an inverse?
c. Calculate the adjjugates of A,B, U, V and W , those of A,B and U also by hand.
d. Calculate the matrix products in each case

1. A • adj(A) =

2. B • adj(B) =

3. U • adj(U) =

4. W • adj(W ) =

◦ Compare each with the corresponding inverse!

P148. Area of Triangle and Dependency of vectors.
For three points A = [a1, a2], B = [b1, b2] and C = [c1, c2] in the plane we consider the
Eigenmath function

F(A,B,C) = det( ((1,A[1],A[2]), (1,B[1],B[2]), (1,C[1],C[2]) ))

a. Calculate F((0,0), (4,1), (3,3)) using Eigenmath and also paper’n pencil.
b. Draw the points as a triangle (polygon) with CalcPlot3D.
c. Show that F (A,B,C) gives the signed area of the triangle 4ABC.
d. How can one interpret the sign?
e. If F (A,B,C) 6= 0, then the three points (A,B,C) are called affine-independent alias

the two vectors (A− C,B − C) = (
−→
CA,

−−→
CB ) linear–independent,

in case F (A,B,C) = 0 they are called dependent. Explain.
BClick here to run the function.

https://lindnerdrwg.github.io/laifp148.html
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15.5 Adjugate, Cross, Box and Cramer

The following considerations and results apply specifically to 3×3 matrices, 3×3 linear
systems and 3×3 determinants. This is why the names of functions often have a 3 at the
end as a reminder of this restriction, e.g. DET3. We demonstrate, how to use the adjugate
to define the cross product and and then how to calculate the determinant using cross.
Finally we interpret the solution components of the 3D Cramer rule as ratios of volumina.

15.5.1 The Adjugate and the Crossproduct

To detect a hidden connection between the vectorproduct alias crossproduct and the adju-
gate we start a short Eigenmath exploration. We consider a ”special general” 3×3 matrix
and its adjugate to get general results. We study the following matrix

M =

1 x1 y1
1 x2 y2
1 x3 y3


This matrix M is special, because its first column consists only of ”1”s. It is a bit general,
because the other columns have variable elements. Now we have

BClick here to run the exploration.
What do we recognize? We know that the elements of the adjugate adj(A) of a matrix
A are the determinants of its smaller submatrices, its ’minormatrices’. Therefore the first
row of the adj(ugate) remembers at the Leibniz formula for 2×2 determinants, while at
the same time the entries of the crossproduct vector have the same values. Therefore we
conclude: cross(X, Y ) == adj(M)[1] and we can define a procedure to calculate cross
using the adj:

CROSS(X,Y) = do( M=zero(3,3), --(1)

M[1]=(1,1,1), --(2)

M[2]=X, --(3)

M[3]=Y, --(4)

https://lindnerdrwg.github.io/laiF51.html
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Mt=transpose(M), --(5)

adj(Mt)[1]) --(6)

CROSS(X,Y)

BClick here to run the exploration.

Comment. This cross product function CROSS via the adj (ugate) reflects 1:1 the mental
or paper’n pencil calculation of the cross product and presents a step-by-step recipe:

1. Take an ’empty’ matrix M .

2. Fill its first column with 1s.

3. Fill its second column with the first vector entry X for cross.

4. Fill its third column with the second vector entry Y for cross.

5. Take the first row of adj(M), i.e. take the cofactors of the first column of M as
entries for the cross product. In other words: the first line of the adjugate of this
matrix equals the cross product.

In summa:

cross(

x1
x2
x3

 ,

x1
x2
x3

) = adj(

1 x1 y1
1 x2 y2
1 x3 y3

)1,•

or as mental concept

Matrix Adjugate cross1 · ·
1 · ·
1 · ·

 −→adj(�)−→ adj(�)1.Row = cross(
...|...)

High time for an

Exercise 15.20. We adopt the mathematical operator symbol ...× .. for the cross product,

i.e. we write shortly X×Y
def
= cross(X, Y ). Now determine the following cross products

using 1. paper’n pencil 2. Eigenmath’s bulid-in cross and 3. our user–defined CROSS

function.
a. [1, 2, 3]× [4, 5, 6]
b. [1, 2, 3]× [−3, 6,−3]
c. [1, 2, 3]× [1, 2, 3]
d. Do a free training with self chosen vector pairs until you feel competent.
BPlease invoke Eigenmath

https://lindnerdrwg.github.io/laiF51b.html
https://georgeweigt.github.io/eigenmath-demo.html
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15.5.2 The 3×3 determinant via a cross product

In the following exploration we use the predefined Eigenmath function cross(..) to
calculate cross products. Consider a 3×3 matrix M and his row vectors A,B,C thought
as individual objects. Then we have:

##### det via cross

M=((a1,a2,a3),(b1,b2,b3),(c1,c2,c3))

A=(a1,a2,a3)

B=(b1,b2,b3)

C=(c1,c2,c3)

M[1]

M[2]

M[3]

det(M) --(1)

dot(A,cross(B,C)) --(2) A*(BxC)

adj(M)[1] --(3)

----------------------------------- (4)

DET3(M)= dot(M[1],cross(M[2],M[3]))

-----------------------------------

DET3(M) --(4)

DET3((A,B,C)) --(5)

The tree different invocations (1), (2) and (3) returns the same term for the calculation of
the determinant of M :

BClick here to run the script.
Therefore we have the possibility to define the calculation function–term for a 3×3 det
(erminant) via formula (4). The advantage is, that we are able to input the matrix as 3
individual vectors, see (4) and (5). In some geometrical situation in IR3 this is comfortable,
look at the problems.
From this observation we have also another easy-to-remember calculation option for the
value of a 3×3 determinant if the rows/columns of the associated matrix are interpreted
as individual vectors.

DET3(A,B,C)=
Math Eigenmath
A ∗ (B × C) dot(A, cross(B,C))

https://lindnerdrwg.github.io/laiF52a.html
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Exercise 15.21. Calculate the determinant of M = ((2, 2, 4), (1, 2,−5), (3, 1,−3)) using
function DET3. Verify your result with the build–in function det.

15.5.3 A geometric interpretation of the 3×3 Cramer rule as ratio of volumes

Looking back at §9.6 we see that

DET3(a, b, c) =
Math: a ∗ (b× c)

EigenM: dot(a,cross(b,c))
= Box(a, b, c)

Therefore, analogous to the interpretation of a 2×2 determinant as the area of a parallel-
ogram with the columns of the matrix as edges, the value of a 3×3 determinant can be
interpreted as the volume of an parallelepiped (”feldspar”) with the columns of the matrix
as edges. We have the exploration:

# EXAMPLE 3x3 LINEAR SYSTEM

# 2x+2y+4z=5

# 1x+2y-5z=4

# 3x+1y-3z=5

A = (2, 2, 4) --LHS

B = (1, 2, -5)

C = (3, 1, -3)

R = (5, 4, 5) --RHS

R

M = (A,B,C)

M

Box(A,B,C) --(a)

det((A,B,C)) --(b)

DET3((A,B,C)) --(c)

# x coordinate of solution vector X=(x,y,z) via CRAMER with Box()

Cramer3x(M,R)= do( M=transpose(M), --(3)

Box( R, M[2], M[3]) / --(4)

Box(M[1], M[2], M[3])) --(5)

Cramer3x( ((A,B,C)), R) --(6)

Cramer3x(M,R) --(7)

Eigenmath output: (a),(b),(c) equals −46 and (6),(7) equals 55
46

Comment. Eigenmath is row oriented. Therefore we have to plug in the RHS R and the
rows of system matrix M as columns, i.e. we have to transpose our data in code line (3).
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Line (4) shows the replacement of the RHS R for the 1st column of the system matrix
for calculating the nominator. Line (5) is the constant system matrix M . Because we use
function Box() in the implementation of the new Cramer rule formula (3), the solution x
is interpretable as ratio of the two volumes (Boxes) in the nominator and the denominator.
What a wonderful result. And so simple to memorize. That’s math ♥10

Cramer3x( ((a,b,c)), R) =

BClick here to run the script.

Exercise 15.22. Write analogous Cramer rule formulas Cramer3y( ((a,b,c)), R) and
Cramer3z( ((a,b,c)), R) for the computation of the y and z coordinate of the solu-
tion vector X = (x, y, z). Give an implementation of the ’full’ Cramer rule Cramer3(

((a,b,c)), R), which returns the complete solution vector X = (x, y, z) of the linear
system using the partiell Cramer rule formulas Cramer3x, Cramer3y and Cramer3z.
Test your formulas using the linear system of the exploration.
Check your result using the inverse M−1 of the system matrix.

Problems.

P149. Multi-variant solution of a 3×3 linear system.
Consider the following system of 3 linear equationsin 3 unkowns in matrix form A∗X = B
given by 2 1 −1

1 −3 2
0 1 6

 ∗
xy
z

 =

4
4
3


a. Solve the linear system using the mental Cramer rule formula by paper’n pencil.
b. Determine only the x–coordinate of solution vector X = [x, y, z].
c. Determine the complete solution vector [x, y, z] using your Cramer3 function.
d. Verify your solution by X = A−1 ∗B using Eigenmath as your assistent.

P150. Cramer ruleusing Box.
Consider this 3×3 linear system:

a. Write the linear system in matrix shape A ∗X = B.

10The picture of the parallelepiped in the denominator is from https://de.wikipedia.org/wiki/

Datei:Parallelepiped-0.svg

https://lindnerdrwg.github.io/laiF53.html
https://de.wikipedia.org/wiki/Datei:Parallelepiped-0.svg
https://de.wikipedia.org/wiki/Datei:Parallelepiped-0.svg
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b. Determine the nominator of the x–coordinate of the solution using Box(..).
c. Compute the y component of the solution by only using Box or DET3 function.
c. Compute the z component of the solution by only using cross and dot function.
d. Verify your solution by X = A−1 ∗B using Eigenmath as your assistent.

P151. Algebraic properties of cross alias ×.
In manual calculations and theoretical considerations, one writes the cross product function
cross(X, Y) usually as 2-ary operator X × Y .

a. Calculate by hand, check with Eigenmath:

[1, 2, 3]× [4, 5, 6], [1, 2, 3]× [1, 2, 3], [4, 5, 6]× [1, 2, 3], [1, 2, 3]× [4, 5, 6]

b. Show that the name cross product is justified because the following rules apply:
the cross product is (for A,B,C ∈ IR3)

1. homogeneous : A× (k ·B) = k · (A×B) with k ∈ IR

2. distributive: A× (B + C) = (A×B) + (A× C)

3. (In contrast to the normal multiplication of numbers, however, :) anticommu-
tative: A×B = −(B × A)

4. alternating : A× A = ~0 (always, even if A is not a zero vector!)

c. Verify the above rules using Eigenmath and arbitrary ’general’ vectors, e.g. A =
(a1, a2, a3) etc. Search for further properties/rules for ×! Prove with Eigenmath.

c. Compare the cross product × in IR3 with the wedge product in IR2; look for similar-
ities and note the differences.

Note: the result of the cross product is a vector. Hence it is often also called ’the’
vector product in IR3.

P152. Algebraic rules for the Box product of three vectors in space.
The Box product is sometimes called the 3D wedge product or cap product for vectors in
space IR3 and is then denoted as a ∧ b ∧ c instead of Box(a, b, c).
In analogy to the previous exercise, search for algebraic rules for the Box ≡ wedge product.

Remark. 1. The function value Box(a,b,c) alias the value of the wedge operator a∧b∧c is
a real number, that corresponds to the value of a 3×3 determinant; however, the 3 inputs
of the 3D wedge product are viewed three individual vectors and not as components of one
3×3 matrix as in det.
2. We have declared a function DET3(M) = dot(M[1],cross(M[2],M[3])), which operates
on 3×3 matrices M . We may also define Det3(a,b,c)= dot(a,cross(b,c)), which awaits
3 vectors as input. Det3 would then be the same as Box and would be a so-called multi-
linear function.
a. [1, 2, 3] ∧ [4, 5, 6] ∧ [1, 2, 3] =?
b. Det3([4, 5, 6], [1, 2, 3], [−1, 0, 1] =?
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P153. Orthogonal vectors.
a. Draw the two vectors [4,1] and [-1,4] in the Cartesian coordinate system of Cal-
cPlot3D. Calculate their scalar product.
b. Form the dot product of the vectors [4,1,3] and [-3,0,4].
◦ Define: Two vectors X and Y are called perpendicular or orthogonal if their scalar
product is zero, i.e

X ⊥ Y
def⇐⇒ X • Y = 0 (in Eigenmath : dot(X, Y ) = 0)

c. Justify with Eigenmath: X ⊥ (Y × Y ) and Y ⊥ (X × Y )
d. Interpret geometrically: Det3(A,B,C) = 0.

P154. The trace of a matrix and Cayley’s theorem)
Define the so-called trace of a matrix M to be the sum of its diagonal elements, e.g. in the
2D case:

trace

[
a b
c d

]
def
= a + d

EigenM
= contract(((a, b), (c, d)))

E.g.
[
1 2
3 4

]
= 5.

a. Program the trace function in Eigenmath. (Do not use contract ;)

b. Let A,B be arbitrary matrices of type 2×2. Show with the help of Eigenmath the
Multiplication theorem for determinants :

det(A ∗B) = det(A) · det(B)

Test on self-chosen examples!

c. Let A,B be arbitrary matrices of type 2×2. Show with the help of Eigenmath the
Addition theorem for determinants :

det(A + B) = det(A) + det(B) + trac(adj(A) ∗B)

Remark : Unexpectedly, the addition theorem for determinants turns out to be more
difficult than the multiplication theorem.
◦ When does the naively expected formula det(A + B) = det(A) + det(B) apply?
Test on self-chosen examples!

c. Let M be an arbitrary 2×2 matrix and E the 2×2 identity matrix. Use Eigenmath
to show the so-called Cayley theorem:

M2 − trace(M) ·M + det(M) · E =
[
0 0
0 0

]
Check the validity of Cayley’s theorem with self-chosen examples.
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The trace of a matrix and Cayley’s theorem will soon play a crucial role in our study of
the classification of linear and affine mappings of the plane.

./

In Lindner [10, pp. 71–73] we show the use of determinants and the Cramer rule using
simplifying general methods of Geometric (Clifford) Algebra.
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