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About this Booklet
EIGENMATH

EIGENMATH is a computer algebra system that can be used to solve problems in mathemat-
ics and the natural and engineering sciences. It is a personal resource for students, teachers
and scientists. EIGENMATH is small, compact, capable and free. It runs on WindowsOS,
MacOS, Android and online in a browser. With the pseudoinverse, that was previously un-
used in elementary math, a tool is introduced and tested for the CAS EIGENMATH in order
to check its possibilities. After the introduction of the MOORE-PENROSE-pseudoinverse
and its geometric interpretation as a factor of an orthogonal projection, theoretically and
practical solutions between classic distance calculations and regression problems are possi-
ble. A characterizing definition for pseudoinverse is given and used to construct the explicit
solution of systems of linear equations.

To the student

This booklet would like to accompany the reader to a high point of the matrix-oriented ele-
mentary linear algebra: to the core idea of partial inversion of a matriz to a pseudoinverse.
In the case of over- or underdetermined or singular linear equation systems A x X = B,
such ’pseudo’inverses allow the explicit, fully automated calculation of the solution set
with only a few preconditions and allow a theoretically unified and practically powerful
representation of the topic of solving Linear Systems. The general solution formula is an
attempt to generalize the regular solution formula X = A~! * B. The mental concept of
the pseudoinverse consequently thinks the algebraic inversion idea for the solution of linear
systems of equations to an closed end.

At the same time, algebraic and geometric insights are linked, since the special MOORE-
PENROSE-pseudoinverse turns out to be geometrically a factor of an orthogonal projection
and linear regression calculations are canonized and trivialized: e.g. the calculation of
the regression line (parabola etc.) is compressed into a conceptual and CAS-explicit one-
liner. The considerations made here would be difficult to elementarize without the use
of a computer algebra system like EIGENMATH because product formations of 3 to 5
matrices occur in the conceptual construction - with inversions inside. In EIGENMATH
laboratories we explore the decisive phenomena or verify or falsify hypotheses and would
like to encourage ongoing dialogical practice in CAS language communication skills with
the EIGENMATH assistance.

Therefore the accompanying linguistic comments are deliberately short. If possible, all
CAS dialog sequences - which are shown in typewriter font - should be performed live
on the computer. If you pull a postcard in the EIGENMATH input region going down
step by step from an EIGENMATH command to an indented answer in the EIGENMATH
output window (written in LaTeX) and allow yourself a short pause for a reflection, you
can simulate this communication process in a rudimentary way - but it allows as a static
reading act no spontaneous deviations, additional inquiries or desirable explorations, which
is possible at the EIGENMATH prompt region under the output window.



An interdisciplinary aspect occurs through the use of elementary methods of software en-
gineering in the bottom-up development and step-by-step refinement of the functions mpi
or pinv and Greville. Techniques of this kind can often be used in CAS and train algo-
rithmic oriented constructive thinking. The EIGENMATH commands used and the textual
representation should be elementary enough to serve as a companion while reading basic
or advanced courses or as help system for independent individual work.

This small texiﬂ has fulfilled its purpose if the reader has learned to express himself in
the mathematically-related symbolic CAS EIGENMATH-language as a mathematical lan-
guage of communication and if he can use it to formulate problems as discussed here or to
tackle own tasks in dialogue with the CAS EIGENMATH.

The mathematical requirements to read this text are minimal. A first course on elementary
Linear Algebra should suffice. I recommend one of the books [2], [T} [9], [L3)F] [21] or [22).
For an introduction to programming [18] is a good choice.

Any feedback from the user is very welcome.

PS: Being retired and no native speaker, I have no support from colleges at high school or
university anymore, therefore the reader may excuse me for my grammatical and spelling
mistakes.

Wolfgang Lindner
Leichlingen, Germany
December 2020

1This text is an enhanced and updated version of [12], where the author used the CAS MuPAD.

2The use of DERIVE is a welcome opportunity to port the simple code to EIGENMATH.

3This is a fine tuned state-of-the-art introduction to LA, which uses a Python package for doing Geo-
metric Algebra (GA). There is a corresponding package called EVA for EIGENMATH, which allows to follow
the book with EIGENMATH, see url: http://beyhfr.free.fr/EVA2/index.html


 http://beyhfr.free.fr/EVA2/index.html
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11 First Steps towards the Moore-Penrose-Inverse

If a system of linear equations

Ax X =B

is regulaﬂ then we know that one can find the unique solution X through the regular

formula
X=A"'%B

e.g. the system of linear equations is multiplied for a (‘the unique’) solution on both
sides with the inverse matrix A~!. In the natural, social and engineering sciences, linear
systems of equations emerge frequently e.g. by measurements repeated at different times.
The information obtained in this way is often subject to measurement errors and as a rule
there are more or fewer equations (‘informations’) than unknowns. The resulting LSﬂ are
consequently over-determined or under-determined or, even worse, often not solvable at
all. Therefore, in these cases one is dependent on the calculation of 'optimal’ approximate
solutions. For the concrete calculation of such best approximate solutions (often called
'best fit solutions’), we try to rescue the simple algebraic solution principle

AxX =B=X=[?«B

as much as possible, i.e. we are looking for a meaningful ’substitute’ matrix |7| for the
non-existent inverse matrix. This is the aim of the first chapter.

11.1 Insolvable Linear Systems and their ’proximal’ Solutions

At the beginning we want to train our intuition for the selection of ’elements of best fit’ -
one also speaks of 'best compromise solutions’ - for unsolvable LS.

11.1.1  FEzercise: Insolvable Linear Systems and their ’best fit’ solutions

Look for best approximate solutions in the following problems.

a. to ’solve’ an unsolvable LS:

Coom o om s e
{x=0,x=1} 4 0o 1 2 3 4 5 8
X
An unsolvable ’overdetermined’ linear What is your guess of a (‘the’ 7) opti-
System of equations: 2 equations for 1 mal compromise solution?
unknown . Can you see it?

4e.g. unique solvable, that means the determinant of A is non-zero.
LS = Linear System, that is a set or collection of individual linear equations.
Think of the two equations z +y =1, x —y = 0 as an example of a 'system’.



11 FIRST STEPS TOWARDS THE MOORE-PENROSE-INVERSE

Estimate the distance of the point from
the straight line, do not calculate.

c. ’solve’ another unsolvable LS per intuition.

2-x=3
4.x=1

Why unsolvable?
Why overdetermined?
Interpretation of the LS?

d. Parallel straight lines:

x+y=0

x+y=1

Why unsolvable? Overdetermined?

A

a-— ]

2+

— R

1 1 2 3 4
X

Propose an ('the’) optimal compromise

solution.

1 2 3
1 X
44

Is there an ("the’) optimal compromise
solution? Use a short plea to argue.
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e. Weight gain:

Woche kg y

13| 6.15

18| 7.26 2T

22| B.08 ] t t } } t -
5 10 15 20 25 30
x

27| 8.84

From a table of the weight gain of an ... the best possible estimate should be
infant ... argued for his mean weight gain per
week. Make a straight line through
the point cloud by eye and estimate
the weight in the 30th week (=Woche

in German).

f. Bundle of straight lines:

x+y=1 \1
x—y=3 ;
2-y—-x=-2 A
2
Unsolvable? Overdetermined? Can you locate an (‘the only’) best fit
solution?

g. Skew straight lines:
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Unsolvable? Overdetermined? To which problem could a solution be
sought of 7 Can you justify a best fit so-
lution? Can you roughly estimate this
solution from the drawing?

h. Translate the linear systems of equations from a. to g. in matrix form A x X = B.

11.1.2 Remark: proximal solutions

If a linear system of equations A x X = B is z'nconsistemﬂ then in practically important
cases we look for a way to nevertheless find a ’best fit solution’. So instead of just giving
up when we know that an linear system is unsolvable, we compromise and try to find a
vector X, such that A x X, is at least as close as possible to B: we write

Ax X,~ B

Such an X,, which fulfills the equation A * X = B in the best approximation, is called
a best fit solution, the associated vector B, := A x X, is a best approximation to B or a
prozimum|’| for B. Summarized:

best fit solution target value

v 3

A*X ~B

&

T

proximum for B
Hint. Here are some solution hypotheses for Ex.11.1.1, presented by
Adam: in a. I guess x = 0.5 as this is exactly between the two numbers 0 and 1.
Berta: I estimate the distance at about 1.5.
Carola: doesn’t know whether she should answer (2.5,2.2) or 3.
Who can help with an argument?
David: thinks that this can only be the central parallel x + y = %
Erika: tells us her solution to e. later .. .
Fred: advocates for a certain point in the enclosed triangle - maybe the center point .. but

he didn’t find a clear hypothesis .. hm.
George: says you can’t see anything because .. but there could be a connection with .. wait!

6i.e. is not solvable

Tproximum (Latin: the closest [element]); in linguistic analogy to the familiar concept of a maximum
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We begin our investigations with the solution of Ex.11.1.1.c. To do this, we first make some
preparations, including a measure for the optimality of approximate solutions. We remember at
the concepts of length and distance, see Part 3, §9.3 and do a short warming-up.

P82. Length and Distance.

Calculate the distances of the corner points to the zero point and the side lengths in the
triangle ABC' with the points

a. A=(1,1), B=(4,1), C=(0,3)inR?

b. A=(1,1,2), B=(4,1,0), C=(0,3,3) in R? with and without EIGENMATH.

Solution. Here is a start with a fresh EIGENMATH sessionf] on the iMac ...

Run Stop Clear Draw Simplify Float Derivative Integral
A=(1,1)
B=(4,1)
c=(0,3)
1/2

abs (A-C) -- distance from A to C 5
float -=- in decimals 223607
sqrt( dot(A-C,A-C) ) -- distaance from A to C 51;’2
abs(A) —- distance from A to N=(0,0) 1/2
float 2

1.41421

In this text we prefer to be independent of the operating system and therefore give directly
runnable scripts for EIGENMATH™"¢_ Then the situation for you looks like this:

BA=(1,1)
B=(4,1)
c=(0,3)

abs (A-C)
float

sqrt( dot(A-c,A-C) )

abs(A)
float

Run

But we will do even better. Below you see an hyperlink, which leads you directly to
EIGENMATH™" with the complete code lines included:
EIGENMATH

A=(1,1)
B=(4,1)
€=(0,3)

8For the handling of the inputs and outputs in the EIGENMATH windows please consult the EIGENMATH
manual.
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abs (A-C)
float

sqrt( dot(A-C,A-C) )

abs (A)
float

Try it: > Click here to run the script above.

LEXICON: Math | EIGENMATH
1: the norm or length of matrix A | Al or |A] | abs(A)

2: the squareroot of real number r \/F sqrt(r)

3: the scalarproduct of vectors A and B Ae B | dot(A,B)

4: the distance from P to Q dist(P, Q) | abs(P-Q)

11.2 E1GENMATH Lab: shooting at the approximate solution

Consider the following unsolvable system of linear equations A x X = B in matrix form,
which we formulate inside the EIGENMATH input region (left Window)ﬂ

AxX =18
2v +y 1
—r+2y| = |2
T+ 2y 3

We try to get closer to the best fit solution by 'trying to shoot’ at target B with the help
of EIGENMATH. Here are three shot attempts X1, X2, Xo:
EIGENMATH

-- searching for best fits

A=((2,1),(-1,2),(1,2))

A

X=(x,y)

B=(1,2,3)

B

dot (A,X) -- left side of LS is Ax*X
X1=(1,2)

Bi=dot (A,X1) -— B1=AxX=(4,3,5)

B1

9If you are on the iMac, you can also mark-copy—paste these input commands into the EIGENMATH
command window on LHS of the screen.


https://lindnerdrwg.github.io/laip82.html
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X2=(1,0)

B2=dot (A,X2) -- B2=AxX=(2,-1,1)

B2

X0=(0.1,1.2) -- Xo is a good fit

Bo=dot (A,Xo) -- Bo=(1.4,2.3,2.5)

Bo
2x + y 4 2 1.4
-x + 2y| By = [3] B, = |-1| B, = |23

EIGENMATH output: dot(A, X) =% * 27 5 ! 25

> Click here to invoke EIGENMATH

We look graphically at the 2-dimensional candidates for best fit solutions Xi of the system
of equations A x X = B and the corresponding 3D approximations (proxima) Bi to B (in
the pictures there is a fourth test point X3 = (0.5, 1) with value B3 = (2, 1.5,2.5) drawn):

Test inputs of the user: Corresponding calculated values:
R '."\-_
y 4+ 5 -—,_—h.:—" - .
4 J S~ ——T
T 1
3
|
21 . N "
x }
T N
ﬂ;;_r::~ e i
| : : Ho— P <" 3
1 1 2 3 4 LIPS < 3
X i
4+ ¥ o X
Protocol of the four 2D bet fit candidate Looking at the corresponding 3D approx-
solutions Xi of the LS A «+ X = B; the imations (proxima) Bi to B. The origin
"Sunday’ shot X, is marked in red. (zero point) N = (0,0,0) of the coordi-

nate system is marked in red, the 'target’
point B in green.

The smaller the distance of Bi to B the better fits Bi to B. So we look for the smallest
value of dist(Bi, B) with the help of EIGENMATH:
EIGENMATH

B=(1,2,3) -- target point e.g. RHS of LS
B1=(4,3,5)


https://lindnerdrwg.github.io/laiB13a.html
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B2=(2,-1,1)
B3=(2, 1.5, 2.5)
Bo=(1.4, 2.3, 2.5)
Bo
dist(P,Q) = abs(P-Q)
dist(B1,B)
dist(B2,B)
dist(B3,B)
d0 = dist(Bo,B)
do
1.4 211'2 71!’2
B 93 211'2 71!’2
1.22474
EIGENMATH output: 2.5 dy = 0.707107
> Click _here to invoke EIGENMATH.
Result: for the moment Bi = Bo is the best fit to B and is currently our proximum.
We have Bo = (1.4,2.3,2.5) =~ (1,2,3) = B.
Try to get closer to B!
11.2.1 Definition: Goodness of Approximation - best fit solution
Xois a best fit solution of A* X = B if and only if
dist(Ax Xo, B) < dist(A* X, B) (11.1)
for all X.
Remark.

In the picture the Bi := A % Xi are
points on the red line, B is the sin-
gle point outside the line. Interpret the
best fit condition via the sketch and lo-
cate the proximum Bo := A x Xo.

P83. Process planning. Develop as many different solution ideas as possible to solve
the following problem: What is the distance between the point R(3,1) and the straight

line with the equation ¢: y = 2x7

Carry out a plan and check the result on the picture.



https://lindnerdrwg.github.io/laiB13b.html
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11.3 Point-line-distance via orthogonal projection

We now solve the point-line distance problem of P83 with the help of an orthogonal pro-
jection. We have to answer the question: What is the distance between the point R(3;1)
and the straight line with the equation y = 2x?

We formulate an idea for a solution in four different ways ...

1. ... as a picture to get a visual understanding;:

¥ aT

pu s
Here we get the impression that the solution should be ca. 2 cm.

2. ... in words for a conceptual understanding;:

the distance from point R to ¢ is the length of the perpendicular from R to ¢, so
dist(R, ) = |R — F| = "length of the vector from F' to R’ with F' € { as intersection
point from ¢ and the perpendicular. Since we know R, we have to compute F' and
then we can calculate |R — F| according to formula (11.2).

3. ... as an equation for arithmetical calculation:

Point F results from 2 conditions that we formulate as equations:
(WR-FLP-Q eg. (R—F)e(P—Q)=0
(2) Fet eg F=P+t(P—Q)withteR and P,Q €/

Instead of F', we now have to calculate the unkown number ¢ from the characterizing
equation (1), if we eliminate the unknown point F' in (1) using (2).

4. ... using EIGENMATH as an computational assiatant to help during the calculation:
EIGENMATH
R=(3,1)
P=(0,0)
Q=(2,4) -- because line L = L(P,Q)

L=P+t* (P-Q)
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L

dot (R-L,P-Q) -- we conclude t = -1/2
F=eval(L, t, -1/2)

F

EIGENMATH output: L= [73], —20t—10, F=[}].

> Click here to run the script.

Result: point F(1,2) is the proximum, which is taken for the best fit value t = 1/2.
The distance from R to ¢ is therefore |R-F| =abs(R-F) = /5 ~ 2.24.

o Recapitulate the solution procedure in a few sentences in your own words.
Could the solution process be automated? Make a test of the result on the sketch.
Why is F' the sought-after proximum from 11.1.27 What is the cause of optimality?

5. ... using EIGENMATH for fully automatic solution:

Surplus: We are not fully confident. We want to have an automatic calculation of
F! Luckily from (1) and (2) it follows: (R — P) —t(P —Q)) e (P — Q) = 0, so we
can solve for ¢t and calculate the base point F' as follows

(X —P)e(P-Q)

def
F=PY e r—q

* (P —Q) (11.2)

We use eq. (11.2) to immediately define an automatic EIGENMATH procedure proj(X, P, Q)

and try it out with our example.

Run Stop Clear Draw Simplify Float Derivative Integral
proj(X,P,Q) = P + dot(X-P, P-Q)/dot(P-0Q, P-Q) * (P-Q)

R=(3,1)

P=(0,0)
0=(2,4) -- g=9(F,Q) {
F=proj(R,P,Q) F =
F 2

> Click here to invoke EIGENMATH to try it/

Remark. Instead of the so called projection formula, which we used in the EIGENMATH
session in 5. above

proj(X,P,Q) = P + dot(X-P, P-Q)/dot(P-Q, P-Q) * (P-Q)
one can equally use the following formula for defining the EIGENMATH procedure proj:

proj (X,P,Q) = P + dot(X-P, P-Q)/abs(P-Q)"2 * (P-Q)


https://lindnerdrwg.github.io/laiB15.html
https://georgeweigt.github.io/eigenmath-demo.html
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11.4 Solution of an overdetermined Linear System

We now treat Ex.11.1.1.c and ’solve’ the unsolvable linear system {2z = 3,4z = 1}.

A

Figure 1: an overdetermined system of 2 linear equations for 1 unkown x.

This LS is overdetermined, there are 2 contradicting equations for 1 unknown =z, therefore
the solution set is empty {}. We reformulate the problem with matrices and start an
attempt for an matrix-algebraic solution. We choose A = (;), B = (i’) and X = (x), so
the LS is equivalent representable as matrix equation. We have:

20 =3 and 4x = 1

(@)@ = ()
() = 0)

Matrix A = (i) is rectangular, especially not square, so we can’t invert A, that is A~! does
not exist i.e.

11.4.1 Core idea

AxX =B # X=A'xB

So: no chance for a ’standart’ solution. We nevertheless try to ‘squareshape’ A, e.g. to
transform A in an n X n — matrix shape. We find the same numbers of A in a 'mirrored
arrangement’ of A, in their so-called transposed matrix A and we can always form the
product A" x A (’squareshape’ing’ A) . The new smaller ’squareshaped’ linear system for
the unknowns = and y is formed through multiplying the original matrix equation by A?
on both sides to get the so-called normal equation

A'x Ax X = A"+ B (11.3)
which we can try to solve by inversion, because in our case (Afx A)~! = (1/20)

(20) * () = (10)

10Watch the difference between Math and EIGENMATH: In our case the matrix Afx A is the 1 x 1-matrix
(20) with the number 20 as single entry. Here x denotes the matrix multiplication of Linear Algebra
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thereford
() = (1/20) % (10)

(z) = (1/2)

In summa we have computed X = (z) via isolating X at the left side of equation (11.3):
X=(A%A)1xA"%xB (11.4)

We now follow this recipe using EIGENMATH!

Run Stop Clear Draw Simplify Float Derivative Integral
A=(2,4)
At=A -- because we have vectors ;)
X=(x) -- (1) -
X
B=(3,1)

-- trying transpose(A) gives ERROR !!

-— WATCH: transpose(A) does NOT work, because

-- Eigenmath interprets A as a vector (no matrix)!
-- But dot works on vectors _and matrices:

dot (A,X)
dot (At,R) -- ok as scalarproduct of vectors

-- where At is same as A

-— inv(A) does not work, because the result of At*A is X

-- a number, so inv = (..)"-1 of numbers! - X
-- So Xo=dot(inv(dot(A,A)),A,B) has to be written as 2x
- (At*A)"(-1)* At* B
Xo = dot( dot(At,A)"(-1), At, B) 4x
Xo 20
float 1
X, = 3
Bo = dot(A,Xo) 2
Bo 0.5
mpill(h) = dot( dot(At,A)"(-1), At, B) -— (2) - 1
B, =
2

Try it: > Click here to run the script.

Remark. Here are some comments about the last session. In (1) we set X=(x), but looking
at the output we see that EIGENMATH has interpreted the input as a number - giving x
back without the matrix (..) bracket! Therefore we can not build the transpose matrix
A! and dot (At,A) is given back as a number - being the result of a scalar product of two
vectors. Consequently we have to ’invert’ the number dot (At,A) which is to be done by
means of the reciproce, noted 1/.. = ...~!. This is shown in input (2).

giving matrices as result. In contrast, if A and B are vectors, then their multiplication is build via the
dot product e of Linear Algebra giving a real number as result. WARNING: in EIGENMATH there is only
one product for vectors and matrices alike named dot (.)! So using EIGENMATH one has to be penible in
respect with the result of the multiplication. This is to be observed in the following session.

1A - B means ’A is true, and therefore B is true’.


https://lindnerdrwg.github.io/laiB4.html
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Result. The unsolvable linear system has a best fit solution X, = 1/2 with the proximum
B, = dot(A, X,) = (1,2). Looking at figure p, it seems that B, is the base point of the
orthogonal projection of B onto the line L) 4.

e Verify this hypothesis using e.g. formula (11.4).

11.4.2 Verification

Finishing our exploration we start a new lab and use formula (11.4) resp. (2) from the
last EIGENMATH session to verify our hypothesis about the geometric interpretation of
mpill(.) as an orthogonal projection. Therefore we give mpill a new name and define:

oProj(B, A) et (A'x AP« A'x B (11.5)
or equivalent in EIGENMATH notation

oProj(B,A) = dot(A, dot(dot(At, A)~(-1), At, B))

Then we collect 5 points from the z-axis in a list (matrix) named Points and calculate
their values by oProj, collecting the coordinates of the image points in the list (matrix)

F

Run Stop Clear Draw Simplify Float Derivative Integral
A=(2,4)
At=A
B=(3,1)
oProj(B,A) = dot(A, dot( dot(At,A)*(-1), At, B))
binding(oProj) =-- how the formula is saved
F = oProj(B,A) -- orthogonal projection of B onto
F -- g(N,A) with N=(0,0) the origin
Points=((1,0),(2,0),(3,0),(4,0),(0,2))
P3 = Points[3 -- third point 1
o oints[3] ird poin dUtA,dUt ,Ar,B
dot(4,.4)
-- for(i,1,5, print(float( oProj(Peints[i],Aa) ))) 1
Fs = zero(2,5) Fo= 2
for(n,1,5, 3
do( P, =

Fs[1l,n] = float( oProj(Points[n],A) [1]), 3 0

Fs[2,n] = float( oProj(Points[n],A) [2])

)) 02 04 06 08 08

F =

Fs 04 08 12 16 1.6

Try it: > Click here to run the script.

121f one is only interested in viewing the coordinates of image points one can use the easier command
for(i,1,5, print(float( oProj(Points[i],A) )))
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If we plot the columns of Fs as points in the plane, we get the following graphic:

y A

]

=

Figure 2: the algebraic function mpill acts geometrically as an orthogonal
projection oProj.

Exercise. Use >CALCPLOT3D to reproduce Fig.2 as a quality plot.

This exploration gives strong evidence on our hypothesis about the geometric background
of the algebraic construction mpilﬂ as an orthogonal projection.

11.5 EIGENMATH Lab: Proximum of a bundle of straight lines

We now test the new concepts through calculating a best fit solution X, and the associated
proximum B, on Example 11.1.1.f, the 'bundle of lines’. The starting point is here the
unsolvable overdetermined system of 3 equations for the 2 unknowns x and y:

r+y =
r—y = 3
—r++2y = -2

We reformulate the problem with matrices to start an attempt for a matrix-algebraic
solution:

Ax X =B
1 1 1

i
1 1| =% { ] =13
-1 2| W=
13The first 1 in the notation mpi1l reminds at the condition that the crucial matrix At*A must be

invertible. The second 1 reminds that this is a special version of the construction mpi. ., which is only
valid for 1-dimensional matrices i.e. vectors.
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Again, the main obstacle is: A is rectangular, i.e. not '[J°, ergo we can’t invert A, i.e. there
does not exist the matrix inverse of A. Therefore once again no chance for a ’standard’
solution. Nevertheless we are able to bulid the transposed matrix A! and we can form the
crucial product A x A. The new smaller quadratic linear system for the unknowns x and
y is gained again by considering the normal equation:

A'x Ax X = A" B (11.6)
or in this concrete example
3r—2y | |6
—2x +6y| |6
3r —2y = 6
—2x+6y = —6

Because A' x A = [f’g ?f]; At x B = (f6) and det([f’2 }2]) = 22 # 0, we can solve this
reduced linear system by inversion to get

X=(A%A)'xA"xB (11.7)
We carry out this long calculation using formula (11.5) with EIGENMATH!
EIGENMATH
A= ((1,1),01,-1),(-1,2))
X = (x,y)
B = (1,3,-2)

At = transpose(4)
dot (A, X)
dot (At, A)

Xo = dot( inv( dot(At,A)), At ,B)

Xo

float

mpil(A) = dot( inv( dot( transpose(A),A) ), transpose(A) )

dot( mpil(A), B)

> Click here to run the script.

x +y 12 2
7 7
x — y 3 2] X, = 1.71429
_3 _3
EIGENMATH output: X + 2yl |-2 6 7] |-0.428571 7


https://lindnerdrwg.github.io/laiB5.html

11 FIRST STEPS TOWARDS THE MOORE-PENROSE-INVERSE 19

Result: for the best fit X, = (12/7,—3/7) we have the proximum
B,=AxX,=(9/7,15/7,—18/7) ~ (1,3,-2) = B

But the result X, cannot easily be interpreted in the figure from 11.1.1.f. Can we find a
geometric interpretation for the solution X, analogous to the one in section 11.27 Inves-
tigate whether there is some kind of projection acting in the background, e.g. whether
“anything is anyhow projected to somewhere’.

11.5.1 Motivation

For an e.g. overdetermined unsolvable linear system A * X = B we had constructed the
compensation solution

X,= (A"« A% A« B

or in EIGENMATH notation
(+) Xo = dot( inv( dot(transpose(A),A)), transpose(A), B)

If we mentally compress the subterm (A’ * A)~! % A’ into a new symbol A", the compact
solution term is now X, = A" * B and we consider

AT (A% A) kA

as the replacement for the missing inverse A~ of A. This leads us to the following definition
of a new mathematical concept: the MOORE-PENROSE- Pseudoinverse, in short: the mpi.

A*X=B with A not invertible
e.g. det(A)=0o0r A#0O
°|

AtxAxX=A'*B make A quadratic by left-multiplication with

A? ... with gives this normal equation
|

t -1 t _ t -1 t
(A *A) * (A *A)*K—(A *A) *A'+B if A® *+ A invertible, invert it and shorten
X= ( At* A) -1, At* B the normal equation to get the solution X free

mpii(A)
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11.6 The MOORE-PENROSE-Pseudoinverse

Our algebraic key idea in the previous motivation 11.5.1 was: linear equations Ax X = B
with a rectangular system matrix A are converted into a new equation system with a square
system matrix A’ * A by multiplication with the transpose A’ and then hopefully solved.
We received at the above two-step solution method. Here is our encoding macro:

Definition.
mpil(A) & (4f « A)~1 « A (11.8)

Speak it as 'the MOORE—PENROSE—pseudoinverse of A’.

Remark.

1. We abbreviate the frequently occurring term (A! x A)~! x A® with the notation
mpil(A). Occasionally we have to be able to unpack (’decode’) this notation into
the matrix product on the right-hand side of the formula (11.8).

2. The 1’ in the identifier mpi1(A) should remind you of the 1% assumed fact: the
invertibility of A' x A as a necessary condition to be able to form mpi1(A) at all.

3. We define (11.8) in EIGENMATH as an ezecutable formula:
mpil (A) = dot(inv(dot(transpose(A),A)),transpose(A))

Example.

mpil(A) = dot(inv(dot(transpose(A),A)), transpose(A))

A=((1,1),(1,-1),(-1,2))
A

mA = mpil(A)

mA

B=((1,2),(-1,1))
B

mB = mpil(B)

mB

> Click here to run the script.

EIGENMATH output:

11 4 2 _1 4 2 _1
77 7 77 7
5 _1 2| B = 2 1 2
-1 2 14 14 7 -1 1 4 14 7
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o Be warned: mpil is not always successful. Try e.g. the matrix No= (;32) Observe
the answer of EIGENMATH. Therefore our journey into the realm of the world of pseudoin-
verses is not over with the construction of mpil ...

11.7 Projection onto the column space of a vector

a. Redo exercise 11.4.2 by splitting the term for oProj(B,A) in two phases i.e. by defining

mpill1(A) = do( At=A, -- only if A is a VECTOR (!)
dot( dot(At,A)~(-1), At) ) -- and 1/dot(At,A) < > 0
proj11(B,A) = 7 —-- orthogonal projection of B onto A

Use the piontlist  Points=((3,1),(1,3),(4,0),(0,4),(3,3),(1,1)) as test list.
e How should proj11 be coded?
e How would the EIGENMATH-definition of the function mpi11 change, if A is a matrix?

e Calculate the image points of all points in the pointlist under the action of proji1
and visualizise all data (pointlist, image list, vector A) in a figure.

b. Look at the following solution screenshot not before you had a try to solve it for yourself
or you have got a good visual representation in your brain.

EIGENMATH user input: EIGENMATH output:
mpill(A) = do( At=A, -- special case if A is wvector
dot( dot(At,A)"(-1), At) ) 1
-- and number 1/dot(At,A) <> 0 10
m =
bestFit(B,A)= dot(mpill(A),B) -- the Xo P 1
5

projll(B,A) = A * dot(mpill(a),B)
-- orthogonal projection of B onto X =
-- column space of A aka the proximum Bo

[~]
b | =

A=(2,4) B =

B=(3,1)

mp=mpill(A)

mp

Xo=bestFit (B,A)

Xo

Bo=projll(B,A)

Bo —
X, =

Points=((3,1),(1,3),(4,0),(0,4),(3,3),(1,1))
Points[1] X, =
Xo=bestFit(B,A)

—_— el
-

_
Sla M-
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Xo

Xl=bestFit (Points[2],A)

X1

Xs = zero(6) -- all best fit solutions Xo's

for(n,1,6, Xs[n] = bestFit(Points[n],A) )

Xs

Bs=zero(2,6) -- all proxima Bo's

for(n,1,6,

do(

Bs[1l,n] = float( projll(Points[n],R) [1]),
Bs[2,n] = float( projll(Points[n],R) [2])
))

Bs

> Click here to run the script.

[10]
(10 14 08 16 18 06

20 28 16 32 36 12

We see, that the MOORE-PENROSE- Pseudoinverse mpill for a vector A

e allows to calculate the best fit solution X, given A and B via  dot(mpil1(A),B)

e allows to calculate the corresponding proximum via A * dot(mpill(A),B)

e is a crucial part of the solution of this approximation problem.

The figure shows the orthogonal projections of the

Points[i] onto the column space (the red line) y
of the matrix A. Argue, why this fact explains

their optimality resp. their best fitting.

Y

a4+

Exercise. Show, by inspecting the coding in the last

EIGENMATH session, that one can

alternatively write down the definition for proj11 without citing the factor mpill in the

following way:

projlia(B,A) = do( At=A, -- only, if A is VECTOR and 1/dot(At,A) <> O
A * dot( dot(At,A)"~(-1), At, B))
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11.8 Projection onto the column space of a matrix

The foregoing section give a good hint on how to generalize the definitions to matrices.

Definition.
proj1(B,A) L A (A'x A) ' x A"« B = Axmpil(A)* B (11.9)

Read it as the projection of B onto (the column space of ) of A.

Remark.
1. We define (11.9) in EIGENMATH as an ezecutable formula as follows:

proj1(B,A) = do( At=transpose(A), --if A is matrix with det(A)< >0
dot (A, inv(dot(At,A)), At, B))

2. Remember that the term (A’ A)~! x A® is identified as the mpil(A).

3. The '1" in the identifier proj1(A) should remind you at the assumed invertibility of
A! x A as a necessary condition to be able to build projl at all.

11.8.1 Summary of concepts and associated EIGENMATH expressions

LEXICON: Math | EIGENMATH

5: the linear equation in matrix form Ax X =B | dot(A,X), B

6: the MOORE-PENROSE-Inverse mpi(A) = (A x A)~t x A | mpi(A)

7: the orthogonal projection of B onto A Axmpi(A) * B | proj(B,A)

8: the best fit solution X, of AX = B X, =mpi(A) % B | Xo = dot(mpi(A),B)
9: the proximum Bo to B dist(P, Q) | aoteh, inviaoscas,n) 46,5

11.8.2 EIGENMATH toolbox mpiBox1.txt

The EIGENMATH commands of the lexicon before are collected in the following file mpi-
Boz1.tzt. The definition of the EIGENMATH functions are for the moment as near to the
mathematical syntax as possible. Therefore a distinction is made between the input A
being a vector or a matrix. This toolbox is invoked online in this distribution.

##########  mpiBoxl, preliminary version for this chapter 11

mpill1(A) = do( At=A, -- only if A is a VECTOR (!)
dot( dot(At,A)~(-1), At) ) -- and 1/dot(At,A) < > 0
proj11(B,A) = A * dot( mpil1(A), B)) -- only if A is a VECTOR (!)

bestFit(B,A) = proji11(B,A) -- alias dot(mpil1(A),B)
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mpil (A)

dot (inv(dot (transpose(A) ,A)) ,transpose(A)) -- A matrix

proj1(B,A) = dot(A, mpil(A), B)
Xfit1(B,A) = dot(mpil(A),B) -- the best fit solution Xo
Yfit1(B,A) = proji1(B,A) -- alias dot(A, mpil(A), B) = Bo proximum

Remark. For the beginner it is important to distinguish between vector vs. matrix as
input for the mpz, which is reflected through the index appendix ’..11’ vs. ’..1’. But in the
long run one would like to leave this distinction to EIGENMATH automatically. We use the
test(.) command to realize it and can forget about the index "..11" vs. "..1".:

mpi(A) = test( rank(A)=1, A * 1/dot(A,A) , -- if A vector & dot(A,A)<>0
rank(A)>1, do(At=transpose(A), dot(inv(dot(At,A)),At)) )

proj(B,A) = test( rank(A)=1, dot(A,B,A) / dot(A,A) ,

rank(A)>1, dot(A, mpi(A), B) )
Xfit(B,A) = dot(mpi(A),B) -- the best fit solution Xo
Yfit(B,A) = dot(A, mpi(A), B) -- the proximum Bo, alias proj(B,A)

11.9 Projection onto a plane

We give this exercise as an example with solution.

a. Project the point (1,2,3) onto the plane with the equation x —y — 2z = 0.
b. Calculate the projection vector and his length.

c. What is the column space Col(A)?

Solution.
The projection plane E : x —y — 2z = 0 is the set of all points (z,y, z) with

(z,y,2) + v=y+22
y(1,1,0) +2(2,0,1) : y,ze R

Therefore the plane E is spanned by the vectors (1,1,0) and (2,0,1). These two (basis)
vectors of E form the columns (the 'column space’) of a matrix A onto which we project
B = (1;2;3). Let’s have EIGENMATH do the work for us.

mpil(A) = do(At=transpose(A),

dot (inv(dot (At,A)) ,At) )
Xfit1(B,A) = dot(mpil(A),B) -- =Xo, the the best fit
Yfit1(B,A) = dot(A, mpil(A), B) -- = Bo, the proximum
A= ((1,2),01,0,0,1))

B

(1,2,3)
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mp = mpil(A)

mp

Xo = Xfit1(B,A)

Xo

Bo = Yfit1(B,A) -- Yfit is proj(B,A)

Bo -— is the solution to a.
BBo = B-Bo -— is the solution to b.
BBo

length = abs(BBo) -- is part 2 of solution to b.
length

float

EIGENMATH output:

151 5] [ 4, 7

5 ¢ 3 6 ength — 172 112
m, = X, = | | & ] ma | 2% 3

1 1 2

3 3 3 3 2 11 2.85774

> Click here to run the script.

We verify our solution by means of a visualization of the whole scene.
Check the results for plausibility using the figure.

Figure 3: Representation of the projection of B onto the column space
Col(A) = E. E is shown in parametric form by the blue dashed parallelo-
gram. The edge vectors starting from the zero point are the basis vectors of
E (alias the columns of A), i.e. of the parallelogram and ’span’ the whole

E = Col(A).

Exercise. Reproduce Figure.3 with >CALCPLOT3D!
Rotate the figure to look around the whole scene.

25
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11.10 Interpretation of the ’simplest unsolvable LS in the world’

The

following picture shows a geometric interpretation of Ex.11.1.1.a as an orthogonal

projection of B = (0, 1) onto the column space of the A = (1,1):

Y071 -
s
s
s
15T rd
p; s ... leads to the best fit (proximum)
104 §Ld B, =(0.5,0.5) of Ax X = B in R”.
’
/
05T
00 : | : -
0.0 0.5 1.0 1.5 2.0
X The X, = 0.5 best fit solution
I (from normal equation) in IR ...
: | * ; ' ; .
05 0 05 1 15 2 25
a.  Explain: The proximum B, = (1, 1) of the unsolvable linear system [["="] is the
vertical projection of B = (0,1) onto the straight line through the origin and A =
(1,1). The best fit solution X, = 1/2 is the stretching factor to reach this projection
base point.
b. Using the figure, interpret the intuitive solution x = % from Ex.11.1.1.a geometrically.
c.  Calculate the best approximation error vector e “p_ Proj(B, A) and the amount

of this error. Where do you see the error vector e in the image?
Why do we name e or |e| as 'mistake’?
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11.11 Problems

You may use the functions of the toolbox mpiBox1.txt.

P84. Small relaxation exercises for the projection formula.
Calculate the projection of

a. R = (1,2) onto the straight line through the origin through U = (4, 1).
b. R = (1,2) onto the straight line through the origin through U = (-3, 1).
c. X =(1,2) onto the straight line through P = (0,5) and @ = (5,0).

Make a sketch using CALCPLOT3D, see [20].
First estimate the result by eye, then with the coordinate system.

P85. Projection on straight line through origin.

To what extent does Ex.11.1.1.b and Ex.11.1.1.c represent the same problem and to what
extent are 11.3 and 11.4 5 two different solutions of the same problem?

Compare the two solution methods for solving this distance problem.

Do you have an idea for another different solution method?

P86. Distance of a point from a plane.

The distance of a point R = (R1, R2, R3) from the plane F : X = P + rU + sV is the
...... of the vector F' — R, where F'is the .......

The point F' can be calculated from three conditions:

()W)R-F LU that is (R— F)eU =0

2)R—F LV that is (R— F)eV =0

3) FeFE that is F' = ... with r, s € R suitable.

a. Make a sketch of the situation.

b. Calculate the distance between point R and plane E.

c. Specify for R = (3,1,—2) and E : X = (2,0,0) +r(1,1,0) + s(2,0,1).

d. Do it for a general R and

e. derive an EIGENMATH formula for the distance dist(R, E) = |R — F| from R to E.

P87. Compromise solution for parallel straight lines.
Solve Ex.11.1.1.d with paper and pencil without EIGENMATH.
Interpret the solution and compare it to the ’intuitive guess’.

P88. Best fit solution for the simplest unsolvable LS in the world.
Solve Ex.1.1.1.a with paper and pencil. Alternatively, solve with EIGENMATH.
Interpret the solution and compare it to your intuition.
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P89. Best fit solution for weight gain.
Solve Ex.11.1.1.e with the help of EIGENMATH. Interpret the result.
Compare it to your intuitive guess.

P90. Projection on straight line through origin. Verify using EIGENMATH, that
the orthogonal projection onto the straight line through the origin with equation y = mx
has the matrix

1 m
2 2

m+l m™+]
m m-
mz—] m2+1

P91. Thinking big: solutions-in-one-strike. Solve problems P82, 11.2, 11.3 and
11.4 using the concepts mpi and proj in 'a-one-liner’ each.

P92. Distance between two skew straight lines.

Two straight lines g : X = P+ kU and h : X = @Q + mV are called skew (in symbols:
g =< h), if they do not intersect and their direction vectors are not parallel.

Their distance dist(g < h) is then the ... of that vector SE with R € g or S € h, which
is perpendicular both on U and on V.

The points R and S result from the 4 conditions: (fill in the dots Q)
(1) R—S LU  thatis

(2) R—S LV  thatis

B)Reyg thatis R=... withr € R

(4) Seh that is S =... with s € R r, s suitable.

a. Make a sketch of the situation.

b. Explain that R and S and thus dist(g < h) = |R — S| can be calculated from the
following 2 x 2 - LS for (r, s):
T (P+rU—-Q—sV)eU=0
I (P+rU—-Q—sV)eV =0

c. Write this LS in matrix form.

d. Justify that the straight lines
g: X =(1,2,0)+k(1,0,1) and
h:X =(0,2,3)+1(0,1,0)
are skew and calculate their distance.

e. Derive a general EIGENMATH formula to calculate the distance of two skew straight
lines.



11 FIRST STEPS TOWARDS THE MOORE-PENROSE-INVERSE 29

P93. Proof of concept - automatic proposition proving with EIGENMATH.

In the foregoing chapter we tried hard to mimic a mathematical concept in the language
of EIGENMATH as similar as possible. For example, the original definition of orthogonal
projection in 11.4 looks very long and complicated and is hard to remember. So GEORGE
WEIGTE suggested a shorter term (2), which is cooler to memorize.

The following code snippet send by George shows both definitions of this concept:

A = (A1,A2,A3)

B = (B1,B2,B3)

oProj(B,A) = dot(A, dot( dot(A,A)"(-1), A, B)) -- Wolfgang (1)
oProj1(B,A) = dot(A,B,A) / dot(A,A) -- George (2)
T1 = oProj(B,A)

T2 = oProj1(B,A)

T1 - T2. -- (3)

Tl == T2 -- (4)

> Click here to run the script.

a. Argue, which heuristic may George have lead to term (2).

Think about the semantic of (1) and (2) and give pros and cons for both terms.

b. George gave to arguments (3) and (4) for the suspected equivalence of the two different
terms for the defining formula for orthogonal projection of a general vector B onto a general
vector A. Explain.

c. Is definition (2) also valid for matrices (i.e. rank(A) > 1) ?

Mthe author and maintainer of EIGENMATH
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12 Best Fittings

In this chapter we consider applications of the acquired insights and solution techniques
for unsolvable linear systems of equations using a few examples from natural, social and
engineering sciences. Before that, in 12.1 and 12.2 we repeat two familiar geometrical
problems in order to get in tune with the new methods. Subsequently, the single-line
state-of-the-art solution of the so-called regression problem of elementary exploratory data
analysis is demonstrated as a paradigmatic example of the adjusted calculation.

12.1 3" solution of the distance problem

What is the distance between the point R(1,3) and the straight line ¢ with the equation
y=05x+17

Solution. The previous approaches to Ex.11.1.1.b. managed a solution without the use
of matrices. Does a re-interpretation of the problem or an approach with matrices create
new insights?

If we write the equation of the line vectorially in parameter form ¢: X = P 4+ ¢(Q) — P)
with P = (0,1) and @ = (2, 2) living on ¢, the following applies.

The measured distance |R — P — ¢(Q) — P)| should be minimal. Since there is no t such
that R — P —t(Q — P)= 0 (that would be ’at most minimal’), we look for a compensation
solution for the unknown ¢ with R — P — t(Q — P)~ 0 that is

R—P =~ t(Q—P)
(1) = ()

This over-determined linear equation in matrixform (f)t R (;) for the unkown ¢ does not
have a solution.

a. semi-automatic solution with mpi. First we demonstate a semi-automatic calcu-
lation of the best fit in form of triples (EIGENMATH command, math form, [result), so you
can follow the reasoning by hand, mind and EIGENMATH. We try to solve for the unknown
t using multiplications with matrices::

proj(B,A)-B
abs( proj(B,A)-B )

(Atx A)"'x A'« B— B
|(A'x A)~! x A x B — B|

|
=2
~
ot
~—
~—

EIGENMATH: | Math: [Gives:

do( A=(2,1), B=1,2), X=()) | A=(}),B=(;),X=(2) |

mpi (A) | (A% A)7tx A [(%%)

mpi (A) *B | (A'xA)"'xA'xB [(3)

calculate the proximum Yo:

A#mpi (A) *B | Ax (A AT A B [(12)

proj(B,A) | Ax(A'x A)'x A'x B [(iﬁ)
‘ [ 3/5
| [

Q

—
o
B
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b. full-automatic solution with mp:.
Second we calculate the results using the function from our mpiBox.

Run Stop Clear Draw
- 2.1 2
5
A=(2,1) m =
B=(1,2) P4 1
5

mpA=mpi(A) -- pseudoinverse of A 4
mpA = =
p )(:J .
Xo=Xfit(B,A) =-- Xo=A"+*B i.e. dot(mpi(A),B) g
Xo =

5

s . . . B =

Bo=Yfit(B,A) -- proximum i.e. proj(B,A) o 4
Bo -

5
err = abs(proj(B,A)-B) -- Yfit = proj(B,A)-B 3
err -- approximation error €. = 12
float 5

1.34164

> Click to run the script. We interpret the results by looking at the graphic scene:

y aT
aT e
2 L 7 - Y2F -
\ - .
P > -
- -~ -
-~ -
17 - -
e 1T -
l 0~ } I } J
1 ] 1 2 3 e
0 | 4 ' t + I ' Hi—
» 0 1 2 3 4
A+ X
Fig.a: the projection of B onto the 1- Fig.b: the projection of B onto the 1-
dimensional column space of A. Note: the dimensional column space (straight line
column space of ¢ is the same, because ¢ through origin) of A.

is parallel to the column space of A.

P94. 3D distance as fitting problem.
Calculate the distance of point R(6,—3,12) to the plane £ : X = (7,2,5) +r(1,3,1) +
s(—2,1,1) similar to the example above. Result :
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12.2 Distance between skew straight lines

Calculate the distance between the skewed straight lines g : X = (1, —1.0) 4 r(4.6, —1) and
h:X =(-10,—1,—1) + s(—4, —5.2) by means of a best fit calculation.

Solution.
The solution takes place along the strategy from laboratory 12.1 in three steps.
Step 1: Formulate the distance problem as a minimal problem:
|((1,-1.0) +r(4.6,—1)) — ((—10, -1, —1) 4+ s(—4, —5.2))| is to be minimized!
Step 2: Reformulate the minimal problem as matrix equation A * X = B.
Step 3: Solve the system AX = B using mpi.

) :lQQ\\ﬁ\k |

2

|:| —

z 4

-2

ot} —
- .__,.-" — ————— —

6 /10
_.-E'.‘__ —— S i
-20 10 0 10 20

Step 1 ok. Done.
Step 2 We write the formula of step 1 as matrix equation.

4 4 f ~11 0 4 4 ; 11

6 5 -{ }— 0 |=[0 6 5 -[ }z 0

IR N AR B I B Y 1 2B
1.€.

Step 3 Solve with EIGENMATH mpiBox1:

mpil(A) = do(At=transpose(d),
dot (inv(dot (At,A)) ,At) )
Xfit1(B,A) = dot(mpil(A),B) --Xo the best fit

A=((4,4),(6,5),(-1,-2))

A

B=(11,0,1)

mpA=mpil (A) —-— pseudo inverse of A
mpA

Xo=Xfit1(B,A)

Xo
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EIGENMATH output:

4 01
27 27 27

m _—

1A

g 0 23 s
81 81 81
-1

X _—

We now calculate those points G on g and H on h where the minimal distance take place.
We then check their distance: it should be the same value as the best fit!

g(r)=(1,-1,0)+r*(4,6,-1) -- first line
g(r)

G=g(1)

G

h(s)=(-10,-1,-1)+s*(-4,-5,2) -- second line
h(s)

H=h(-2)

H

abs (G-H)

EIGENMATH output:

4r + 1] 45 - 10
6r — 1 55 — 1
-r 2s = 1
5 -2
G = |5 H =9
-1 -5]  and abs(G — H) =9

> Click here to run the script.

o If you are not interested in the points G and H: how could you determine the distance
of g and h with only one EIGENMATH command?
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12.3 Regression line as best fit problem.

We now solve problem Ex.11.1.1e - the weight gain - using matrices.

12.3.1 Solving a scaled-down problem

However, we will first look at a scaled-down prototype version of the problem that will
allow us to better oversee the details. The new smaller one is:

Problem: Find the straight line that runs closest to the three points (0;3), (1;0) and (2;0).
We proceed according to our three-step solution method:

1. Set the up the problem as a minimal problem.

2. Reformulate the minimal problem in matrix form A x X = B.

3. Solve this minimal problem in EIGENMATH using mpi—pseudoinverse method.

Step 1~ Ansatz: the straight line you are looking for has the equation y = ma + b.

Point (0;3) liesson y =m*x+b, if m*x0+bx1=3. (1)
Point (1;0) liesson y =m*x +b, if mx1+bx1=0. (2)
Point (2;0) liessony=mx*x+b, if m*2+bx1=0. (3)

This overdetermined 3 x 2 linear system for the unknown pair (m,n) has no solution.

Step 2 Minimal problem in matrix form: the 3 equations (1), (2), (3) are put as 3 lines
in 2 matrices, named A for the LHS and B for the RHS, therefore leading to the matrix
equation

A X B

0 1 - 3
11 *[61: 0
2 1 0

Step 3  Each A x X is a linear combination of the columns of A, i.e. A x X lies in the
plane Col(A) formed by the columns (0,1,2) and (1,1,1) of the matrix, the well known
column space of A. In this plane we look for B, € Col(A), which is the nearest point to
B ¢ Col(A){F] this point is known to be the base point B,, i.e. the orthogonal projection
of B onto the column space of A - and this foot point is produced by the pseudoinverse
mpi, which we have often observed. Therefore:

A=((0,1),(1,1),(2,1))
X=(m,b)

B=(3,0,0)

dot (A,X) —— = AxX

5Remember: the point B i.e. the RHS of linear system A x X = B, is not included in Col(A), because
the system is not solvable!
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mp=mpil (A) -- pseudo inverse of A
mpA

Xo=Xfit1(B,A) -- = mpi(a)*B

Xo

Bo=proj1(B,A) -- Proj of B onto Col(A)
Bo

dist=abs( proj1(B,A) - B)
dist
float

EIGENMATH output:
b L
AX = b+ m mpA = 1 Xa =
b+ 2m 6 3 6
... that’s it: we get the solution X, = ([m = —1.5,b = 2.5).

> Click here to run the script.

12.3.2 Interpretation.

35

2 3
1 digp = NE
1

2] 1.22474

Inspect and complete the following figures Fig.a and Fig.b with regard to the visibility of

the results from 12.3.1.

1. Where does one ’see’ the best fit solution vector (m = —1.5,b = 2.5)?

2. Calculate the error (vector) err.

Where do you ’see’ this error vector in Fig. a, where in Fig. b?

3. Can you see these projections in the figures?

Where can the result or its components be seen in Figure a and where in Figure b?

4. Write the proximum B, = Proj(B, A) as a linear combination of the columns of A.
Do not calculate the result. All necessary data for this representation is already at

hand ..

5. Now use EIGENMATH to calculate 4. ..
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V., 47T
3

M ’.'n

\_\ d 7 \

? ! 4 \

2 ! \

\ \ 1

k!
2 YW = 1 \
\"\H 1- .l I
|
17 d

I 0 h Y | (]
1 o 1 xlz 3 4
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=1
Fig. a: Best fit line through the Fig. b: Projection of B onto the 2-
three data points with localizable dimensional column space (plane) of A.
coordinates of the error vector err. 3D scene rotated by hand control from d.

12.4 QEIGENMATH lab: regression line from classic viewpoint

The following excursus demonstartes the interested reader a classic approach to regression
lines without the concept of the pseudoinverse. Nevertheless we will use EIGENMATH to
do some tidy computations for us. It could therefore marked with an heart <.

12.4.1  the main idea — the ansatz

Again, we want to solve problem Ex.11.1.1.e, but consider only the first 3 values in the

table for simplicity

Woche 3 4 9
kg 4.31| 451 563

German: Woche
English: week

The solution is based on the working hypothesis, that all measuring points X = (z,y) are
(should) lie approximately on a straight line g : y = mx + ¢. This straight line g - that is,
its slope m and its axis intercept c - is to be calculated.

Lexicon:

Step 1: Standard approach as minimal problem (according to K F GAuss):
If a point X = (z,y) lies on g, then y — mz — ¢ = 0,

if X = (z,y) is not on g, then y — maz — ¢ # 0.

We therefore start with the ansatz:

f(m,c) == (yl —mal —c)* + (y1 —mal —c)* + (yl — mal — c¢)? (1)
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and have to find m and ¢ such, that f(m,c) becomes as small as possible.

Step 2: vector formulation of the problem

f(m,c) = (yl —mzl —c)*+ (yl —mal —c)* + (yl — mal — c)?
= (Y—-mX —cE)?® Y =(yl,y2,y3), X = (z1,22,23), E = (1,1,1)
= |Y —mX — cF|
= square of the distance from Y to X €¢ H
in the auxiliary plane H : Z = O + mX 4 cE

12.4.2 OQQC mathematical derivation of the classic regression formula.

We conclude from step 2:

Y —mX — cE> minimal < (Y —mX —cE) L H  therefore:
(1) (Y-mX-cE) eX=0 |o E?
(2) (Y-mX-cE) eE=0 |o (-E*X)
| (1)+(2) gives
(3) (XoY)*E2-(EeX).(EeY) +m ((EeX)%-X2E?)=0
(XeY) - E*—(FeX)-(FeY)
(EeX)?2—(XeFE)
m = 3 Z?:l Lilfi — E?:l Li Z?:l Yi
3(2?:1 x7) — (Z?:l ;)
def

_ ef 1 3
% 2?21 TilYy — 1Y = 321 Ti
—3 - where ef 13
3(21‘:1 Ti) — T Yy =3 doim1 Vi

& m=

&I

(m)

U

Therefore we have a formula (m) for m.
Now we get the formula for the unknown ¢ from (2). We have

3 3
Y—-—mX—cE)e E=0 < Zyi—m-in—c-?):O
i=1 i=1

&S y—m-z—c=0 (¢)

Therefore we get the condition § — mx — ¢ = 0 for a point (7,7) to be on the regression
line g. Using formular (¢) in the form § — mZ = ¢ we have the unknown c. So we have g.
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12.4.3 Example.

o Calculate the equation of the best-fit line through the above 3 pairs of the above for-
mulas (m) and (¢) with the calculator to get a feeling for the solution process.

o What changes are necessary in the derivation/calculation of the regression line g, if you
want to have the best fit for all original 7 pairs of values?

We now solve the original 'big data’ 11.1.1e problem "weight gain’ using EIGENMATH.

Woche 3 4 9 13 18 22 27
kg| 4.31| 451| 563 6.15| 7.26| 8.08| 8.84

German: Woche
English: week

Lexicon:

The solution consists in the definition of suitable EIGENMATH auxiliary functions resp.
steps, which are driven from the theoretical derivation of 12.4.2.

X = (3,4,9,13,18,22,27)

Y =(4.31,4.51,5.63,6.15,7.26,8.08,8.84)
A= (X,)

A

-- construct vector of 1’s: onel=(1,1,1,1,1,1,1)
onel = zero(dim(X))

for(i,1,dim(X), onel[i]=1)

onel

-- compile formula (*m) in 2 phases
ml = dot(X,Y)*onel

ml
m2
m2

dot (X,Y)*dot (onel,onel)

m = ( dot(X,Y)*dot(onel,onel) - dot(onel,X)*dot(onel,Y) ) /
( dot(X,X)*dot(onel,onel) - dot(onel,X)*dot(onel,X) )

mean(X) = sum(i,1,dim(X), X[i])/dim(X)
mX = mean(X)
mX

mean(Y) - m * mean(X)

m*x — C

<
I
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EIGENMATH output:

39

708.71 my = 4960.97
70871 m = 0.190914
708.71
m, = | 70871 ?
3 4 9 13 18 22 27 708.71
A= 708.71 ¢ = 3.77889
431 451 563 615 726 8.08 884 ot |y 0190914 - 377889

> Click here to run the script.

Here is a figure that shows the data points and the calculated regression line g.

=
=
I
T

0 T R R -
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
X

Remark. Here are some comments about the EIGENMATH code lines.

Vectors X and Y load the data points of the measurements. We combine the two separate
data records into a matrix A. To implement the formula (m) from 12.4.2, we proceed step-
by-step by first writing and testing a vector of length A consisting of ones. We code formula
(m) for the slope m of the straight line via two simpler, separately testable intermediate
steps m1 and m2. To calculate the axis intercept ¢ with formula (¢), we need a mean value
function. We build it with the help of the bulid—in sum() function of EIGENMATH .

Exercise. Code enhancement.

a. Shorten the definition of m in the EIGENMATH session by using m1 and m?2.

b. Create a EIGENMATH function that automatically calculates the regression line g for
two data sets X and Y of equal length.
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P95. The normal equation (NS) and the regression line.

a. Set up the 'normal equation system’ (NS) A' « A U = A’ x B for the regression line
g:y=mx+cfor 12.4.1.

Hint: According to 12.4.3 the normal equation system (NS) for the regression line is

- 1z Y1
_J]l T2 ... Tp m 1 T2 ... Tp
1 =z, Un

- ot Bl (E
doic1 T D T Yo TiYi

b. Use a. to derive the following classic explicit solution formula for calculating a regression
line, which can be found in many statistical textbooks{'

Hint: The solution follows e.g. according to the well-known CRAMER rule.

c. Code the solution formulas for (¢,m) from b. using suitable EIGENMATH auxiliary
functions or procedures. Now solve exercise Ex.11.1.1e again by calling the corresponding
EIGENMATH functions.

16The formulae are set in the typical CAS Derive font. This CAS was in use in the eighties and nineties.
There is an active user group with repository at http://www.austromath.at/dug/, where one can find
plenty of interesting material and code snippets.
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12.5 State-of-art solution of Regression problem.

These classic, explicit solution formula can hardly be remembered mentally. Here, too, the
compact matrix notation shows its brain-relieving and understanding-enhancing effect.
To convince the reader we solve the original 'big data’ problem 11.1.1e 'weight gain’ again
using the functions of the EIGENMATH toolbox mpiBox2.txt for this chapter.

Woche 3 4 9

13

18

22| 27

kg| 4.31| 451| 5.63

6.15

7.26

8.08 | 8.84

German: Woche

Lezicon: English: week

Solution. The solution consists in the application of the well known developed EIGEN-
MATH toolbox functions. We proceed in two steps only.

TASK
Given: n points (;,y;) i=1,2,...n
Minimize: Sor o (may +c—y;)? w.r.t. (c,m)

Step 1 ~ Reformulate the problem using matrix language.

Set up"|

1 T
A — 1 )
1 =z,

Yn

to get the following compact matrix formulation of the regression problem:

n

Z(mxi—i—c—yiy: |AxU — BJ?

=1

Step 2 Solve this matrix problem using the MOORE-PENROSE-pseudoinverse mpi:

dot (inv(dot (transpose(A) ,A)) ,transpose(A))

—-- the best fit solution Xo

-- the data set

mpi (A) =

Xfit(B,A) = dot(mpi(A),B)

X = (3,4,9,13,18,22,27)

Y = (4.31,4.51,5.63,6.15,7.26,8.08,8.84)
XY= (X,Y)

XY

onel = zero(dim(X))
for(i,1,dim(X), onell[i]=1)

A = transpose((onel,X))

- 1.

set up matrix equation

-- set up AxU=B

"Here U is used as an identifier for the unknown instead of the familiar X, because in this context we
use X for the z-values of the body mass measurements.
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U = transpose((c,m))
B Y

-- 2. solve problem for U
Uo = Xfit(B,A)
Uo

EIGENMATH output:

3 4 9 13 18 22 27

18 3.77889
Xy = U
431 451 563 6.15 726 808 884

- > | 0.190914

=
I
_ e e e e e e
—
w

> Click here to run the script.

Result: we have U,[1] = ¢ = 3.78 and U,[2] = m = 0.19, therefore the regression line has
equation g: y = 0.192 + 3.77.

12.6 Summary - Solution of linear modeled problems

All concrete problems considered so far led, after reformulation with matrices, to one of
the following abstract model problems:

model problem de- | Look for solution X of solution is
scribed by
regular LS the linear equation A * X = B X=A1'%B
with det(A) # 0
general LS the system A+ X = B ?
linear best fit Ax X ~ B or X = Axmpi(A) B
minx|Ax X — B| ie. X =ATxB

Exercise. In the previous summary add the conditions in the last column.
E.g. in cell (4,3) there are 3 conditions: 1. typ(A) = n x m 2. n > m 3. rang(A) = m.

With that summary we could end and close our elementary introduction on the pseudoin-
verse and linear best fit problems. But there is a bit more to say ...

QO Mathematics is not formulas, or computations, or even proof, but IDEAS.Q
Gilbert STRANG, MIT/USA
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12.7 Problems.

P96. Arithmetic mean as a solution to a compensation problem.

Express the arithmetic mean of the numbers 1,2, 3,4, 5 as the solution to a linear bet fit
problem. Establish the system of normal equations.

Show a cool solution with the pseudoinverse mpi.

-
1 0 1 2 3 4 5 6

P97. Regression line.

Four points (1,1), (2,4), (3,2) and (5,5) lie near an unknown straight line.
a. Determine this best approximation line.

b. Formulate the task as a balance problem and solve it in different ways.
c. Compare the procedures. Create a drawing with your hand on paper.

P98. Education budget

The following table shows the estimated expenditure for the education sector in the USA
and Europe in US$ from 1970 to 1985 (Unesco Statistical Handbook, 1987, according to
24, p. 377)):

Jahr| 1970 1975| 1980| 1985
Europa 89 195 331 391
USA 314 470 808 1090

German: Jahr
English: year

a. Forecast estimated values for 1990 and 2000 and compare the estimates with the data
collected later (Internet research).

b. Calculate the best-fit line for both data sets ’in one go’, i.e. with a LS. Note that both
data sets have the same coefficient matrix. (This often occurs in practice.)

c. Make a drawing. Use >>CALcPLOT3D

Lexicon:

P99. HOOKE’s law.

Various weights are attached to a steel spring and the associated extension of the spring
is measured. The extension s and the amount of the weight G are recorded in a series of
measurements. A measurement resulted in the following values:

T e |G INN |2 3 5 8
= sincm |7.4 (8.8 |11.9 |16.4
Lo

-I"\.;

<o)\
~<Eo! /(11


https://c3d.libretexts.org/CalcPlot3D/index.html
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Calculate the regression line for the data set and use it to predict the measured value for
a weighing piece with G = 10N. Make a drawing with your favorite grapher app ... .

P100. Best fit parabola.
Calculate the best fit parabola for the data points (1;7),(2;2);(3;1);(5;9).

P101. HuBBLE-Constant.

Edwin P. HUBBLE (1889-1953) established in the late twenties that the majority of galaxies
move at a velocity v proportional to their distance z, i.e. v = Hx, away from us. The
following table shows the distances in millions of light years for five spiral nebulae and
their escape speed in km per sec:

x| 5B0OO| 1400| 2100| 2900( 3000
v| S000| 22000| 39000| 51000| 49000

Calculate an approximation for H using a best-fit straight line v = a + bx which is placed
trough the above data set.

Remark: Although a # 0, one can regard b as an approximation for H. The exact calculation of
the HUBBLE constant is a current topic in astronomy, as it allows conclusions to be drawn about
the age of the universe.

P102. Correlation coefficient.

x 1 2 3 4 5 ) 7 8 9| 10
¥ 3| 41 5| 72| 95/108| 12|138|155|16,6

a. Determine the regression line for the above measurement table.

b. Find a second regression line by considering the y values as independent values and the
x values as an associated dependent values.

c. If m1 is the slope of the 1st regression line and m2 is the Is the slope of the 2nd regression
line, then the number p = v/m1 - m2 is called the correlation coefficient of the data series.
Calculate the correlation coefficient p for the data series.

d. Calculate the correlation coefficient for the HUBBLE constant.

P103. Comparison of methods.
The regression line can also be obtained from the following numerically more stable (cf.
e.g. 11, p. 601) approach:

2N w €Y g (12.1)
=1 =1
y = y+m(x—7x) (12.2)

L)
Y (2 — ) (123
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a. Justify the approach and use it to define an EIGENMATH function RG(X,Y), which

returns the solution (¢, m).
b. With this approach solve again Ex.11.1.1e.
c¢. Compare all previously studied methods for calculating a regression line. Vote.
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13 Solution Sets of Linear Systems - a view from mpz

To calculate inverse matrices of regular linear systems as well as to determine the solution
set of under-determined LS the Gauss-Jordan algorithm was the crucial method. In this
chapter we use this trace to construct pseudoinverses of a matrix and try to develop a
solution theory also for over—determined linear system. Surprisingly, a solution theory for
general (also solvable or under-determined) linear system is gained: if the system matrix
A of a general linear system A x X = B is inverted ’as far as possible’ we get 1% criteria
for the solvability and 2" a ’general formula’, which explicitly specifies the solution set.
As a bypass, we get a generalizied version of the Moore-Penrose inverse mpi.

13.1 The discovery of pseudoinverses

First,to explore some phenomena we dive into the following EIGENMATH sessions.

13.1.1 Case 1: the GAUSS-JORDAN algorithm for regular LS

Let us study again the solution process of the linear 2 x 2 system of equations{:g]

le +2y =
20 +3y = 6

This system has A = (; ;) as LHS matrix and B = (3) as RHS. We set up the so called

6
augmented system matriz (A|B) = (;gg) and track the solution process using so—called
elementary matrices Em["] Each Em does exactly one step in reaching the full unity matrix
((1) (1)) at the LHS, while building the solution vector () on the RHS. This solution process

is called the "row reduced echelon form’, in short the RREF.

Think in the following example by left-multiplying the system (A|B) with the elementary
matrix
Em(—2,1,2)

at the mental operation (in your mind)
‘do: -2 times rowl of (A|B) and add this to row?2 of (A|B)".

This is best demonstrated by means of an example. Wandering along we make some
experiments and observations.
We let do EIGENMATH the dull work for us.

18See e.g. [11] or part 2 of this series for a view on this algorithm from different perspectives.

Yor elementary left-multiplication. If we have e.g. in our 2-dimensional case Em(3,1,2) = (; (1))7 then
we get Em(3,1,2) * (A|B) = (;) (1)) * (; g g) = (5192135). Be careful: Em(3,1,2) adds 3 times of rowl to row2
- but it substitutes the number 3 at position [2, 1] of the unit matrix.
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n=2

Em(k,i,j) = do( M=unit(n,n), M[j,il=k, M) -- Elementary matrix
A= ((1,2),(2,3)) -- LHS of linear system (LS)

B= (3,6) —-- RHS of LS

LS = ((1,2,3),(2,3,6)) -- LS=(A|B)

LS

—-- step by step RREF (Row Reduced Echelon Form):

Em( 3,1,2) -- add -2 times row_1 to row_2
dot( Em(-2,1,2), LS) -- the intermediate result
dot( Em(-1,2,2), Em(-2,1,2), LS)
dot( Em(-2,2,1), Em(-1,2,2), Em(-2,1,2), LS)

RREF = dot( Em(-2,2,1), Em(-1,2,2), Em(-2,1,2))
RREF -- (1)

> Click here to run the script.

Comment. The first line gives the definition of Em(k,i,j). We see in the output e.g.
Em(-2,1,2)= (_12?) The multiplication with the Em’s are shown with intermediate steps:

Start:  Em(-2,1,2) Em(-1,2,2) Em(-2,2,1) Finish
1 2 3 1 2 3 1 2 3 1 0 3

~ ~ g
2 3 6 0 -1 0 010 010

We read off the unique solution (g) (i.e. choose z =3 and y = 0 to fullfill both equations

from above) in the last column of the final state - seeing the unity matrix ((1J (1)) just before
it. In code line (1) we save the product of the 3 Em(.) factors in the variable RREF, which

is [}3 2 1]

a. Verify using your mind or EIGENMATH that RREF*xA = (é (1)), therefore RREF = AL

b. Show with EIGENMATH that RREF x (A|B) gives the solution ().
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13.1.2 Case 2: a singular linear system.

In this case study we change the LHS of the linear system above in such a way, that the
rows are dependent, e.g. A = (1 72). Then we have

24
n=2
Em(k,i,j) = do( M=unit(n,n), M[j,il=k, M) -- Elementary matrix
A= ((1,-2),(2,-4))
B = (3,6)
LS= ((1,-2,3),(2,-4,6)) -- augmented system (A|B)
LS

RREF = dot( Em(-2,1,2), LS)
RREF -- (1)

-- construction of a pseudoinverse via RREF

AE = ((1,_2, 1:O>y(2:_4’ 0,1)) - (2>

AE

Apsi = Em(-2,1,2) -- (3) a (ps)eudo (i)nverse for A
Apsi

dot (Apsi, AE) -- (4)

dot (Apsi, A) -- (5)

dot (A,Apsi,A) == -- (6)

EIGENMATH output:

> Click here to run the script.

Comment. Here the RREF process, which is trying to build the unity matrix ((1) (1)) at the
place of A = (; :Z) inside the augmented matrix (A|B) stops, because there pops up a zero
row, see (1). But watch: the RREF process has constructed the first column of the uinity
matriz, i.e. RREF has produced partially the unity matriz!

In 13.1.1 the RREF process produced the inverse matrix RREF= A~! of A, see 13.1.1

(1). Here the RREF should have produced a similar matrix result, we call it the partial or
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pseudo inverse of A, see (3), denoted A_m We do the analogical tests of being a 'pseudo’
inverse in (5) as one would do for the test of being an inverse:

A_*A:A¢*A:[1 O]*[l —2 :Ll) _12}

-2 -1 2 —4
and test in (6), if Ax A~ x A = A. The answer of EIGENMATH is 'yes=1".

Summary: Although A cannot be inverted because of det(A) = 0 and therefore there exists
no inverse matriz A=Y, the GAUSS-JORDAN algorithm alias the RREF routine, delivers
from the approach (2) for constructing the inverse a result: the matrix A~ alias A,, which
we read from (3) instead of the non-existent inverse A~

13.2 Definition of Pseudoinverse

Definition. An n x m matrix V', which satisfies the equation A « 1V x A = A for a given
m X n matrix A, is called a pseudo-inverse of A.
In mathematics, instead of V', one usually writes A~.

13.2.1 Richness of Pseudoinverses.

Fact: Any m x n matriz (especially any vector!) has a pseudoﬁwerse.@

a. Find some pseudoinverses V' to

. | (el
A := , B:=11, 2, 3], C ==
2 a
Here are some matrices to experiment with ..
B $ -4
14 _
1 L Lol 2 2
L L2 0 : vz s s
02 % 0 5} 0 0 -5 3

b. Compare the type (i.e. the pattern n x m) of a matrix A with that of one of its
pseudoinverse V' and the type of its transpose A’. Hypothesis?
c¢. Why can’t one speak of "the’ pseudoinverse V to A?

200ften also called the generalized inverse or g-inverse (g = generalized) of A ; the notation A~ only
use the minus sign (...)~ from A~! to remind on the defect.

21For a proof see e.g. [14, p. 130 ff] for an explicit construction of a so-called quasi-inverse or [8, p. 95,
proposition A].
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13.2.2 Linear systems and Pseudoinverses.

Consider the 2 x 2 systems of linear equations:

2% + 3y =1 2% + 3-y 1 2% + 3y
% + 2-y =2 l[ 1]'[—x—1.5-y
Write the linear system in matrix form A * X = B and determine at least two different

pseudoinverses for the associated system matrices A by hand & head and by EIGENMATH
& button.

1} ]
o =
L —

-x — 1.5-y

13.2.3 mpi as a Pseudoinverse.

a. Show that the MOORE-PENROSE-pseudoinverse mpi(A) of a matrix A - if it exists | - is
a pseudoinverse of A in the sense of definition 13.2, i.e. V = mip(A) satisfies the equation
AxV*x A=A

b. Calculate some examples.

13.2.4 Test of being a Pseudoinverse using EIGENMATH.

a. Define the following function in EIGENMATH to test whether a presented matrix V' is a
pseudoinverse to A:

isPinv(V,A) = test( dot(A,V,A) == A, "is pseudoinvers", -- if ..then ..
"is NOT pseudoinvers") -- else ..

We put this function in a fresh toolbox mpiBox2.txt for use this chapter.

b. Function isPinv1(V,A)=dot(A,V,A)==A will do the same as a. Pros and cons?

c. Check both EIGENMATH functions on the matrices of 13.2.1.

d. The function isPinv is a so called boolean function, which answers to the question ’is
V' a pseudoinverse to A?” with "1=true’ or '0=false’.

Explain looking at isPinv(V,A) and isPinv(N,A):

isPinv(V,A) = test( dot(A,V,A) == A,
"is pseudoinvers",
"is NOT pseudoinvers")

A= ((2,0),(1,0))
V= ((1/2,0),(-1/2,1))
\

AVA = dot(A,V,A)
AVA
isPinv(V,A)

N = (€0,2),(1,-1))
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N

ANA = dot(A,N,A)
ANA

isPinv(N,A)

EIGENMATH output:

1 0o 2
0
2 N =
=1 [ 1 -1
- , 4 o]
- N4 T
7 1o ] 2 0
is pseudoinvers is NOT pseudoinvers
> Click here to run the script.
. vectors:
EIGENMATH
a= (0,1,3) -- vectors have pinv’s
a
b = transpose(a)
b
isPinv(b,a)

aba = dot(a,b,a)
aba

¢ = transpose((0,1/10,3/10))
c

isPinv(c,a)

aca=dot(a,c,a)

aca

EIGENMATH output:

is NOT pseudoinvers
> Click here to run the script.

is pseudoinvers

aC(I -

0
1
3

o1
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13.3 Solvability of Linear Systems

We are now exploring the usefulness of the concept of a pseudoinverse and are first looking
for a criterion for the solvability of any (in particular singular or overdetermined) linear
system. Then we look for a explicit formula for the complete solution set of a linear system.

If an m x n-linear system A x X = B is given, the following alternative applies:
e If A is invertible, then the solution set of the linear system A x X = B is given
explicitly in the form X = A~! % B. The following test applies: A x (A™' * B) = B

e If A is not invertible, then A is always pseudo-invertible according to 13.3.3a with
V' as any pseudo-inverse (e.g. often the mpi) and X = V % B ’should desirably
(analogous to first alternative) be a special solution.

The following test should apply: A x (V * B) = B.

In fact, we the have the following theorem,which we cite here as fact.

Theorem 13.1. (solvability and totality of solutions of Linear Systems Ax X = B)
A. Ax X = B solvable & Ax A~ x B = B with A~ any pseudoinverse. (LSS)
B. If A. is the case, then

X=A*xB+U—-A xAxU (LSSS)

1s the general solution of A x X = B parameterized with any matriz U.
There are no more or other solutions. Herein A~ is any choosen pseudo-inverse of A.

Remark. 7| Here is a summary as flow diagram.

A*X=B mit X=7

A
< N
invertible? always pseudo-invertiblel
X=A"1*B X=A"*B + (E- A"*A)*Z
T
<inhomagene™ general solution
special solution of homogen LS
of A*X=B A*X-B

where the column vector ("vector of Unknowns") Z can be
choosen arbitrarily and A- is any pseudoinverse of A.
(E is the appropriate identity matrix.)

221,SS = Linear System Solvability, LSSS = Linear System Solution Set
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Our goal is now to formulate the solvability criterion (LSS) and the explicit formula
for the total solution set (LSSS) in the EIGENMATH syntax and thus to make it
automatically calculable.

13.4 EIGENMATH : Solvability criterion for Linear Systems

We now define an EIGENMATH function isSolvable(..), which formulates the solvability
condition (LSS) for linear systems A x X = B in EIGENMATH syntax and outputs the
message ' LS solvable’ in the case of solvability and "NOT solvable’ in case of non-solvability.
isSolvable needs the data A and B of the LS Ax X = B as well as any pseudoinverse P
for A as inputs:

EIGENMATH

isSolvable(A,B,P) = test( -- LSS criterion
and( dot(A,P,A)==A, dot(A,P,B)==B ),
"is solvable",
"is NOT solvable")

The function isSolvable is already in our toolbox mpiBoz2.txt aand can be used after
writing the command run("mpiBox2.txt"), see the examples below.
o The short function

isSolvablel(A,B,V) = and( dot(A,V,B)==B, dot(A,V,A)==A ) --(LSS)

will do the same as the function in a. Which version do you prefer? Why?

13.4.1 FEzxercise: Solvability criterion for Linear Systems.

Test the solvability of the linear system from 13.1.1, 13.1.2 and 13.2.2 with the help of the
solvability condition (LSS) from above 1st without (! yes, at first) and 2nd with the help
of EIGENMATH.

13.4.2 The solvability criterion : regular linear systems.

Look at the regular linear system of equations {1x + 2y = 3, 2x + 3y = 4}
We take our toolbox and check the solvability:

EIGENMATH
run("mpiBox2.txt") -- load toolbox
A= ((1,2),(02,3)) -- MatrixForm of LS
B = (3,4)
X = (x,y)

Ls = ((1,2,3),(2,3,4))
LS
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detA = det(A)

detA

P = mpi(A) -- choose a pinv
P

isPinv(P,A)

isSolvable(A,B,P)

EIGENMATH output:

-3 2
1203 pe
L = 2 -1
2 3 4
is pseudoinvers
detA = -1 is solvable

> Click here to run the script. Resutlt: the mpi is a pseudoinverse.

13.4.3 The solvability criterion : singular linear systems.

Look now at the singular linear system of equations {1x - 2y = 3, 2x - 4y = 6}
We take our toolbox and check the solvability:
EIGENMATH

run("mpiBox2.txt")
-- LinearSystem LS: (singular)

-= 1x-2y=3
— 2x-4y=6
A= ((1,-2),(2,-4))

X = (x,y)

det (A)

-- P = mpi(A) does not work, because det(A)=0
-- so choose a pinv e.g. via RREF

P = ((1,0),(-2,1))
P

isPinv(P,A)
isSolvable(A,B,P)

V = ((0,1/2),(1,-1/2))
Vv

isPinv(V,A)
isSolvable(A,B,V)

o4
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EIGENMATH output:

0 1
0 3
1 0 V=
P = 1 _l
-2 2
is pseudoinvers is pseudoinvers
is solvable is solvable

> Click here to run the script.

Remark. Because of the singularity of the system, we have det(A) = 0 and the MOORE-
PENROSE pseudoinverse does not exists. Therefore one has to construct a pseudoinverse
for oneself using e.g. the RREF process. We had done this before for this linear system in

13.1.2. We happily choose this result: P = RREF = (_; ?) With this pseudoinverse the

0 05

1 70.5) with the same successful

test succeeds. We could also choose another pinv e.g. V = (
check for solvability.

Now we want to see the solution set of such an linear system.

13.5 EIGENMATH : complete solution set of Linear Systems

Let’s now define an EIGENMATH function solSet(. .)ﬁ, which executes formula (LSSS)
of theorem 13.1 in section 13.3 to determine the complete solution set of the linear system
Ax X = B in EIGENMATH syntax.

solSet needs as inputs

- the data matrices A and B of the linear system Ax X = B

- any pseudoinverse P for A

- a choice for the linear system system variables X

and outputs the solution set of the linear system using the variable setting from X:

solSet(A,B,P,X) = do(

m=dim(dot (P,A),1), -— @

n=dim(dot (P,A),2), - @

Etl=unit(m,n), - (3

dot(P,B) + dot( (Ei-dot(P,A)), X) -- (4) is (LSSS)
)

Comment. First we read off the row resp. column dimensions of the product P % A in
(1) and (2) to form the suitable unity (or identity) matrix E1 in (3). Using E1 we can

23501Set = solution set
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do the subtraction of now equal typ matrices 1 — P x A and then build the product
(E1—PxA)* X in (4).

You find the code of solSet ready-made in the toolbox mpiBox2.txt.

13.5.1 FEzample: Solution set of a singular Linear System.

Let’s construct the complete solution set of the singular linear system of equations
{1x - 2y = 3, 2x - 4y = 6}} from section 13.4.3. We have:
EIGENMATH

run("mpiBox2.txt")

-- LinearSystem LS: (singular)
-- 1x-2y=3

- 2x-4y=6

A=((1,-2),(2,-4))

B=(3,6)

X=(x,y)

P=((1,0),(-2,1)) --(1) a pseudoinverse of A
V=((0,1/2),(1,-1/2)) --(2) another pseudoinverse of A
LSSSp = solSet(A,B,P,X)

LSSSp

LSSSv = solSet(A,B,V,X)

LSSSv

EIGENMATH output:

2y +3

= Lggs, =
y

2y + 3
L.S'.S'.S'

> Click here to run the script.

We see that the full solution set LSSS is a straight line in IR? with the parametric vector
equation ¢ : (2y + 3,y). For y = 1 the special solution point is Q = (5,1) on £.

If we take as pseudoinverse V' the MOORE-PENROSE pseudoinverse mpi (see (2)), then
we get another parametrization in LSSSmpi. We also get a special solution (point) on ¢
choosing e.g. v =y = 1:

mpi = ((1/25,2/25),(-2/25, -4/25)) --(3) THE MPpseudoinverse of A
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LSSSmpi =
LSSSmpi

solSet (A,B,mpi,X)

eval (LSSSmpi, x,1, y,1)

P=((1,0),(-2,1))
LSSSp = solSet(A,B,P,X)
subst(1,y, LSSSp)

> Click here to run the script.

Run Stop

run("Downloads/mpiBox3.txt")

A= ((1,-2),(2,-4))

B= (3,6)

X= (X,¥)

LS = ((1,-2,3),(2,-4,6))
LS

P = ((1,0),(-2,1))

V = ((1/25,2/25),(-2/25,-4/25))

LSSSp=solSet(A,B,P,X)
LSSSp

LsSSm=solSet(A,B,V,X)
LSSSm

subst(1,y,LS55p)
eval (LSSSm,x,1,vy,1)

stop

. Show, that the solution set LSSS is equivalent to the graph of the function x — %x—

--(1)
==(2)

--(3)

==(4)

pinv via RREF
the mpi of A

using P

using V=mpi

--(5) special solution for y=1
--(6) special solution for x=y=1

The following figure 4. shows the full solution set LSSS= ¢:
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We show here the output of the complete Mac session with the EIGENMATH App:

Clear Draw Simplify
1 -2 3
Ly =
2 -4 6
2y + 3
L.S'.S'.S'p =
Y
-x + -y + =
Logsm = . .
Zx 4+ - - =
sV 75
5
11
[ 9
5
_3
| §
stop
Stop: stop function

3
5

. Let EIGENMATH calculate the coordinates of the blue points and the magenta point
(3,0). Hint: for(y,-1,2, print(..)

)

. Let CALCPLOT3D draw the representation (2t+3,t) of LSSS = /.

. Proof that the solution set representations LSSSp and LSSSmpi describe the same

set.
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y A

Figure 4: Representation of solutions LSSS of {1z — 2y = 3,2z — 4y = 6} as
graph (red) of function f : z — %m — % and as point set (blue) of all (2y + 3, y)
and of all points (magenta) with (4/5%x+2/5xy+3/5,2/5%xx+1/5%xy—6/5).

13.5.2 Lexicon: Math vs. EIGENMATH

Math | EIGENMATH
10: V is pseudoinverse (pinv) of A AxVxA=A|dot(A,V,A)==
11: Ax X = B is solvable with V as pinv AxV xB =B | dot(A,V,B)==
12: solution set of A* X = B with pinv P and var Z A % mpi(A) * B | solSet(A,B,P,Z)

P104. Case Study of a 3 x 3 linear system

Given is the following 3 x 3 LS

1x +2-y + 3-2 = 4
Ix +4-y + -2 =
bx + 8-y +6-2 =4

1. What is A, B and the augmented matrix LS of the system?

2. Build a pseudoinverse P of A and check if isPinv(P,A) is true.
Hint: use Elementary matrices Em() with n = 3. The final state of RREF should

be
10 -3 -6
01 3 5
00 0 0
3. Verify: The pseudoinverse P of 1. as product of the EFm is P = RREF =
-2 1

0
0
|

L

3
0 —
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4. Construct a pseudoinverse V' of A using the ansatz (A|E) with uinty matrix F ap-
propriate. Hint: the final state should be
10-3-20 +
013 +o0-+
000 0 1-%

5. Let EIGENMATH check the solvability of LS and let it determine the full solution set.
Result: the solSet answer should be _
(x=3.z-6,y=5-3-z|

6. The following figure shows a visualisation of the solution set in IR®.

A —
- o —
- T ———

i - ) -10

- Calculate the coordinates of the blue points on the line using the for command.

- Which z-value gives the point (—6,5,0) on the solution line?

7. Can you use the mpi(A) as a choice for a pseudoinverse to get the solution set LSSS?
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14 Construction of the MOORE-PENROSE-Inverse

In the last chapter we used pseudoinverses to solve systems of e.g. overdetermined linear
equations. These pseudoinverses had been produced by means of the GAUSS-JORDAN
algorithm and we saved the whole solution process in the matrix RREF i.e. a pseudoinverse.
If we use these ’handmade’ pseudoinverses, the representation of the solution set was often
more aesthetic resp. simple:

. 2.y 3

0o i 1 2 4x 2y 3
2 , 25 25 E] 5 5

(1 l_) (2"-”3) (; i) (2-_x+i_g
T2 ¥y T35 T 5 55

Figure 5: Two representation of the solution set of {1z —2y = 3,2 —4y = 6}.
The left pair (pseudoinverse, solSet) shows a more simple parametrized solution
set compared to the pair on the right, where the pseudoinverse is the mpi of
the system matrix.

Nevertheless we often are interested in an automatic calculation of a special pseudoinverse,
the MOORE-PENROSE-pseudoinverse mpi, e.g. for solving best fit problems. Here we
have to live with it’s crooked values, because this results from distinct measurements with
standardized scales and are therefore in principle unavoidable.

In this chapter we present therefore two more constructions ot the MOORE-PENROSE-
pseudoinverse mpi:

- an analytic-numeric approzimative approach (easy) and

- the iterative, constructive and ezact GREVILLE algorithm (advanced, marked with *).

14.1 Approximative MOORE-PENROSE-pseudoinverse

We ask: Is it not possible to somehow rescue the old definition mpi(A) = (A« A)~1 x A
to which we have become so used and which worked so well in many practical cases? But
how to get a grip on the problem with the no-invertibility of A * A in the defining term of
mpt as easily as possible?

Ok, here follows an idea that works - but you have to remember the calculation of limit
values of your calculus course.. Because there are no clear boundaries in mathematics we
change for a moment from doing algebra and geometry to the subject of calculus. So how
about this ..

14.1.1 A numerical version of the MOORE-PENROSE-pseudoinverse

Let’s again study the Linear System {lz — 2y = 3,2z — 4y = 6}. There was the bad guy
term A’ x A that caused problems and hindered to get the mpi as a pseudoinverse in the
determination of the solution set, therefore forcing us to dodge to the RREF algorithm.
We look back a bit ..
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Step 1 In this first EIGENMATH session we recap the definition of the mpi in (0) and
convince ourself that the bad term part A’ x A of the mpi formula is not invertible (2).
Therefore mpi can not be calculated this way, > Click here to run the script.

mpi(A) = dot(inv(dot(transpose(A),A)), transpose(A)) --(0)

-- LS: 1x - 2y = 3, 2X - 4y = 6

A=((1,-2),(2,-4)) -- (1)
bad = dot(transpose(A),B) -- At*A 5 -10
bad b, =
ad
-10 20
inv(bad) == (2) .
mpi(A) - (3) inv(bad)

Stop: inv: singular matrix

Step 2 Let’s dive into a second EIGENMATH session to make some experiments.
Enjoy © > Click here to run the script.

EIGENMATH user input: EIGENMATH output:
Run Stop Clear Draw Simpli
mpi(A) = dot(inv(dot(transpose(A),A)), transpose(A)) --(0) 501 -10
mpiN(A,n)= dot(inv(dot(transpose(A),A) + — (M) Eood
1/n*unit(dim(A,2))), transpose(A)) —-10 20.01
A= ((1,-2), (2,-4)) 80.008 39.984
bad = dot(transpose(A),A) -—(1) 139.984 20.032
good = dot(transpose(A),A) + 0.01*unit(dim(A,2)) --{2) _U 039984 0.079968
good - .
inv(good) (3 -0.079968 —0.159936
dot(inv(good),transpose(A)) -- (At*A)"-1*At =mpi --(4) '0_04 0.08]
((0.04,0.08),(-0.08,-0.16)) ==(5)
((1/25,2/25), (-2/25,-4/25)) —--(6) [-0.08 —0.16
float -—(7) (1 2
25 25
N1=mpiN(2,100) --(8)
nl 2 4
N2=mpiN(A,100.0) -—(9) -= — =
N2 L 25 25
0.04 0.08
-- stop
-0.08 —0.16
[0 200
2501 2501
N, =
_ 2 _ 40
2501 2501

[ 0.039984  0.079968 ]

|—0.079968 —0.159936
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Comment. We plan an approzimately solution for the otherwise existing 'real’ mpi (6).
So we should make the determinant 5-20 — 10 - 10 = 0 of the bad term (1) at least a little
bit different from zero without changing the original data too much. Therefore, we only
change the elements on the main diagonal of A'* A by adding a tiny scaled identity matrix
of the same type as A’ x A: this gives the good brave term (2), which can be inverted (3)
and the corresponding mpi is approximately calculated in (4) O!

Term (2), ie. A'x A+0.01- (})) ~ A’ x A, is abstracted into definition (N) of a Nearly
or Numerical version mpil of the mpi. Invocations of mpiN in (8) and (9) with suitable
choices of n suggests witch guess should give the correct term of the real mpi. One should
test this guess with help of the EIGENMATH function isPinv from our mpiBox.txt.

P105. the numerical version mpiN - exercise 1.

a. Guess a term for the mp:i for the linear system in problem P104 with the help of
mpiN(A,?).

b. Check your choice with isPinv.

c. Determine the full solution set of the LS with the EIGENMATH function solSet(.) and
the mpi from a. as a pseudoinverse in the call of solSet.

d. Proof that the representations of the solution set in P104 and in c. describe the same
set.

P106. the numerical version mpilN - exercise 2.

i 2 1 -2
4 1 3 1

A :=

a. Calculate for the matrix A the values of the simplified version mpiN(A,n) of the real,
but unknown mpi for n = 1..5. Make a guess for the mps.
b. Study the results. Experiment. Check.

P107. the numerical version mpilN - exercise 3.

2 3
-1 =-1.5

Calculate for the matrix A the matrix sequence mpiN(A, 2n) for n = —10,—6, —4, 10.
Make a good guess for mpi(A).

A ==

D]

Here the learner could stop his first contact with the MOORE-PENROSE-pseudoinverse
and perhaps try some of the exercises in 14.5. Or maybe read on until the end of
14.2, but do not follow the programming part of the Greville algorithm in 14.5. It’s
a bonus for the interested EIGENMATH programmer ..
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14.1.2 the numerical version mpilN - flow chart summary:

(A*A ® )1 A =: mpil(A)
A lr Rescue an ..
0.01 0 .

A*A + 1 xAl = mpiN(A,0.01
( K U_OJ) PiIN( )
1 _ . tiny invertible core ©

L
(A'*A + | " . Yt*A"  ——— mpi(A)
0 =
B H
mpiN(A,n)

Remark. EIGENMATH currently has no Limit command. Otherwise one would have:

If A is any matrix and F is the identity matrix of the same type as A" x A,
Then we define the generalized (pseudo) MOORE-PENROSE-pseudoinverse by

mpi(4) = lim(4' % A+ LE) o4

In EIGENMATH this definition would then be an executable exact formula for the mps.

We now need a check to test, if a calculated matrix P is the MOORE-PENROSE-pseudoinverse
of a given matrix A.

14.2 Definition of the MOORE-PENROSE-pseudoinverse

nxm mxn

The matrix P of typ n x m is the MOORE-PENROSE-pseudoinverse of the matrix A
of typ m x n, if the following 4 conditions are fullfiled:

AxPxA = A (14.1)
PxAxP = P (14.2)
(PxA)! = PxA (14.3)
(AxP)" = AxP (14.4)
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Remark.
1. This unique MOORE-PENROSE-pseudoinverse of A is noted A" (read: ’A plus’).

2. There is an unique MOORE-PENROSE-pseudoinverse for every matrix (vector, too).

nxm mXxXn nxn

3. Condition (14.1) means that P % A = E ist the unitiy matrix E,
i.e. Pis a left-inverse for A. P is - because of (14.2) - also a right-inverse for A.

We formulate the 4 conditions as a boolean function in EIGENMATH, which is already a
member of the final toolbox mpiBox.txt for this chapter:

isMPI(P,A)= test(and(
dot(A,P,A) == A,
dot(P,A,P) == P,
transpose(dot(P,A)) == dot(P,A),
transpose(dot (A,P)) == dot(A,P) ),
" is MPI",
" is NOT the MPI")

14.2.1 Example: testing a matrix of being the MOORE-PENROSE-pseudoinverse.

We use the definition isMPI in a fresh EIGENMATH session.

Then we have e.g. for the matrix A = (; :i) from section 14.1.1:
Run Stop Clear Draw
isMPI(P,A)= test(and(
dot(A,P,A) == A, 1 -2
dot(P,A,P) == P, 4 =
transpose(dot(P,A)) == dot(P,A), 2 -4
transpose(dot(A,P)) == dot(a,P) ), 1 2
" is MPI", — —
" is NOT the MPI") BB
Pgﬂod -
A=((1,-2),(2,-4)) -z 4
A 25 25
Pgood=((1/25,2/25),(-2/25,-4/25)) is MP]
Pgood 0 1
isMPI(Pgood,A) 2
P =
Pbad=((0,1/2), (1,-1/2)) bad |
Pbad I )
isMPI(Pbad,A)
is NOT the MPI

> Click here to run the script.

Be warned: Py,q is nevertheless a pseudoinverse of A - but NOT the mpi!
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14.2.2 Exercise: testing a matrix of being the MOORE-PENROSE-pseudoinverse.

Visit the Wolfram widget gallery for calculating the mpi of a 3 x 3 matrixﬁ

Row Row
Row 2 Row 2
Row's Rows  [i10
1
1 20 0 3 0
Pseudolnverse’[l -2 D]] Pseudolnverse[ o Lo }
000 2
1 -10
Exact result:
Result:
220
17 210 111
4 0 _0 0 [1 1 D]
000
Dimensions:
Dimensions:
3 (rows) x 3 (columns)
I I 3 (rows) x 3 (columns)

Matrix plot:
Matrix plot:

% Wolframalpha Get this widget % Wolframalpha Get this widget

a. Use EIGENMATH function isMPI to check if these matrices are mpi’s or only pseudoin-
verses, i.e. isPinv is true.
b. Calculate the MOORE-PENROSE-pseudoinverse of matrix A=((1,1,1),(1,0,1),(0,1,1))

with the widget and verify the MOORE-PENROSE-pseudoinverse conditions using EIGEN-
MATH function isMPI.

>

Again, the learner could stop here and perhaps try some of the exercises in 14.5.

The following sections 14.3 and 14.4 are a little more challenging: it’s theme is the
programming of the Greville algorithm in EIGENMATH. Here you can study bottom—
up programming of procedures, the method of stepwise refinement and the heuristic
of divide-and-conquer in a important example. Ok, here we are ..

Zhttp: //www.wolframalpha.com/widgets/gallery/view. jsp?id=5£520ec5d51£4746373a2bd4£857c2ed
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14.3 *The Greville algorithm in EIGENMATH

As a surplus for the interested reader, we give an iterative procedure to determine the
MOORE-PENROSE-pseudoinverse of a given Matrix A, which terminates after finitly many
steps. Therefore we view at the matrix as a [list of columns. Then this column list is
stepwise visited from the first column to the last one, while simultaneously the mpi matrix
AT is stepwise build up as a row matriz from the first row to the last row.

14.3.1 The Greville algorithm.

Greville. PP
Start: let m;(ln be [aj ay ... a,] be the m X n matrix A in his column representation.
mxXn
let Ay be [aj as ... ai] be the m X k consiting of the first k columns of A.

we have Ay = [Ap_1 ag]
Then: do for j > 2
def
di = al* (Aj*_l)t % Aj+_1

¢ = (B —Aj_1 % A ) xa;

def 1—ctxe;
¢ def 4 ¢ gt
b = ¢ + T b
we have
AT — AT Cxa; x bt
+ = . Jt — Jj—1 Jj—1 77
A7 =[Aja " = bt
J
and for j =1
1
Al =af = t—atl

Please note:

- d is a row vector, ¢; a column (therefore c;“ a row) and b} a row.
- Ay = ay consists of one column vector.

- we have a constructive 'count down’ d; > ¢; > b; ~ a;r.

We will now study the first cases 7 =1, 7 = 2 and j = 3 of the Greville algorithm to get a
feeling for progamming in EIGENMATH and to get used to some peculiarities.

2Look at the original article [6].
26We adopt the formulation of [I7, p. 115]. Other versions of the algorithm could be found e.g. in [,
15 p. 4] or [16, p. 3].
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14.3.2 EIGENMATH case study: Greville 1 x n.

We study the first case ;7 = 1 of the Greville algorithm. That is we are in the last line
Af = ... of section 14.3.1. This case is formulated in EIGENMATH in line (2) of the following
screenshot. Our example matrix is A = (1, 2).

transpose (dot(4,P)) == dot(A,P) ), 1
" is MPI", _
" is NOT the MPI") 4 = 5
mpiV(A) = test( dot(A,A)==0, 1
0*a, _
1/dot(A,A) * A) a; = L]
A=((1,2)) 1
A 5
ali = transpose(A) - (1)
ai 5
1/dot(A,R) * A -- (2) -
Aip= mpiV(ai) -- (3) 3
Aip 1
5
Grevillelxn(A) = do( A. =
ai = transpose(A), P 2
Aip= mpiV(ai), 5
Aip ) i
-- test: ok 5
Apl=Grevillelxn( A ) -— (4) Apl =
Apl 2
isMPI(A,Apl) 5
is MPI

> Click here to run the script.

Comment. Matrix ai = (1 2) is the transpose of A = (;) - this is not reflected in the

output of EIGENMATH. But you should think of it, if you want to follow the calculation

by paper and pencil. Function mpiV catches the case, where A® x A Pren g0t (A,A) =0.
Here (2) and (3) results therefore in the same value Aip = (1/5 2/5). Checking by mind
gives mpi(A)*A = Aipx A= (1/5 2/5)x(}) = (;?g) e () = (1), which is the 1-dimensional
unitiy matrix £ ]

EIGENMATH function Grevillelxn(A) abstracts the process of the calculation using a
do(..) construct, which collects the suite of all commands in the correct sequence.
In contrast to the interpreted command suite (1), (2), (3) we have to separate the single

Y

commands in the do(..) ’compound’ statement by commas .. , ...".

2THere * denotes matrix multiplcation and e the scalar(dot) multiplication of vectors.
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Exercise. Copy the following excerpt of the commands above into the command window
of EIGENMATHS online dem, press the RU" button and watch the output.

EIGENMATH
A=((1,2))
A
ai = transpose(A) -- (1
ai
Aip = 1/dot(A,A) * A -- (2
Aip

alternatively > Click here to run the script.

a. Check using the online demo, if Aip is the MOORE-PENROSE-pseudoinverse of A.
b. Experiment with other 1-dimensional matrices (vectors).
Try e.g. M = ((1,2,3)) or M*".

14.3.3 EIGENMATH case study: Greville 2 x n.

We study the second special case j = 2 of the Greville algorithm. That is we are
doing first the last line A = ... of section 14.3.1 and then follow one times the steps for
calculating d;, c;, b; giving AF. This case is formulated in EIGENMATH in lines (1) .. (17)

in the following screenshot. Our example matrix A = G 3) is of typ 2 x 2.

Run Stop Clear Draw

A=((1,2),(1,2))

A
n=dim(A,1) -— (1)
print(n} 1 2
null = zero(2,n) -— (2) A4 =
ai = transpose(A) -— (3)
-1 1 2
print{ai) no= 2
Aip = zero(2,n) -— (4)
Aip[1]= mpiV(ai[l]) 1 1
Alp=Aip[l] -- (5) a; =
—3i=2 22
a2z = ai[2] - (6)
print{a2) 2
d2 = dot(Alp,a2) -— (7) ay =
print(d2) 2
c2 = a2 - ai[l]*d2 -- (8)
print(c2) dz =2
test( c2 == null[l], -— (9) r
b2 = (l+dot(d2,d2))"(-1)*dot(d2,Alp), -- (11) 0
b2 = mpiv(c2)) -— (12) Cy = 0
B2 = Alp - d2+*b2 - (13) . 11
A2p = zero(2,n) -- (14) - 1o 10
AZp[1l]= B2 - (15) AZp -
A2p[2]= b2 — (16) L1
A2p -- i.e. mpi - (17) 5 5
is MPI
-- test:
stop
isMPI(A,A2p) Stop: stop functio

28https://georgeweigt.github.io/eigenmath-demo.html
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> Click here to run the script.

Comment. Matrix ai = (; ;) is the transpose of the given matrix A = (} ;) - this is
reflected in the output (3). Line (4) defines an ’empty’ container matrix, which will collect
all the entries of the MOORE-PENROSE-pseudoinverse, named ’Aip’@ This matrix Aip is
of typ 2 X n, because EIGENMATH zero(.) function does not allow to call zero(1,..)
or zero(..,1). Therefore we use only the first entry Alp=Aip[1] to save the result of

mpiV - which is a vector: Alp = (1/2 1/2). Step j = 1 is ready.

Now we do step j = 2, i.e. we have to calculate d2, c2, bQE In (6) we pick in a2 the
second column of matrix A. Alp and a2 are both vectors, so we dot them in (7) to give
the number (1) d2f7 c2 measures (8) the difference of the second column to the d2-fold of
the first column. In (9) we check, ifc2 is a2 - if it is true, (9) we calculate b2 in (11) along
the formula of 14.3.1 , otherwise we must use in (12) function mpiV. B2 gives the first line
of matrix Aip in (13) i.e. the first line in AJ = [: ... of algorithm 14.3.1. With B2 in (15)
and b2 in (16) we have both components (17) of formula

Ajr = [ﬁ[éfj }

of algorithm 14.3.1

Exercise.
a. Repeat the EIGENMATH calculations (2) ... (17) with paper and pencil.
b. Do the same with matrix M = ((0,1/2),(0,1/2), (1, —1)).

14.3.4 Routine Greville2xn.

EIGENMATH function Greville2xn(A) abstracts the process of 14.3.3 in a suite of all the

commands above in do(..) compound statement. Beware of the comma ’,’ after each
statement inside the round do—parenthesis (...).

HHHHBHHHHHHH R B R A typ 2 X n
-- GREVILLE 2 x n : Al+, A2+ —-> An+ = A+

————————————————————————————————————————— A+ typn x 2
Greville2xn(A) = do(
n=dim(A,1),
m=dim(A,2),
—--print(n),

null = zero(2,n),

29 Aip means A at the end of the iteration. The intermediate matrices are called Alp=A7, A2p=AF
etc., see (5) and (14).

30Because of technical considerations with respect to EIGENMATH and regarding the general case of an
m X n matrix, we use here a slightly modified version of the mathematical formulas in 14.3.1.

31This is a specialty of case j = 2 as we will see later and forces us to consider this case apart from the
general loops j = 3...
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ai = transpose(4),

--print(ai),
Aip = zero(2,n),
Aip[1]= mpiV(ail1l),
Alp=Aip[1],
a2 = ai[2] ,

--print(a2),
d2 = dot(Alp,a2) ,

--print(d2),
c2 = a2 - ail[1]xd2,

--print(c2),

test( ¢2 == null[1],
b2 = (1+dot(d2,d2)) " (-1)*dot(d2,Alp),
b2 = mpiV(c2)) ,
B2 = Alp - d2xb2 ,
A2p = zero(2,n) ,
A2p[1]= B2 ,
A2p[2]= b2 ,
A2p ) —- i.e. mpi

HEHHHHBHHH RS R RS H RS END 2 x n ##H##HHASH R AR

Exercise. Copy the code sequence of function Greville2xn into the command window
of EIGENMATHOnlineDemo >to tnvoke EIGENMATH, or into the interpreter window of the
E1GENMATH App for the iMac. Do not forget to copy also the functions isMPI(P,A) and
mpiV(A), if you do not use mpiBoz.

a. Repeat the case study 14.3.3 using Greville2xn, i.e.

— define A=((1,2),(1,2)) and call Greville2xn(A).

— watch some intermediate results by commenting out the print statements,

i.e. ——print(d2) by deleting the 2 hyphens '--’.

b. Experiment with the matrices A = ((1,2),(1,2),(3,3)) and Apq = ((1,2,3),(1,2,3)).
c. Look at these commands:

M=((1,1,1),(1,1,0))

M=transpose (M)

M

Mp4=Greville2xn (M)

Mp4

isMPI(M,Mp4)
Which idea leads to success? Explain. Use this 'fix’ to deal with matrix Ap.q in 2@
d. Play with other matrices. >.. or to run the script.

Use Wolfram’s pseudoinverse widget in 4.2.2 to check the results.
Check one calculation by paper and pencil ©.

32Follow the solution of this example in detail in a paper’n pencil calculation in [17, p. 120 - 122].
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14.3.5 EI1GENMATH Exercise: Greville 3 x n.

a. Write an EIGENMATH function Greville3xn(A) using the code of Greville2xn(..)
and the following code snippet:

HEHHHHBHHHERFHRARHE Greville 3 x n #H#HHHHHFHHHHHHERHS

Greville3xn(A) = do( -- ...
__j=3
al = ai[1],
A2 = transpose((al,a2)) ,
a3 = ail[3] ,
d3 = dot(A2p,a3) ,
c3 = a3 - 7?77 , -— (?71)

test( ¢c3 == (0,0,0) ,
b3 = (1+dot(d3,d3)) "~ (-1)*dot(d3,A2p) ,
b3 = mpiV(c3)) ,
B3 = A2p - 7777, — (72)
A3p= zero(3,3) ,
A3p[1] = B3[1] ,
A3p[2] = B3[2] ,
A3p[3] = b3
A3p ) —- i.e. mpi
H#FHAH B HAHH AR AEH RS EHHE END 3 x n #####$HESH AT

- Which term is to be filled in at line (?1) at position 777 ?
- Which term is to be filled in at line (72) at position 77?7 ?

b. Experiment with the matrices A = ((1,1,1),(2,2,2),(3,3,5)) and Apa = (((1,1,1), (1,1,0)).
c. Run these commands:

" here we are .."

M = ((0,1/2,0),(0,1/2,0),(1,-1,0))
M

Mpi = Greville3xn( M )

Mpi

isMPI (Mpi,M)

>.. to run the script.

Can you 'rescue’ matrix Ay, in b) and calculate the mip A;l a7
d. Run these commands:

M22 = ((1,2,0),(1,2,0),(0,0,0))
M22

Mp22 = Greville3xzxn( M22 )

Mp22

isMPI (M22,Mp22)
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Compare the result with 14.3.4.b.
e. Run these commands:

Mi2 = ((1,2,0),(0,0,0),(0,0,0))
M12

Mp12 = Greville3xn( M12 )

Mp12

isMPI (M12,Mp12)

Compare the result with 14.3.2. Do you see a pattern?

In which respect are Grevillelxn and Greville2xn superfluous?
Why should we nevertheless keep them?

f. We have learned in e) that it is possible to 'reforest’ a smaller typ matrix at his edges
with zeros, so that it becomes e.g. a quadratic shape. After that one can calculate
the MOORE-PENROSE-pseudoinverse of this new matrix and then get the MOORE-
PENROSE-pseudoinverse of the original matrix by inspection of the printed result with
the eyes.

Yet it is possible to peel out the wanted MOORE-PENROSE-pseudoinverse via matrix
access commands.

Run these commands:
pM = (Mpi12[1,1], Mp12[2,11)
gqM=(0,0)
for(i,1,2, qM[il=Mp12[i,1])
qM
isMPI (M, qM)

Compare with e). What do you recognize?

g. Use Wolfram’s pseudoinverse widget in 14.2.2 to check the results in b) until e).
Check one calculation by paper and pencil © — yes: p'n p.

Hint: OHere is the solution to a): 7?7 = dot(A2,d3) and 77?7 = outer(d3,b3).
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14.4 *The general GREVILLE algorithm in EIGENMATH

##tH#H## sequence of submatrices Al, A2, .. Ak i.e. A[:,1..k]
Ai(k) = test( k=1, alll, -- case a[l] is vector
do( AA=zero(k,dim(A,1)), -——elsek > 1
for(i,1,k, AA[i]l=alil), -- (0

transpose (AA) ))

HiHHHHHHHH RS Greville m x n HHHHHHHHHHHHHEAAE A typm x n

- procedure GREVILLE : Al+, A2+, .., An+ = A+
HHHHHHEHEE R R R R RS A+ typ n X m
Greville(A)=
do( n=dim(A,2) ,
m=dim(A,1) ,

a = transpose(d) ,
null = zero(2,m) ,

do( -k =1
Ap = null ,

Ap[1] = mpiv(a[1]) ,
— k=2

di = dot(Ap([1],al2]) ,
c = al2] - Ai(1)*di ,
test( ¢ == null[1l] ,
b = (1+dot(di,di)) ~(-1)*dot(di,Ap[1]),
b = mpiV(c)) ,
Ap[1] - di*b ,
zero(2,m) ,
Ap[1] = B,
Ap[2] = b,
-—k > 2
do(for(k,3,n,
di = dot(Ap,alk]) ,
c = alk] - dot(Ai(k-1),di),
test( ¢ == null[1],

o
]

Ap

b = (1+dot(di,di)) " (-1)*dot(di,Ap),
b = mpiV(c) ),

B = Ap - outer(di,b),

-- print(B), - (D

Ap = zero(k,m),
for(i,1,k-1, Ap[i] = B[i] ),

Ap[k] = b,
Ap), -- close for, WATCH THE’,’ -- (2)
Ap) -- close do around for-loop -- (3
) -- close inmer do
) -- close outer do

#i#HHHHHHH R #44 END GREVILLE #########HH##H R 1 HHH
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Comment. We give some hints about the construction of the general function Greville()
in EIGENMATH™| For readability we use index name k instead of j in the abstract formu-
lation of the algorithm in 14.3.1. We write di instead of d, because d is a reserved identifier
for differentiation in EIGENMATH.

1. alk] denotes the k-th column of matrix A and Ap the future mpi-pseudoinverse of A.
2. The code lines for case k = 1 are known from 14.3.1 and are commented there. The
code lines for k = 2 are known from 14.3.3 and 14.3.4 and case k = 3 is discussed in 14.3.5
and is in principe repeated here in the lines for k£ > 3.

> (0):  We use a helper function Ai(k), which gives back the first k£ columns of matrix
A, eg. Ai(2) = (a[l],a[2]). This construction is sometimes denoted A[.,1 : k] in other
computer algebra languages.

> (1): If you like you can sprinkle "print’ statements at interesting positions in the code to
watch the output of intermediate results. You can turn on/off this feature by commenting
on/off by writing/deleting the 2-fold comment hyphens '--’ of EIGENMATH.

>> (2): Notice: The for’-loop is boxed in a 'do’-compound statement, because for’ does
not return a value like ’do’ does@ The ’, after "..Ap)’ finalize the do-command, giving
back the current result of Ap to be handled further in the next loop.

>> (3): here Ap is returned as value for the whole function call.

Exercise.
a. Load the helper functions isMPI(P,A) and mpiV(A) in your running EIGENMATH ses-
sion. Then test the implementation of function Greville() e.g. via

A=((1,1,1,3), (2,2,2,2), (3,3,3,5))

A

Api=Greville( A ) -— ..pi = (p)seudo(i)nverse
Api

isMPI(Api,A)

EIGENMATH output:

-z
36

-
36

111
Ad=12 2 2 B A
3 3 3 £2

ol ol ot

w2

1L
ERNY)

b. Compute the MOORE-PENROSE-pseudoinverse of M = ((0,1/2),(0,1/2),(1,—1).
> Click here to run the GREVILLE script.
Check the result using Wolfram’s widget.

Q©

33 An implementation with Octave is in [4, p. 28] and with Mathematica e.g. in [16] p. 12-13]
34 thank George WEIGT for this hint.


https://lindnerdrwg.github.io/laiE4.html

14 CONSTRUCTION OF THE MOORE-PENROSE-INVERSE 5

Now we can solve any problem involving pseudoinverses satisfactorily and elegantly
using the generalized M OORE-PENROSE-pseudoinverse mpt using function Greville.
At this point, we end up our way through the elementary linear algebra of pseudoin-
verses and their applications with EIGENMATH.

14.5 Problems.

Before you try the following problems: Be sure that your toolbox mpiBox.txt contains the
EiGENMATH-functions isPinv, isMPI, isSolvable, solSet, mpiN, Ai(), Greville. Load
these functions on your iMac with the command run ("Downloads/mpiBox.txt") into your
actual session. Otherwise use EIGENMATH™™"¢ via > To invoke EIGENMATHO "¢

P108. Determine a pseudoinverse.

Given is the matrix A = ((1,2,3),(3,4,3),(6,8,6)).

a. Determine a pseudoinverse of A using Elementary matrices Em() to reach a final RREF.
b. Determine the MOORE-PENROSE-pseudoinverse of A.

P109. Determine the MOORE-PENROSE-pseudoinverse.
Here is matrix B = ((0, 1,2), (0,0, —2), (0, 2,4)).

a. Determine the MOORE-PENROSE-pseudoinverse of B.

b. Check the result with isMPI.

P110. 2 x 2 Linear Systems.

[2-x+3-y=1] [2-x+3-y 1] [2-)(*3-_9
2 |" | x-15y=1] | x-1.5y
a. Check the solvability of the LS by calling isSolvable.

b. If necessary, calculate a particular solution mpi(A)*B or pinv(A)*B.
c. Determine the solution set using solSet(.).

d. Give the solution set calculated in c. in parametric representation.
e. Try to visualize the solution set with e.g. [20]: >INVOKE CAaLcPLOT3D

n ]
M =
e

_x+2.y=

P111. Underdetermined 2 x 2 linear systems.

1-x+2-y+3-z=4] [ x +y+2-2z =5
8] |-2x-2y-4=z=11

3-x + 2y +1-2

a. Check the solvability of the systems.

b. Determine the solution set.

c. Give the solution set in parametric representation.
e. Visualize the solution set with paper and pencil.
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P112. Solve a linear 2 x 3 system of equations.
A Computer Algebra System (CAS) receives the following assignment:
solve ({1xx + 2%y + 3%z = 4, 3*x + 4xy + 3xz = 2}, [x, y, z])
a. Help that CAS using EIGENMATH.
b. Solve this linear system with different pseudoinverses.
c. Compare the solution sets. Justify the equivalence of the representations.

P113. Solve another linear 2 x 3 system of equations.
The same Computer Algebra System (CAS) returns for the following request
solve ({1xx + 2xz = -1, -2%z=6, 2%y + 4*xz = -2}, [x, y, z])
the answer { } .
a. Study the solution set of this linear system using pseudoinverses.
b. Study the solution set using the MOORE-PENROSE-pseudoinverseof the system matrix.

P114. Calculate a pinv.

Compute a pseudoinverse (pinv) of the matrix
a. ((0,1,2,—1),(0,0,-2,6), (0,2,4, —2))

b. ((0,1,2,-1,2), (0,0, 3,5, —4),(0,2,1,3,0))

P115. A 3 x 3—linear system.

Given is the Linear System
18 -1 x 1
a1 a 2 5

a. Check the solvability of the linear system.

b. Calculate a particular solution and verify the solution property isSolvable.
c. Determine the solution set.

d. Determine the solution set in parametric representation.

e. Try to visualize the solution set with e.g. >INVOKE CALCPLOT3D.

P116. An underdetermined 3 x 3—linear system.

1-x + 2y + 3-2

1% + 2y + 3-2

1-%x + 2-y + 3-2

. Check the solvability of the linear system.

. Calculate a particular solution.

. Determine the full solution set.

d. Give the solution set calculated in parametric representation.

. Try to visualize the solution set with e.g.>>INVOKE CALCPLOT3D. .

o o e

@


https://c3d.libretexts.org/CalcPlot3D/index.html
https://c3d.libretexts.org/CalcPlot3D/index.html
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P117. Overdetermined3 x 2—-linear system.

2'x v 3y =1 1'x +2-y =3
=% + 2-y = = = = 2-y = -3

2
x +2-y =3
a. Check the solvability of the LS.
b. Calculate a best fit particular solution.

MiniLexicon D>E:

For the following original resources it is sometimes necessary to know at least a little bit
of vocabulary.

Mini | Lexicon
D | E
Beispiel | example
unterbestimmt | underdetermined
Gleichung | equation
Unbestimmte | unknown
Losung | solution

P118. ACHILLES’ examples.

Check all examples in [I] using EIGENMATH.

Do not be bothered by the few German words. Use e.g. Google translate, if necessary or
the miniLexicon.

P119. FURLAN’s examples.

Do the examples 3 .. 9 in The Yellow Book [5] using EIGENMATH.
D: Singular-wert-zerlegung

Do not use the E: singular value decomposition (svd)’

use the mpiBox.txt instead.

P120. PICARONNY’s example.
Do example 5 in [15] using EIGENMATH.
Look also at the compact formulation of the Greville algorithm on p.4.

P121. Test matrices of TAsI¢ et al.
Do examples 4.1 and 4.2 in [16] using EIGENMATH. Compare the computation times of
E1GENMATH vs. CAS Mathematica using the table in example 4.3.
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P122. WOERMANN’s example.
Do the example about Linear Regression in [30] using EIGENMATH.
Translate the CAS Maxima code into EIGENMATH code and verify the calculation.

P123. WIKIPEDIA example.
Check the examples in [31] using EIGENMATH.

P124. PETKOVIC example.
Try to compute the mpi for the matrices A, M and N of example 5.1 in [32] using EIGEN-
MATH.

P125. Potpourri I: LABUS’s examples.

DO ;b 1.10,1.13, 1.18 and 1.19 in [33] using EIGENMATH. MiniLexicon: p! ¢,

P126. YoTube lesson’s.
Enjoy some of the video lessons [26], [27], [28] , [29] or [34].
Solve or verify the presented problems using EIGENMATH.

P127. ERNST’s example.
Try to solve or reproduce the problems on p.223 and p. 240 in [35]. There are many more
aspects to do reading this script ...

P128. Two examples from the University of Stuttgart.
Do the two examples at the end of the text in [36] using EIGENMATH.

P129. Potpourri II: HADRIEN’s examples.
Do the four examples of HADRIEN [37] using EIGENMATH instead of numPy.
y
(3, 5)
(1, 4)
(@, 3)
(0, 2) (3, 2)

(2, 0) X

We want to fit a line to this set of data points

What is in your opinion the pros and cons of both systems?

P130. MACAUSLAND’s example.
Do it: p.9 of [38] using EIGENMATH. Check your answer using [39].
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P131. Example on MathePlanet.

Do the calculation of the pseudoinverse after Definition 2 of [40] using EIGENMATH.
Check your answer using an alternative software.

Y%subsubsectionCaspary’s test matrices for the Greville algorithm.

P132. CASPARY’s test matrices for the GREVILLE algorithm.

& Abstract: An implementation of the Greville algorithm on a Motorola DSP96002 is
presented. This algorithm enables us to calculate the pseudo-inverse of a matrix or the
inverse of a regular matrix [1] [2]. An application to Least-Squares (LS) problems shows the
relevant results obtained on a DSP96002 with a lower numerical complexity compared to
other algorithms. [41]

a. Do the calculation of the MOORE-PENROSE-pseudoinverse of matrix A in IIT in [41].
b. Do the application problem in IV.

¢. Compare the MATLAB implementation of Greville with our implementation in EIGEN-
MATH. There is also a flow diagram of the algorithm.

>

In conclusion, we have automated the discussion of linear systems of equations (LS) just
as the discussion of functions in analysis. With the help of the pseudoinverse of a matrix,
we can completely overlook and effectively determine the variety of solutions of any linear
system of equations.

With that impression we want to finish our short excursion into the Elementray Linear
Algebra with pseudoinverses and their applications. Once again:

"Mathematics is
not formulas,
or computations,
or even proof,
but IDEAS."

Gilbert Strang, MIT/USA
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