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Preface

This is part 2 of a series of interactive learning parcours on Elementary Linear Algebra. It
is about the Gauss-Jordan algorithm, with is done using CAS Eigenmath and explores
the solution of regular linear systems.
These booklet grew out from a series of lessons that I developed between 2001 and 2006 at
Mercator University of Duisburg and at FernUniversität Hagen in Germany. The material
was repeatedly tested at a German hight school resp. college. This learning environment
was originally developed using notebooks compiled with CAS MuPAD 3.1, its free prede-
cessor CAS MuPADLight 2.5.3 and in a very early status using the CAS Derive 3.0 with
accompanying learning materials in PDF mini booklets.
Using this booklet with Eigenmathonline, no installation of any software is necessary,
everything runs directly online via WLAN : a click on a link in this text is enough and
the calculation is made1, allowing further free inputs form the user. If you own a Mac,
there is the option to install the app Eigenmath free of charge and run the scripts by
mark–copy–paste into the Eigenmath window.
I owe many suggestions on the subject to my doctoral supervisor Prof. Günter Törner and
the book[2], that he wrote together with his doctoral supervisor Prof. Benno Artmann.
The didactical obligation of the book was Gilbert Strang’s motto

”explain rather than deduce.”

to which I also feel obliged. The photo was taken at the beginning of the 2000’s in the
Mathematical Institute of the University of Göttingen.

bA wL gT

Any feedback from the user is very welcome.

PS: Being retired and no native speaker, I have no support from colleges at high school or
university anymore, therefore the reader may excuse my grammatical and spelling mistakes.

Wolfgang Lindner
Leichlingen, Germany
December 2020

1The output is printed below the input window – therefore sometimes one has to scroll to the left to
see the output region with the result.
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3 The 2nd model problem

The following problem introduces to the elementary linear algebra, which is about solving
linear equations. We encounter typical questions, concepts and solution methods, which
are important e.g. for a degree in economics, sociology, psychology, statistics, etc..

The following problem leads to the investigation of linear solution methods for systems of
linear equations (”LS” for short).

3.1 Water towers - the reservoir problem

Cities store water in towers and from there the municipal utilities distribute the water to
households and industrial plants via pipe systems. If no pumps are used, this physical
method is called a ”gravity system”. Here is the model of a water tower:

Q1: Experiment : get a plastic bottle with an approximately constant cross-sectional area
analogous to the photo. Put a ”0” mark a few centimeters above the bottom of the
bottle and drill a small hole at the level of this zero mark ”0”.

– Mark the height in 1 cm steps from the 0 mark to the height of 10 cm. Hold your
finger on the hole and fill the bottle with colored water up to the 10 cm mark.

– Run a stopwatch as soon as you take your finger off the hole.

– Measure the time it takes for the water surface to reach the 8 cm, 6 cm and 4 cm
hole.

– Repeat the experiment several times and average your measured values.

– Enter your measured values in a table; here is a sample:

Height in cm 10 7 5 3 1 0
Time in sec 0 2.8 5.3 7.9 12.2 17.3

We draw the measured values e.g. on millimeter paper:
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Q2: Research questions :

◦ Is it possible to ”calculate” the time required to reach a certain height beforehand?

◦ Are all measured values on a function graph, i.e. models a law (”formula”) this
experiment?

◦ How could such a formula be obtained?2

◦ Can the measuring points - that would be the simplest case - e.g. lie on a straight
line?3

◦ Repeat the experiment: estimate and measure the time it takes to reach the middle
of the scale and the zero level.
How accurate was your prediction?
Find more questions for yourself and investigate them.

◦ The problem at hand was explored for the first time by E. Torricelli (1608-1647).
Get a short biography and a photo of Torricelli (e.g. from the Internet)?
Inquire about Torricelli’s experiments and his findings.

– What influence does the size or shape of the borehole have? – What influence does
the composition of the liquid have?

– What influence does the cross-sectional area of the bottle have?

– What influence does the air pressure have? ...

Strategy considerations and research questions.
This problem represents typical questions that mathematicians often ask:

1: Can I describe the problem by an equation(s)? (Modeling question)
2: Are there systematic solution methods for the problem? (Algorithm development)

2By finding a function that goes through the points.
3No, because the water does not run out of the bottle constantly but slows down towards the end.
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3.2 Partial solution of Q1 and Q2

Here are the experimental data from a measurement (you can use your own data here):

Height in cm 10 7 5 3 . 1 0
Time in sec 0 2.8 5.3 7.9 12.2 17.3

a. Torricelli’s considerations led to a quadratic relationship between the measured
variables time t and height h of the water level above zero level:

h = a · t2 + b · t + c

b. Calculate the parameter a, b, c using pairs from the table.4 Hint : Eigenmath:

c. Which predictions result from the formula for reaching the middle of the scale or the
zero mark?
d. Draw the graph of the function h = f(t), enter the measuring points and also mark the
values calculated with f(t). Compare.

Hint : For the drawing5 we use the lexicon text: t h
graph: x y .

e. Repeat b. and d. using the 2nd, 3rd and 4th data points. What do you observe?
Hint : Let help you e.g. using a Wolfram widget6.

4Taking e.g. the 1st, the 3rd and the last data pair we get a ≈ 0.03, b ≈ −1.1 and c = 17.3.
5The plot was done with PocketCAS for iMac with the plot setting //!x=-2..22,y=-2..12.
6https://www.wolframalpha.com/widgets/view.jsp?id=f7439c2089333993290cb74f148ddced

https://www.wolframalpha.com/widgets/view.jsp?id=f7439c2089333993290cb74f148ddced
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4 Solving Linear Systems – The Gauss Algorithm

We ask: which method or which algorithm did the software e.g. in 2.2.e use
to calculate the solution? To shed light upon this black box and to construct
a systematic and semi- or fully automated solution for our model problem, we
first consider a few simple special cases.

4.1 Solving a matrix equation – the row image

We want to study the solution process of a linear system using matrices. Therefore we
consider for the moment a 2-by-2 linear system and look at it from different perspectives.

1x + 2y = 3

4x + 5y = 6 – written as one matrix equation →
[
1 2

4 5

]
∗
[
x

y

]
=

[
3

6

]

First we solve the system by multiplying simultaneously both sides of the equation with
transformation matrices in order to guarantee that the solution set of the system remains
the same.

1. scene:

linear equations to solve:

1x + 2y = 3

4x + 5y = 6

the matrix equation:[
1 2

4 5

]
∗
[
x

y

]
=

[
3

6

]
[
1 0

0 1

]
∗
[
1 2

4 5

]
∗
[
x

y

]
=

[
1 0

0 1

]
∗
[
3

6

]
visualization as row image:

2. scene:

◦ Hereinafter R1 denotes the 1st row and R2 the 2nd row of the actual matrix. E.g. for
matrix A =

[
1
4
2
5

]
we have R1 = [1 2] und R2 = [4 5] and the notation ”−4∗R1+R2→

R2” means the instruction ”add the -4 multiple of row1 to row2 and put it into the
matrix as new 2nd row”. This is called a ”linear combination of row1 and row2”.
For example, −4 ∗R1 + R2→ R2 means: please do the following calculation:
LHS = −4 ∗ R1 + R2 = −4 ∗ [1 2] + 1 ∗ [4 5] = [−4 − 8] + [4 5] = [0 − 3] = R2new

RHS = −4 ∗R1 + R2 = −4 ∗ [3] + 1 ∗ [6] = [−12] + [6] = [−6] = R2new

◦ Multiply the matrix equation from the left with
[

1
−4

0
1

]
, i.e. −4 ∗R1 + R2→ R2:
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1x + 2y = 3

0x− 3y = −6

[
1 0

-4 1

]
∗
[
1 2

4 5

]
∗
[
x

y

]
=

[
-4 0

0 1

]
∗
[
3

6

]
−4 ∗R1 + R2→ R2[

1 2

0 -3

]
∗
[
x

y

]
=

[
3

-6

]

3. scene:

◦ Multiply the new matrix equation from the left with
[
1
0

0
−1/3

]
, i.e.−1

3
∗R2→ R2:

1x + 2y = 3

0x + 1y = 2

[
1 0

0 -1/3

]
∗
[

1 2

0 -3

]
∗
[
x

y

]
=

[
1 0

0 -1/3

]
∗
[

3

-6

]
−1

3
∗R2→ R2[

1 2

0 1

]
∗
[
x

y

]
=

[
3

2

]

4. scene:

◦ Multiply the new matrix equation from the left with
[
1
0
−2
1

]
, i.e. −2∗R2 +R1→ R1:

1x + 0y = −1

0x + 1y = 2

[
1 -2

0 1

]
∗
[
1 2

0 1

]
∗
[
x

y

]
=

[
1 -2

0 1

]
∗
[
3

2

]
−2 ∗R2 + R1→ R1[

1 0

0 1

]
∗
[
x

y

]
=

[
-1

2

]

◦ What do we see? The two straight lines, which belong to the original system of 2
equations (Figure in scene 1) have a common intersection point, the solution of the
system. But this intersection is not to be read off clearly! During the transformation
process this lines are stepwise alined with the coordinate axes. In the last figure the
straight lines are parallel to the coordinate axes, where the intersection can plainly
read off: x = −1, y = 2, i.e.

[
x
y

]
=
[−1

2

]
.
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4.2 Solving a matrix equation – the column image

In order to solve the matrix equation A ∗X = B and taking the perspective of an column
image, we write the linear system A∗X = B in form of a single matrix, which has as parts
the system matrix A as well as the RHS B, i.e. we build the so-called augmented matrix

(A
...B), which allows a compact solution process and prepares for the use of Eigenmath:

1x + 2y = 3

4x + 5y = 6

– written as augmented matrix →
[
1 2 3

4 5 6

]

1. scene:
linear equations to solve:

1x + 2y = 3

4x + 5y = 6

augmented system matrix:[
1 2 3

4 5 6

]
[
1 0

0 1

]
∗
[
1 2 3

4 5 6

]
visualization column image:

2. scene:
[

1 0

-4 1

]
∗
[
1 2 3

4 5 6

]
=

[
1 2 3

0 -3 -6

]
−4∗R1+R2→ R2

3. scene:
[

1 0

0 -1/3

]
∗
[
1 2 3

0 -3 -6

]
=

[
1 2 3

0 1 2

]
−1/3 ∗R2→ R2
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4. scene:
[
1 -2

0 1

]
∗
[
1 2 3

0 1 2

]
=

[
1 0 -1

0 1 2

]
−2∗R2+R1→ R1

◦ What do we see? In the sequence of figures, which accompany the steps, the 1st
column

[
1
4

]
of AB =

[
1 2 3
4 5 6

]
and their new instances is colored blue, the 2nd in red and

the 3dr (the solution) in green. The 4th step shows, that the solution is reached,
when the 1st and 2nd column vectors of AB are the transformed into the unit vectors
e1 and e2 of the coordinate system: the solution can then be read off as coordinates
of the green solution vector :

[−1
2

]
.

5. scene:
[
1 -2

0 1

]
.∗
[

1 0

0 -1/3

]
∗
[

1 0

-4 1

]
∗
[
1 2 3

4 5 6

]
=

[
1 0 -1

0 1 2

]

◦ Btw: The figure in scene 5 shows a second interpretation of the solution:
[−1

2

]
are the

multiples to linear combine the RHS B =
[
3
6

]
of the system using the two columns

A1 =
[
1
4

]
and A2 =

[
2
5

]
of A as direction vectors, i.e. one has to go 1 step backwarts

(minus sign in −1!) in direction of A1 and from that point 2 steps in length and
direction of A2 to reach the RHS B, that is:

−1 ∗
[
1

4

]
+ 2 ∗

[
2

5

]
=

[
3

6

]
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4.3 Solving a matrix equation – the matrix image

1:
[

1 2 3
4 5 6

]
−4 ∗R1 + R2→ R2

[
1 0

-4 1

]
↓ eliminate

2:
[

1 2 3
0 −3 −6

]
−1/3 ∗R2→ R2

[
1 0

0 -1/3

]
↓ scale

3:
[

1 2 3
0 1 2

]
−2 ∗R2 + R1→ R1

[
1 -2

0 1

]
↓ eliminate

4:
[

1 0 −1
0 1 2

]
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◦ What do we see? In the sequence of figures, which accompany the steps, every
column of the augmented system matrix AB is point of a polygon. During the
solution process this polygon is transformed step by step into the final position
4:. The solution is reached, when the 1st and 2nd column vectors of AB are the unit
vectors e1 and e2 of the coordinate system, i.e. when the polygon is locked at the
points

[
1
0

]
and

[
0
1

]
– the solution can then be read off as coordinates of the last point

of the polygon (the yellow one):
[−1

2

]
.

◦ The end configuration of the matrix in step 4: shows a typical pattern �
X

Z
Y

of the
system matrix A, which gives an indication to control the solution process. Looking
back at the solution steps we see, that we try to get a zero(s) at position X of matrix
A, then to get a one(s) at position Y and then a zero(s) above the Y at Z. We will
elaborate in detail on this Gauss scheme soon.

P25. (To the solution using transformation matrices) Here is a second example.
a. Fill in the missing matrices [...], which give the correct intermediate results with left
multiplication. An example is given in step 1.
b. Observe the positioning and the values of the entries in the transformation matrices
[...] carefully and try to recognize relationships.
c. Sketch a matrix image as illustration of the solution process.

1: 3x + 6y = 6

2x + 3y = 3.5

[
3 6 6
2 3 3.5

]

scale ↓
[
1/3
0

0
1

]
∗
[
3
2
6
3

6
3.5

]
=
[
1
2
2
3

2
3.5

]
C 1/3 ∗R1→ R1
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2: . x + 2y = 2

2x + 3y = 3.5

[
1 2 2
2 3 3.5

]

eliminate ↓
[ ]

∗
[
1
2
2
3

2
3.5

]
=
[
1
0

2
−1

2
−0.5

]
C − 2 ∗R1 + R2→ R2

3: x + 2y = 2

−1y = −0.5

[
1 2 2
0 −1 −0.5

]

Skalieren ↓
[ ]

∗
[
1
0

2
−1

2
−0.5

]
=
[
1
0
2
1

2
0.5

]
C − 1 ∗R2→ R2

4: x + 2y = 2

1y = 0.5

[
1 2 2
0 1 0.5

]

Eliminieren ↓
[ ]

∗
[
1
0
2
1

2
0.5

]
=
[
1
0
0
1

1
0.5

]
C −2∗R2+R1→ R1

5: x = 1

y = 0.5

[
1 0 1
0 1 0.5

]
Remark. In school we stopped half way at scene 3: and then go back for the solution.

x + 2y = 2

−1y = −0.5 ∴

−1y = −0.5  y = 0.5 (4.1)

 x + 2 · 0.5 = 2 (4.2)

 x = 2− 1 (4.3)

→ x = 1 (4.4)

Equation (2.1) is equivalent to scene 4: and (2.2) until (2.4) to scene 5:. We will
(semi)automate this ”Go back” - method later with Eigenmath as well. A first hint:

Eigenmath

-- BACK SUBSTITUTION works for 2x2 matrices

U = ((1,2,2),(0,-1,-0.5)) -- the intermediate matrix of scene 3:

y = U[2,3] / U[2,2] -- see (2.1)

y

x = (U[1,3] - U[1,2]*y) / U[2,2] -- see (2.2) til (2.4)

x

Try it: B Click here to run the script.

https://lindnerdrwg.github.io/laip25.html
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4.4 Solving a matrix equation – use Eigenmath!

We now solve the same linear system using Eigenmath. We use so-called ”Elementary
matrices” Em(..), which we define resp. construct in the next definition. Here we study
them in action. Look how Em(x,i,j) reflect the symbolic process description

x ∗Ri + Rj → Rj

1: −4 ∗R1 + R2→ R2 is encoded trough Em(-4,1,2), i.e the LHS of ”→”:

2: −1/3 ∗R2→ R2 is encoded trough Em(-1/3,2,2):

3: −2 ∗R2 + R1→ R1 is encoded trough Em(-2,2,1):
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4: We can omit the intermediate steps using multiple matrix dot-products:

Comment. The identifier RREF saves in (1) the whole elimination process, i.e.
the product of the 3 elementary matrices Em(k,i,j). Therefore we can unwind the
process in (2) giving a compact short call with the solution of the linear system as
answer. In the course of this RREF is an abbreviation for the process description
”row reduced echelon form”.

A look ahead : looking at the left hand side (LHS) matrix A in (3) and the RHS ma-
trix B in (4) of the linear system AB we call in (5) the so-called ”inv”(erse) matrix
of A. This inverse of A is decoded as the process result RREF , i.e RREF(A)=inv(A)!
This is indeed a fact and no coincidence:
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After considering some visual representations of the solution process of a LS, we
now concentrate on the analysis of the underlying solution strategy and study the
computational, methodically strategic approach in the solution process of a linear
equation system.

◦ Is there an underlying guiding principle?

◦ What to do from one step to the next?

4.5 Definition: Elementary matrices in Eigenmath

If we want to describe the individual phases during the solution of a larger LS with the
help of transformation matrices, the wish for an automatic generation or easier input of the
transformation matrices arises, especially if the matrix dimension is greater than 2. This
would make it possible to compute the solution of an LS by means of matrix multipliers
clearly and semi-automatically.

4.5.1 Definition: identity matrices

Looking back at (
3 6 6
2 3 3.5

)
 

(
1 0 1
0 1 0.5

)
︸︷︷︸
A

︸︷︷︸
B

︸︷︷︸
E

︸︷︷︸
R

there was always a typically final status with the pattern [E R], where E =
[
1
0
0
1

]
is the

so-called 2–dimensional identity matrix and R =
[

1
0.5

]
is the result at the RHS of the

linear equation. The following concept of an identity matrix enables us to provide a clear
and compact description of insights and observations such as the above formulation of the
solution process of a linear system.

Math: The n-dimensional identity matrix En for n = 1, 2, 3, . . . is defined through:

E1
def
= (1)

E2
def
=

(
1 0
0 1

)

E3
def
=

1 0 0
0 1 0
0 0 1


. . .

Eigenmath:
En

def
= unit(n)
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Comment. 1. If there is no risk of confusion in reading the text, we write briefly E
instead of En.

2. Unit matrices E are quadratic n×n matrices. They have all ones on the main diagonal
and otherwise only contain zeros.

3. The identity matrix E plays the same role resp. ∗ as the number 1 in ordinary
multiplication: En is the neutral element resp. ∗, i.e. for any square matrix M the
following rule applies:

M ∗ E = E ∗M = M

The multiplication with the identity matrix E does not change M . We had seen that
before in §2.1.

4.5.2 Definition: Elementary matrices in Eigenmath

If we change an identity matrix at exactly one position, we get a so-called elementary
matrix.

Eigenmath

Em(k,i,j) = do( M = unit(n), M[j,i] = k, M)

-- k*Ri + Rj -> Rj

Comment. The definition implements the transformation rule k ∗Ri + Rj− > Rj. First
an n-by-n unit matrix M is elected, second the value k is placed in M at position [j, i] and
then the changed matrix M is returned.
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P26. (To the solution and back) We continue P25.[
3 6 6

2 3 3.5

] elim.
−→
1

skal.
−→
2

elim.
−→
3

[
1 0 1

0 1 0.5

]
a. Realize the solution process

[
3
2
6
3

6
3.5

]
 
[
1
0
0
1

1
0.5

]
using Elementary matrices Em() in

Eigenmath. Think at the symbolic process description x ∗Ri + Rj → Rj.
b. Define the Em(?), which does the transformation in steps 1 – 2 – 3.
c. Calculate the RREF like the one in 2.3.4 and solve the linear system in one stroke.

Check your solution using Math : A−1

Eigenmath: inv(A) .
d. Sketch a suite of hand made matrix images to visualize the solution process.
f*. Give a sequence of transformations (= Em’s) to go back from the final solution status[
1
0
0
1

1
0.5

]
to the original start situation

[
3
2
6
3

6
3.5

]
:[

3 6 6

2 3 3.5

] ?
←−
3

?
←−
2

?
←−
1

[
1 0 1

0 1 0.5

]
P27. (A mixing problem) Mix a 30% and a 50% alcoholic liquid to produce 2 liters
of a liquid with a pure alcohol content of 45%.
a. Write the numbers of this 2×2 –LS as 2×3 – system matrix and form the first two
columns of this system matrix into the matrix

[
1
0
0
1
?
?

]
by suitable left multiplications with

elementary matrices Em. Read off the solution from the LS. Do this exercise with/without
Eigenmath.
b. Describe the solution process algebraically by a product of transformation matrices Em.
What is the matrix with the help of which the solution of the LS can be calculated ’in one
putt’?
c. Use Eigenmath to calculate the inverse matrix of the coefficient matrix A =

[
1
0.3

1
0.5

]
.

Compare with b.
d. Display the solution process graphically in the matrix image.

P28. a. Solve this 2×2– linear system using Eigenmath and Em’s:

x− y = 0

x + 2y = 3

b. Alternatively use from the ”half way status” (matrix U) the ”Go back” (Gb) method.

Eigenmath

-- BACK SUBSTITUTION works for 2x2 matrices

Gb(U) = do(x2 = U[2,3] / U[2,2],

x1 = (U[1,3] - U[1,2]*x2) / U[2,2],

x = (x1,x2) )

x
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P29. (graphic representation of a solution process) Consider the following graphic
representation of the solution process for a 2-by-2 linear system of equations

a. What is the original LS A ∗X = B or [AB], what is its solution?
b. Which transformation matrix G has transformed the LS ”in one stroke” into the end
position? Let Eigenmath calculate the inverse matrix A−1 of the coefficient matrix A for
comparison.
c. Reconstruct the above matrix image.

P30. (A historical problem from Liu Hui)7 In ancient China there was a mathe-
matics textbook in nine books, which was probably published as early as 180 BC by the
mathematician Shang Cang and used in the processing of Liu Hui from the year 263
AD. The eighth of these books deals with the systems of linear equations and develops
a general solution method that was unknown to western mathematicians. The following
system of equations had to be solved by a candidate for a higher civil service post in ancient
China (in modern notation):

x + 3y + 2z + 8u + 5v = 95
2x + 5y + 3z + 9u + 4v = 112
3x + 5y + 7z + 6u + 4v = 116
7x + 6y + 4z + 5u + 3v = 128
9x + 7y + 3z + 2u + 5v = 140

This system of equations could in principle be solved using the addition method
known from the intermediate level. The main difficulty in solving this task - and the
reason why many very soon fail and give up (and thus could not become Chinese
officials) - lies in the ability to organize the solution process appropriately.

a. Solve this linear system using Elementary matrices.
b. If the solution process in a. would be stopped at half time, one would have the following
intermediate status:

7See [2, p.15]
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U=

[1, 2, 3, 1, 4],

[0,-10, -13, -4, -18],

[0, 0,-13/10,13/5, 21/5],

[0, 0, 0, -1, -146/13],

[0, 0, 0, 0, -99/13]

♥ Why is the original LS easily solvable in the form U?

◦ Determine some of the unknowns x, y, z, u, v with a calculator. What could a solution
strategy look like?

4.6 The Gauss-Jordan scheme

4.6.1 Tackling a 3-by-3 linear system with the Gauss-Jordan scheme

a. Reflect and ponder about the Gauss-Jordan scheme. What is the solution strategy?
b. Write the output matrix in 2.8 back as a classical system of linear equations.
c. What is the solution of the LS (do not calculate!)? Verify the solution on the LS.
d. Now solve the LS using elementary matrices with Eigenmath. Use the Gauss-
Jordan-scheme as guiding principle. Hint. Before using Em() you must set n = 3.
e. At the end of the Gauss part, i.e. at half time, we should have got the matrix status

Calculate the unknowns by paper and pencil without using the Jordan part of the scheme
and not using Eigenmath, too. Then check your calculation by a ”Go back” Gb() scheme.
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P31. (Solution of the model problem Q1)
Calculate the values a, b, c of the parameters for the water tower problem in 2.2.e using
Eigenmath. Use the Gauss-Jordan-scheme as guiding principle.
Hints: h(2.8) = 7, h(5.3) = 5 and h(7.9) = 3. This leads to the 3×3–linear system:

7.84a + 2.8b + c = 7

28.09a + 5.3b + cx + 2y = 5

62.41a + 7.9b + c = 3

◦ Because the system matrix is of typ 3× 3 we have to set n = 3 before using Em().

4.7 Definition: Elimination matrices – Tuning the Em’s

Thinking of the problem of Lui in P30, we have seen how laborious the single-
step solution with elementary matrices can be for higher-dimensional matrices or
linear systems. That is why we are now want to contruct an accelerated method.
Therefore the following construction of the Gauss matrix alias Elimination matrix
automatically ’cancels’8 all matrix entries of a complete column.

4.7.1 Eigenmath Definition of the Elimination alias Gauss matrix

The following function Gm(k,A) ist called a Gauss matrix (short: ’Gm’) or a Gauss trans-
formation. Sometimes ist is also called Elimination matrix.

Eigenmath

####### Construction of GAUSS matrix ’Gm’

Gm(k,A) = do( n = dim(A,1),

Gmm = unit(n),

for(i, k+1, n, Gmm[i,k] = - A[i,k]/A[k,k]),

Gmm )

Comment. The function Gm(k,A) awaits two inputs:
– the number k of the column to be ’annulated’ below row k and
– the (augmented) matrix A of the linear system.

The do-compound command first remembers the number of rows of A in identifier n, then
keeps ready a quadratic n× n identity matrix Gmm to store the elimination steps and then
executes the elimination steps inside a for-loop by changing the column positions k + 1
trough n of the identity matrix with the multipliers aij/akk.
Btw: The divisor akk on the main diagonal of A is called a pivot element. The value of the
pivot is critical: it must be 6= 0.

8i.e. makes the corresponding matrix elements to 0.



4 SOLVING LINEAR SYSTEMS – THE GAUSS ALGORITHM 21

4.7.2 Example.

The action of the Gauss matrices Gm is best understood by means of an example. Here
we do again the Gauss scheme of P31.

The 1st call of Gm nullifies the complete 1st column of A below the 1st entry. The new
status is saved in A1. Now one calls Gm(2, A1) to nullify the 2nd column of A1 below
the 2nd entry. The new status is saved as A2. This terminates the Gauss part of the
Gauss-Jordan scheme.

Remark. For the ’Jordan part’ to finalize the solution process, we use the following ’Go
back ’ scheme Gb3, which is adapted for 3×4-dimensional augmented system matrices:

Eigenmath

U=((2,4,-2,2),(0,1,1,4),(0,0,4,8))

Gb3 = do( x3 = U[3,4] / U[3,3],

x2 = (U[2,4] - U[2,3]*x3) / U[2,2],

x1 = (U[1,4] - (U[1,2]*x2 + U[1,3]*x3)) / U[1,1],

x = (x1,x2,x3))

x -- display x=(-1,2,2)

Try it: B Click here to run the script.

Exercise. Determine the solution vector x using single-step elementary matrices.

https://lindnerdrwg.github.io/lai372.html
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P32. (Boosted solution of the Liu exercise)

This is the historical 5×5 linear system by Liu, we met in P30:

x + 3y + 2z + 8u + 5v = 95

2x + 5y + 3z + 9u + 4v = 112

3x + 5y + 7z + 6u + 4v = 116

7x + 6y + 4z + 5u + 3v = 128

9x + 7y + 3z + 2u + 5v = 140

 


1 3 2 8 5 95
2 5 3 9 4 112
3 5 7 6 4 116
7 6 4 5 3 128
9 7 3 2 5 140



a. Do the Gauss part of the solution using Gauss matrices. Here is the start:

Eigenmath

Liu = ((1,3,2,8,5, 95),

(2,5,3,9,4, 112),

(3,5,7,6,4, 116),

(7,6,4,5,3, 128),

(9,7,3,2,5, 140))

A1 = dot(Gm(1,Liu), Liu)

A1

The output should be:

b. Do the Jordan part of the Gauss-Jordan procedure to finalize the solution process
using single-step elementary matrices. Do not forget to set the global variable n = 5. In
advance: How many Em’s do you need?
c. If b. seems to slow-moving: write the ’Go back ’ scheme for Gb5 for dimension 5.
Remember Gb3:

x3 = U[3,4] / U[3,3]

x2 = (U[2,4] - U[2,3]*x3) / U[2,2]

x1 = (U[1,4] - (U[1,2]*x2 + U[1,3]*x3)) / U[1,1]

d. If that procedure seems also to long-winded think as a mathematician and ... ♥.

Math | Eigenmath

xi =
bi−

∑n
j=i+1 uij ·xj

uii
| x[i] = (U[i,n+1] - sum(j,i+1,n, U[i,j]*x[j])) / U[i,i])
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5 ?Programming the Gauss-Jordan algorithm

In the previous sections we gained first experience with the semi-automated solution of
linear equations with low-dimensional matrices using Eigenmath. We will now use this
experience to obtain a fully automated solution process for regular linear systems. In doing
so, we do not bother about some pitfalls, because we want to see the main guidelines and
also because Eigenmath warns us anyway, if something goes wrong. It is our aim to
consolidate our programming skills in Eigenmath, not to compete with the fully fledged
routines, that exists in other ’big’ CAS anyway.

We proceed as follows while thinking at the Gauss-Jordan-scheme [ �
X

Z
Y

] in §3.6 :

1. program recipe Gup for quick elimination upstairs : [ �
X

Z
Y

] [ �
X

:
Y

]

2. program recipe Ge to eliminate completely below diagonal: [ �
X

Z
Y

] [�
...

Z
Y

]

3. program recipe Gj to eliminate completely above diagonal: [ �
X

Z
Y

] [ �
X

...
Y

]

4. program recipe Gn to normalize the diagonal: [ �
X

Z
Y

] [
...
X

Z
...

]

5. program recipe RREF to put all together : [ �
X

Z
Y

] [
...
...

:
...

]

5.1 Inductive prologe - a first approach

In the case of 2×2 matrices we can see the recipes in action, because the Elementary
matrices Em’s play their role. For example, if [ �

X
Z
Y

] = [1
3
4
2
] we have:
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Try it: B Click here to run the script.

Comment. The tree principal phases of the Gauss-Jordan algorithm are demonstrated
in the changing matrix A. The output A1 shows the elimination below (Ge), the normalizing
(Gn, i.e. to get 1’s at the main diagonal) in A2 and the elimination above (Gj) in A3. The
last command (RREF, i.e. row reduced echelon form) does the whole process at once.
We now generalize this pattern to higher dimensions.

5.2 Abstraction to a general procedure

In what follows we use the matrix A = ((2, 4,−2, 2), (4, 9,−3, 8), (−2,−3, 7, 10)) of the
Gauss-Jordan-scheme in 3.6 as test matrix. Remember the construction of the Gauss
matrix:

Eigenmath

---- Construction of GAUSS matrix ’Gm’ - Go down

Gm(k,A) = do( n = dim(A,1), -- get the dim

Gmm = unit(n), -- k th column

for(i,k+1,n, Gmm[i,k] = - A[i,k]/A[k,k]),

Gmm )

A=((2,4,-2, 2), (4,9,-3, 8), (-2,-3,7, 10))

A = dot(Gm(1,A),A)

A = dot(Gm(2,A),A)

Ua = A

Try it: B Click here to run the script.

The effect was discussed in 3.7.2:

A =

 2 4 −2 2
4 9 −3 8
−2 −3 7 10

  Ua =

2 4 −2 2
0 1 1 4
0 0 4 8


5.2.1 Procedure Gu – going upstairs to eliminate

We are guided by the pattern of the Gauss matrix Gm. But instead of counting forward
from i = k to i = n like Gm’s for loop for(i, k + 1, n, ..) , we are now counting backward9

from i = k + 1 to i = 1 in the for-loop of Gup to go upstairs in column with number k:

9Eigenmath is smart enough to allow this backward counting!

https://lindnerdrwg.github.io/lai41.html
https://lindnerdrwg.github.io/lai420.html
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---- Construction of quick elimination upstairs ’Gup’ - Go up

Gu(k,A) = do( n = dim(A,1),

Gmm = unit(n),

for(i,k,1, Gmm[i,k] = - A[i,k]/A[k,k]),

Gmm )

Ua=((2,4,-2, 2), (0,1,1, 4), (0,0,4, 8))

A3=dot(Gu(3,Ua),Ua)

A3

A2=dot(Gu(2,A3),A3)

A2

Here is the result:

Ua =

2 4 −2 2
0 1 1 4
0 0 −4 −8

 A3 =

2 4 0 6
0 1 0 2
0 0 4 8

 A2 =

2 0 0 −2
0 −1 0 −2
0 0 −4 −8


Notice, that in our example we also go back stepwise from column 3 til column 2.
Try this script online: B Click here to run the script.

5.2.2 Procedure Gn – normalizing the diagonal of a matrix

This is easy. We reuse once again our pattern Gm and in the action part of that for-loop
simply divide each diagonal element aii by itself10 - which gives ’1’, i.e.:

---- Construction of normalization of the diagonal: ’Gn’

Gn(A) = do( n = dim(A,1), -- get the dim

Gmm = unit(n), -- k th column

for(k,1,n, Gmm[k,k] = 1/A[k,k]),

Gmm )

Ua = ((2,4,-2, 2), (0,1,1, 4), (0,0,4, 8))

Un = Gn(Ua)

Un

A2 = ((2,0,0, - 2), (0,-1,0, -2), (0,0,-4, -8))

A2n = dot(Gn(A2),A2)

A2n

Here is the result:

Un =

1/2 0 0
0 1 0
0 0 1/4

 ∴ A2 =

2 0 0 −2
0 −1 0 −2
0 0 −4 −8

 A2n =

2 0 0 −2
0 −1 0 −2
0 0 −4 −8


Run this script online: B Click here to run the script.

10Actually, here we had to check, if aii 6= 0. We let this as an exercise for the reader in order to keep
our code simple and understandable. Eigenmath would warn us anyway.

https://lindnerdrwg.github.io/lai421.html
https://lindnerdrwg.github.io/lai422.html
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5.2.3 Procedure Ge – the Gauss part: eliminate below diagonal

This part is a bit more difficult. The aim is to get an upper triangular matrix11, so we had
to do several Gauss elimination steps one after the other. We program bottom-up, i.e. we
first study a concrete example and then try to generalize it.

We recognize that matrix X[2] has the wanted zeros in his 1st column and matrix X[3] in
his 2nd column. Now we construct the associated Eigenmath-procedure.

Eigenmath

---- (G)AUSS (e)limination - iterative version

Ge(A) = do( n=dim(A,1),

X = zero(dim(A,1),dim(A,1),dim(A,2)), --(1)

X[1]=A, --(2)

for( i,1,n-1, X[i+1]=dot(Gm(i,X[i]),X[i]) ), --(3)

X) --(4)

A=((2,4,-2, 2), (4,9,-3, 8), (-2,-3,7,10))

Ae=Ge(A)

Ae

Ae[3] --(5)

The test run displays the output of the elimination sequence Ae and of its last status
Ae[3]:

11Therefore there should be only zeros below the main diagonal of the input matrix.
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Ae[3] =

Comment. In (1) we define a n × n ×m12 tensor X to record the intermediate results,
i.e. the n − 1 elimination steps (calls of Gm). This container X consists at initialization

time of n zero matrices. Think of the ’tensor’ X like this .
To initialize the for-loop we set the first entry X[1] to the given start matrix A itself.13 In
the i-st step the for-loop eliminates via Gm(i,..) all elements below the diagonal element
of i-th column of the actual intermediate matrix X[i]. The result is saved in variable
X[i + 1] as input for the next step.
In the example the procedure finish after 2 steps. It returns the tensor X, i.e. a matrix of
3 matrices of typ 3× 4. We save the returned matrix X in Ae to pick at the end the last
entry Ae[3], which is a single matrix to start the next procedure.

B Click here to run the script.

Exercise. Normalize matrix Ae[3] online by

Ane = dot( Gn(Ae[3]), Ae[3]) -- normalize the result

Ane

– In your head: What looks Ane like?

12In the example a 3× 3× 4
13Now follow the further description by looking parallel at the step-by-step 3-dimensional hand-made

run above.

https://lindnerdrwg.github.io/lai423.html
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5.2.4 Procedure Gj – the Jordan part: eliminate above diagonal

Now we do the Jordan part. Again we program bottom-up, i.e. we first study a concrete
step-by-step example to see the difference to procedure Ge and then try to generalize it.

We start with the intermediate result U , which is upper triangular. We recognize that
matrix X[2] has the wanted zeros in his 3rd column above his diagonal element −4 and
matrix X[3] in his 2nd column. Pay attention: we are counting the process backwards.
Now we construct the associated Eigenmath-procedure, which is abstracted from this
small example:

---- (G)AUSS (j)ordan part - iterative version

Gj(A) = do( n = dim(A,1),

X = zero(dim(A,1),dim(A,1),dim(A,2)),

X[n] = A, --(1)

for( i,n-1,1, X[i] = dot(Gu(i+1,X[i+1]), X[i+1])), --(2)

X)

U = ((2,4,-2, 2),(0,1,1, 4),(0,0,4, 8))

X = Gj(U)

X --(2)

X[1] --(3)

Here is the output X and X[1]:
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X[1] =

Comment. In (1) we save the input matrix A in the last entry of the container (tensor)
X and initialize the for-loop with that matrix. Now we let the for loop count down (as
in the 3-dimensial example) and in the i-st step it eliminates via Gup(i,..) all elements
above the diagonal element of i + 1-th column of the actual intermediate matrix X[i + 1].
The result is saved in variable X[i] as input for the next step.
In the example the procedure finish after 2 steps. It returns the tensor X, i.e. a matrix of
3 matrices of typ 3× 4. We pick the first entry X[1], which is a single matrix.

B Click here to run the script.

Exercise. Do the normalization of the result X[1] online to get the solution of the linear
system. – In your head: What looks Ane like?

5.2.5 rref – composing the procedures

We now put all parts together in the function RREF:

RREF(A)= do( n = dim(A,1),

U = Ge(A), -- Gauss elimination

V = Gj(U[n]), -- Jordan elimination on last matrix

X=dot(Gn(V[1]),V[1]), -- normalization of first matrix

X) -- return result

A = ((2,4,-2, 2), (4,9,-3, 8), (-2,-3,7,10))

OK = RREF(A)

OK

The call of RREF returns the result of the whole elimination processes including the nor-
malization. Therefore, in the test case, we can directly read off the solution of the linear
system A in his terminal status:

https://lindnerdrwg.github.io/lai424.html
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B Click here to run the script.
The solution of the linear system A is (x, y, z) = (−1, 2, 2).

P33. (gjBox1 - the didactical version) Put all sub-procedures Em, Gm, Gu, Gn, Ge,
Gj und RREF in a file called gjBox1.txt. Pay attention to the order of the individual
parts: which procedure needs which other as a help function? Eigenmath needs the
correct call sequence, otherwise it reports an error.

If you use Eigenmathonline, this toolbox of functions is already present and can be called
using

run("gjBox.txt")

If you use the Eigenmath app under MacOS, you must put this toolbox in the Download
folder, because of iMac’s security conventions.
◦ We name gjBox1.txt a didactical version, because their functions show all intermedi-
ate results. gjBox1 is therefore recommended for use in learning phases or to search for
mistakes in hand calculations, allowing a kind of trace.

P34. (gjBox - the functional version)
a. Alter the sub-procedures Ge, Gj und RREF so, that these functions only give back one
result matrix. Then collect all (revised) sub-procedures Em, Gm, Gu, Gn, Ge, Gj and
RREF in a file called gjBox.txt.
b. These revised toolbox functions Ge and Gj allows together with a small helper function
doGn(.)14 a very compact and meaningful formulation of the main function RREF in the
so-called functional style:

doGn(M) = dot(Gn(M), M). -- action of Gn

RREF(A) = doGn( Gj( Ge( A) )) -- functional programming

Coded in this way the definition of RREF reflects 1:1 the mathematical calculation process

RREF : A
elim.down
 A1

elim.up
 A2

norm.
 R =result.

If you use Eigenmathonline, this toolbox of functions is called with the command

run("gjBox.txt")

If you use the Eigenmath app under MacOS, you must put this toolbox in the Download
folder because of iMac’s security conventions.

14The definition of doGn is actually unnecessary and superfluous, but allows a cleaner and more aesthetic
programming construct of RREF, it is in this sense a so-called ’syntactical sugar ’.

https://lindnerdrwg.github.io/lai425.html
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With the procedure RREF we are now able to solve linear systems of equation very
handy. If difficulties arise we may fall back on the constituent subroutines Ge, Gj,
Gn and even Gm or Gup or to do single steps with Em to observe, what caused the
problem.

Subroutine Gj nullifies a upper triangular matrix, returning a diagonal matrix. So
no backsubstitution is necessary any more. But to train our programming skills in
Eigenmath we will nevertheless offer a program for backSubstitution.

5.3 Back to backSubstitution

Backsubstitution for solving linear systems were studied before in concrete situations like
P25, P27, P32.c./d. and section 3.7.2. Look at our Gauss-Jordan model problem:

A =

 2 4 −2 2
4 9 −3 8
−2 −3 7 10

 U =

2 4 −2 2
0 1 1 4
0 0 4 8

  S =

1 0 0 −1
0 1 0 2
0 0 1 2


At solution status U we now want to do a backsubstitution scheme to reach the final status
S. For this lower dimensional linear problem, we had the following routine

x3 = U[3,4] / U[3,3]

x2 = (U[2,4] - U[2,3]*x3) / U[2,2]

x1 = (U[1,4] - (U[1,2]*x2 + U[1,3]*x3)) / U[1,1]

which leaded directly to the final status S.
Here is the abstraction of this ’Go back ’ scheme for arbitrary dimension n.

backSubst(U) = do( n = dim(U,1),

Z = zero(2,n),

x = Z[1],

x[n] = U[n,n+1] / U[n,n],

for(i,n-1,1,

x[i] = (U[i,n+1] - sum(j,i+1,n, U[i,j]*x[j])) /U[i,i]),

x)

U = ((2,4,-2, 2),(0,1,1, 4),(0,0,4, 8)

S = backSubst(U)

S -- Solution

Bs(U)=backSubst(U) -- alias for backSubst(itution)

Bs(U)

B Click here to run the script.

Comment. Our container is vector x, consisting of n zeros. We start with the last line
and the last component x[n] oof the solution, e.g. x[3] = U [3, 4]/U [3, 3] = 8/4 = 2. We

https://lindnerdrwg.github.io/lai430.html
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now go back15 with help of the for-loop until we reach the first solution component x[1].
Each x[i] is calculated along the RHS of the formula, which itself is a realization of the
mathematical formula for backsubstitution:

xi =
bi −

∑n
j=i+1 uij · xj

uii

The bi are the entries of the last column of matrix U .16

./

Summary.

In this optional section we programed (sub)routines to solve linear systems of equations.
Along the journey we developed functions for the well-known Gauss-Jordan algorithm
using Eigenmath.

Here are some of our programming guidelines:

◦ bottom-up development, i.e. using experiences from concrete cases and abstract it.

◦ divide & conquer, i.e. cut a bigger task into smaller handier pieces.

◦ functional programming, i.e. try to concatenate available functions17.

◦ modularization, i.e. do a strategic–methodical structuring.

◦ stepwise refinement, i.e. do a functional decomposition of a top-down design.

In summa:

Simplicity.
Clarity.

Generality.

... Automation.
Kernighan & Pike:

The Practice of Programming.

15The for-loop runs backwards from i = n− 1 = 3 to i = 1.
16See [1, pp. 8–14] for an implementation in C.
17See the coding of RREF.
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6 Regular Linear Systems

Maybe you were not interested in programming with Eigenmath and you has
skipped the last section. In this case you can nevertheless use all the functions
of the toolbox gjBox.txt to solve linear systems of equations. You only need to load
the tools of the box into the script area of Eigenmath using the command run(.).
This is done in this section.

P35. (Liu III)
Check the functions of the gjBox.txt for the Liu problem of P30 and P32.
Here is a start:

Eigenmath

Liu = ((1,3,2,8,5, 95),

(2,5,3,9,4, 112),

(3,5,7,6,4, 116),

(7,6,4,5,3, 128),

(9,7,3,2,5, 140))

RREF(Liu)

a. Verify the result (x, y, z, u, v) = (7, 4, 3, 5, 6). Check it on the 5 equations.
b. What is the ’half time’ matrix U?
c. Determine the solution using the suite Ge Gj  Gn in order to consider intermediate
results.

6.1 Jacobi method

Jacobi’s method is a simple so-called iterative (’for-loop’) technique for solving linear
systems. Let’s begin with an example:18

Eigenmath

-- x y z rhs --Linear system:

A=((5, 1, 1, 10), -- 5x+y+z=10

(1, 6,-2, 7), -- x+6y-2z=7

(1,-3, 7, 16)) -- x-3y+7z=16

T=100 -- ’Time’ or counter

do(x=0, y=0, z=0) -- initialization, start values

for(n,1,T, do( x1= x, y1= y, z1= z), -- (1)

x=(10-y1-z1)/5,

y=(7-x1+2*z1)/6,

18see [8, pp. 72–73] and [1, pp. 28–31]
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z=(16-x1+3*y1)/7 )

do(float(x), float(y), float(z)) -- return decimal numbers

B Click here to run the script.

Comment. Identifier T counts the number or repetitions of the calculations in the for
loop. The do statement takes in (1) the current values of the run, starting first with the
arbitrary guess (x, y, z) = (0, 0, 0).

Exercise. a. What is the main idea of Jacobi’s method?
b. Solve the linear systems from 3.6, 4.1 and P32 using Jacobi’s method.
c♥. Program the Jacobi method in Eigenmath.
Be inspired from the pseudocode19 or the Python code or the mathematical formula

x
(k+1)
i =

1

aii

(
bi −

∑
j 6=i

aijx
(k)
j

)
, i = 1, 2, . . . , n

in which x(k) is the k-th approximation to the solution x and x(k+1) is the next or (k + 1)-
iteration of x.
Check your code e.g. with the system A ? X = B from that wikipedia page:

A =

[
2 1
5 7

]
, B =

[
11
13

]
and X(0) =

[
1
1

]

6.2 Definition: Determinant of a Linear System

The so-called determinant of a matrix is a number which determines, whether a linear
system is unique solvable with the Gauss-Jordan-algorithm. We define the determinant
Det(A) as the product of the diagonal elements in the upper triangular transformation of
A.20 There exist also a build-in determinant function det, which is denoted with a lower
initial letter and is only defined for square n× n matrices A = �.

19https://en.wikipedia.org/wiki/Jacobi_method
20We show other cooler methods to define the determinant of a square matrix later, e.g. using concepts

of the so-called Geometric Algebra.

https://lindnerdrwg.github.io/lai51.html
https://en.wikipedia.org/wiki/Jacobi_method


6 REGULAR LINEAR SYSTEMS 35

6.2.1 Examples

Det(

[
3 7
0 4

]
) = 3 · 4 = 12

Det(

2 4 −2 2
0 1 1 4
0 0 4 8

) = 2 · 1 · 4 = 8

Det(

 2 4 −2 2
4 9 −3 8
−2 −3 7 10

) =
def
= Det(

2 4 −2 2
0 1 1 4
0 0 4 8

) = 8

Eigenmath returns using its build-in function:

Remark : Our definition matches with the build-in function det for square matrices,

but has the advantage to work also for non-square augmented linear system matrices,

which are of typ m×n. Otherwise, every time we would had to detach the quadratic

part on the LHS of the system in order to use the build-in determinant, e.g.

6.2.2 Definition

The determinant Det1(U) of a linear system U in upper triangular shape is

◦ Det1(U) = product(i,1,dim(U,1), U[i,i]) -- (0)

B = ((2,4,-2), -- is Upper triangular

(0,1, 1),

(0,0, 4))

Det1(B) -- returns 8

B Click here to run the script.

◦ Matrix21 A is regular
def⇐⇒ Det1(A) 6= 0.

◦ Matrix A is singular
def⇐⇒ Det1(A) = 0.

21e.g. a Linear system of equations in augmented matrix shape.

https://lindnerdrwg.github.io/lai52.html
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This definition is executable with Eigenmath and with paper & pencil.

a. Argue using Eigenmath, why the systems N and M are singular. Does the systems
have a solution?

N =

2 4 −2 2
0 0 1 4
0 0 4 8

 M =

2 4 −2 2
0 1 2 4
0 2 4 8


b. Determine Det1 of the systems A in 4.1, 4.2 and Liu in P33. Notice, that the systems
must be transformed to upper triangular form!
For comparison, use the build-in det. Notice: You must use their quadratic LHS.
c.

Looking at b. it is annoying to detach the quadratic LHS for the use of det or to

prepare the upper triangular form for the use of Det1 in advance. Therefore we

want to get rid of this condition of this ’semi-automatic’ version and like to code a

fully-automatic version, which do this preparatory step for us.

• Program a function Det(A), which transforms A to upper triangular form U before
calculating the product of the diagonal elements. Hint: look up the code for RREF.
• Program a function det1(A), which calls det with the LHS of augmented system A.

Determinant:

build-in | user defined

det | normally used det for arbitrary �

| Det1 simple version for upper triangle matrices/LS

| Det version for arbitrary LS

| det1 enhanced det for arbitrary LS

From now on we only use det or Det.

6.3 Row exchange and partial pivoting

In order to avoid a division by zero error, caused by a possible diagonal element of value
zero, we sometimes must enhance the Gauss algorithm with pivoting.

”The pivoting procedure consists in interchanging rows (partial pivpting) or rows and
columns (full pivoting) so as to put a particularly desirable element (the pivot) in the
diagonal position. In practice, the pivot corresponds to the largest (in magnitude)
available element.

To make partial pivoting available we define the interchanging of rows in Eigenmath.
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-- Gauss (i)nterchange rows

Gi(i,j,A)=do( n = dim(A,1),

Gii=unit(n),

N= Gii[i],

M= Gii[j],

Gii[j]=N,

Gii[i]=M,

Gii)

doGi(i,j,A) = dot(Gi(i,j,A), A) -- a bit syntactic sugar: Gi(i,j,A) * A

-- partial pivoting

AB = ((1,2,1, 0), (1,0,2, 1), (2,1,2, 2)) -- linear system

Gi(1,3,AB) -- (1) transformation matrix to interchange row1 and row3

doGi(1,3,AB) -- do it

Output:

B Click here to run the script.

Comment. The small helper function doGi let the interchanging matrix Gi operate on
the matrix A via dot(.). The output displays the matrix Gi and the system matrix AB
with interchanged rows 1 and 3. The pivot (i.e. the maximum of the values 1, 1, 2 of the
first column) is the number 2 at the former position [1, 3]. It is swapped at the diagonal
position [1, 1].

a. Verify that det(A) = 3, the system AB is therefore regular and should have one solution.
Solve the system with a call to RREF.

A = ((1,2,1),(1,0,2),(2,1,2)) -- LHS of system

det(A) -- (1)

b. The function Gi does the swap of the two rows i and j using two memory slots M and
N . Reduce the 4 lines of the swap code to 3 by using only one memory slot M .
Hint : https://en.wikipedia.org/wiki/Swap_(computer_programming)

♥. Do you like to code a function Gp(j,A), which search for the pivot in column j?

https://lindnerdrwg.github.io/lai53.html
https://en.wikipedia.org/wiki/Swap_(computer_programming)
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6.4 Definition: The inverse A−1 of a Matrix

We have touched this before in 3.4 and P26. We will now discuss the inverse of A in detail.

6.4.1 Prelude: some lower dimensional examples

First we do some analogy conclusions by means of three concrete examples in order to
understand the solution X of a linear system A ∗X = E to be the inverse A−1 of A.

1: 1
2

is solution of the equation 2 · x = 1 in IR, because x = 2−1 = 0.5 fulfills 2 · 2−1 = 1,

i.e. the matrix [1
2
] is the solution of the 1× 1 linear system [2] ∗ [x] = [1] in IR1×1,

i.e. is the solution of the system A ∗X = E with A = [2], X = [x], B = [1] = E and
E being the 1-dimensional identity matrix.

We write: X = A−1 and call it the inverse of A.

We have: A ∗ A−1 = [2] ∗ [2−1] = [2 · 1
2
] = [1] = E

analog∼ 2 · 2−1 = 1.

2: In IR2×2, we solve A ∗X = E for X
def
= A−1:
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Comment. We determine the inverse of A as solution (matrix) of the linear system
A ∗ X = E with the identity matrix E as special RHS. To let the transformation
matrices Em operate simultaneously on both sides of the linear system, we write the
system as usual as one augmented matrix AE = [A E]. Three Em-steps solve the
system for X giving X =

[−2 1
1.5 −0.5

]
= A−1.

The build-in Eigenmath function inv(A) returns the same value for the inverse of
A directly. But we had looked behind the scene and know, how the inverse of a square
matrix could be calculated: we transmuted the black box A−1 into a white box.

Intermezzo a. Calculate the inverse of A by hand looking at line (1).

3: In IR3×3, we solve A ∗X = E for X
def
= A−1 for the LHS of the demo linear system

of the Gauss-Jordan scheme, see 3.6.. We make use of the Gauss-Jordan suite
of functions in our gjBox. Here is the start:

Comment. We determine the inverse of A as solution (matrix) of the linear system
A∗X = E, which we write in (0) as augmented matrix AE = [A E]. We want to solve
the system for X. In principe we could do the solution by hand using the 9 linear
equations for the 9 unknowns x, y, ...t of X. The aim is the term in (2), calculated
with the build-in function inv(A). We will use the toolbox gjBox to re-construct
this result in order to understand the procedure to calculate the inverse matrix. We
proceed as follows and demonstrate 3 possibilities of different tempi.

• fast:

doGm(j, M) = dot(Gm(j, M), M) --(2) syntactic sugar ;)

doGu(j, M) = dot(Gu(j, M), M)
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doGn( M) = dot(Gn( M), M)

M1=doGm(1,AE)

M1

M2=doGm(2,M1)

M2

M3=doGu(3,M2)

M3

M4=doGu(2,M3)

M4

iA=doGn(M4)

iA -- read off the solution with your eyes

B Click here to run the script.

In this version we get insight in the ’baby’ solution steps watching the outputs. We
learn: what are the effects of the actions of Gm and Gu. This version is much quicker
than the use of Em, which gives the most basic and most detailed control of the single
solution steps.

• faster:

doGn(M) = dot(Gn( M), M)

AE = ((2,4,-2, 1,0,0),

(4,9,-3, 0,1,0),

(-2,-3,7, 0,0,1 ))

AE

AE1=Ge(AE)

AE1

AE2=Gj(AE1[3])

AE2[1]

AE3=doGn(AE2[1])

AE3

B Click here to run the script.

Here we make only 3 bigger steps, but can watch some relevant outputs, too.

• fastest:

RREF(AE) -- read off the solution

B Click here to run the script.

The quickest version abstracts from all intermediate steps, making one ’giant’ step
directly to the solution. It is this version which leads us to our constructive definition
of the inverse matrix.

https://lindnerdrwg.github.io/lai5413.html
https://lindnerdrwg.github.io/lai541faster.html
https://lindnerdrwg.github.io/lai541fastest.html
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The output in all three cases is the same:

6.4.2 Definition of the Inverse matrix A−1

Let E=unit(n) be the identity matrix of same typ as the square matrix A of type IRn×n

with det(A) 6= 0. Then:

B The inverse matrix A−1 of A is per definition the solution X of the linear system
A ∗X = E.

B Therefore we have: A ∗ A−1 = E, i.e. A−1 ’neutralizes’ the effect of A.

B If AE = [A E] is the augmented matrix of the system A ∗X = E,
then A−1 = � in RREF(AE)= [��].

B The solution X of the linear system A ∗X = B is

X = A−1 ∗B

We have the analogies:

a · x = 1 ⇒ x = 1/a = a−1

A ∗X = E
analogy
 X = ”E/A = 1/A” = A−1

A ∗X = B
analogy
 X = ”1/A ∗B” = A−1 ∗B

We have the lexicon:

Math Eigenmath
inverse matrix A−1 inv(A)

linear system A*X=B [A B]

solution of LS A−1 ∗B dot( inv(A), B)

We see: The inverse of A plays with regard to the matrix multiplication ∗ the same role
as the inverse number 1

a
= a−1 to a number a in the usual multiplication: 1

3
· 3 = 3 · 1

3
= 1.
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6.4.3 Exercise.

a. Determine the inverse of A in 5.4.1.2: analog zu 3: using the Gauss-Jordan function
suite G.. and especially RREF.
b. Calculate the solution of the model problem system in P30. using its inverse.
c. Calculate the the solution of the Liu system in P32. using its inverse.
♥. Do you like to code a user function Inv(A), which peels the inverse of a matrix A out
of the call RREF(AE)?22

P36. (Solution of an 3×3 linear system witn Eigenmath.)

x + 2y + 3z = 4

3x + 4y + 3z = 2

2x + 2y + 3z = 4

a. Write the numbers of this 3×3 - LGS in an 3×4 - system matrix M = [A B] and
transform the first three columns of the system matrix into the identity matrix E3 by
means of suitable multiplications with transformation matrices:1 0 0 ?

0 1 0 ?
0 0 1 ?


Read off the solution for the LS and do the sample with/without Eigenmath.

b. Represent the solution process algebraically as the product of transformation matrices.
Possible intermediate results can be displayed with G...
What is the matrix G with G ∗M = [E �]?
Calculate with Eigenmath the inverse matrix of the coefficient matrix A = 1 2 3

3 4 3
2 2 3


P37. (Determination of solutions of 3×3 linear system.)
Repeat the last exercise for:
a.

2x− 3y + z = −8

2y + 5z = −6

−2z = 4

22You get the solution on demand via the authors email address. ♥
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b.

3x + 6y − 2z = −4

3x + 2y + z = 0
3

2
x + 5y − 5z = −9

c.

x + 2y − z = 2

y + z = 5

x− y − z = 2

P38. (The inverse and the solution of a 2×2 linear system.) The augmented
system matrix [A B] =

[
3
2
6
3

6
3.5

]
of the LS 3x+6y=6

2x+3y=3.5
was transformed through an algebraic

RREF– process into an final status [E R], where it was possible to read off the solution
R = [ 1

0.5
] immediately:[

3 6 6
2 3 3.5

]
−→
scal

−→
elim

−→
scal

−→
elim

[
1 0 1
0 1 0.5

]
This process was expressed with this matrix equation:[

1 −2
0 1

]
∗
[
1 0
0 −1

]
∗
[

1 0
−2 1

]
∗
[
1
3

0
0 1

]
︸ ︷︷ ︸

=A−1

∗
[
3 6
2 3

]
=

[
1 0
0 1

]

abbreviated23

E4 ∗ · · · ∗ E1 ∗ A = E

We notice

A−1 = E4 ∗ · · · ∗ E1 =

[
−1 2
2/3 −1

]
and [

−1 2
2/3 −1

]
∗
[
2 3
3 5

]
=

[
1 0
0 1

]
ergo:

A−1 ∗A = E

◦ Basically, the LS was solved by calculating the inverse matrix A−1 of the coefficient
matrix A =

[
3
2
6
3

]
of the system.

a. Calculate the inverse of A by paper & pencil using the augmented matrix.
b. Calculate the inverse of A by using inv(A) and RREF(AB).
Also determine the solution of AB most directly.

23Herein we denote for short the elementary matrices E1 etc. of the solution process.
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P39. (Calculating inverse matrices.) a. Calculate the inverse in P.38 with one
dot–call in Eigenmath using the 4 transforming elementary matrices.
b. To check understanding, use the Gauss-Jordan algorithm to calculate the inverse
matrices of

(1)

[
2 3
3 5

]
(2)

[
2 5
−3 −7

]

(3)

2 1 1
0 −1 −2
0 0 −4

 (4)

0 1 2
1 0 3
4 −3 8


◦ Look at (1) and (2). Vermutung? Conjecture?

P40. (Daily production.)24 In a company there are two machines M and N for the
production of goods A and B. The machine M can be used for 12 hours, the machine N
for 16 hours. The processing of the product A requires 2 hours on the machine M and an
additional hour on the machine N . For B the data are 2 and 3 hours, respectively.
a. What is the daily production?
b. What is the effect of purchasing another machine of type M , type N or both types?
Interpret the results.

P41. (To be or not to be - that is the existential question.) Study the matrices

(1) A =

[
2 3
3 6

]
(2) B =

 1 −2 −1
−1 5 6
5 −4 5


Try by all means with/without Eigenmath to find inverse matrices of A or B.
Analyze possible resistances or problems with algebraic and/or geometric tools (line image,
column image, matrix image, RREF . . . ).

./

The observation that many matrices does not have an inverse has serious conse-
quences. If one interprets such a inverseless matrix matrix A as the left hand side
of a linear system of equations A ∗X = B, then one cannot solve such an LS using
an inverse ”A−1” - since such a matrix cannot be created at all. What to do in such
situations - which often occur in the applications - is the topic of the next part.

The existence of an inverse is in any case an extremely fortunate circumstance for
the solution of a linear system

24See [2, p. 57]
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6.5 Universal tool Gauss-Jordan-scheme ∼ RREF

Summary. The universal tool25 Gauss-Jordan scheme realized in Eigenmath as RREF
and its child’s

– to solve linear systems of equations or

– to calculate the inverse matrix

is used as follows:

1. input a suitable matrix for processing: the human being thinks . . .

2. let work the CAS-tool Eigenmath : man rests. . .

3. interpret the output and read off the solution: the human being thinks . . .

So ask yourself:
Load with what. . .

↓

RREF[???] = [!!!]

↑ ↑
. . . start tool . . . how to interpret?

♥
The final status of Gauss-Jordan

alias∼ RREF[!!!] should fluently be produced by hand
of the learner (for invoices without CAS!) if necessary, e.g. in external exam situations
without approved aids: eliminate → normalize → backSubstitute.
After that, the interpretive considerations proceed as usual - if you have calculated without
errors and are no caught by calculation mistakes.

25so to speak the ”Swiss Army Knife” of linear algebra. . .
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6.6 Some problems – the practical minimum

Make your own selection from the following training tasks and solve them using as many
different methods as possible with/without Eigenmath. We cite only a very small selec-
tion of exercises, most of the problems are quoted from [2, P40, P47, P48], [3, P43, P45,
P46, 49] and [4, P44, P52, P53, P54]. For German speaking users these books contain an
abundance of additional exercises, for the English speaking community e.g. [5] is a source
of many (solved) exercises, if there is need of further training material to reach your level
of procedural competence.
For the solution, you can optionally use our Eigenmath tools
◦ Gauss-Jordan-suite Gm, Gu, Ge, Gj, Gn

◦ RREF(...)

◦ (...)−1

As a general rule, we dispense with the detailed consideration with elementary matrices.

P42. (Active Summary)

1© The inverse matrix A−1 of a 26 matrix A is calculated

. . . as product of Elementary matrices: A−1 =

. . . with the characterizing equation: A∗

. . . with the RowReduction–ansatz: [A

2© A is invertible (i.e has an inverse A−1), if

. . . A is quadratic of type n× n

. . . RREF transforms matrix A into : A
rref
 E

3© The matrix multiplication · · · ∗ . . .

j n

�� is commutative

�� is assoziative

�� has for each element an inverse

�� has a neutral element (∼ number 1 in IR)

26fill with: matrix with det(A) 6= 0 – identity matrix unit(n)
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P43. Shelves from AEKI. A company makes three types of shelves, all of which
are made from boards, strips and screws. The stacks of boards (B), strip packs (L) and
screw sets (S) of the various shelf types (R1, R2, R3) are interchangeable, the relationship
between shelf types and components being given in the following table:

B L S
R1 1 2 4
R2 2 1 1
R3 1 2 1
La 380 170 230

In the warehouse (La) there are 380 stacks of boards, 170 packs of steel strips and 230 sets
of screws. Since production is to be discontinued, the current inventory is to be sold out.
How many shelves of the different types should be offered so that (if possible) no remainder
remains in the warehouse? See [2, ?]27

P44. Functions from conditions. The total costs of a production e.g. of pencils does
not depend solely on the number of pencils produced, but we can assume that it may be
modulated nevertheless by a third-degree polynomial. For example, the following values
have been determined for a production:

production in Mio. 1 3 5 10
costs in US$ 27,2 38,4 40 65

a. Argue, why these values results in the following 4×4 - LGS

a + b + c + d = 27.2

27a + 9b + 3c + d = 38.4

125a + 25b + 5c + d = 40

1000a + 100b + 10c + d = 65

b. Write the numbers of this 4×4 –LGS as 4×5 - system matrix and compute the solution
with Eigenmath in as many different ways as possible!

P45. Food requirements for survival training.
The daily food requirement of an adult is 5 g
to 6 g of carbohydrates, about 0.9 g of pro-
tein and 1 g of fat per kg of body weight.
During survival training, three types of A,
B, C concentrate food are used.

Concentrate A B C
Protein 5g 10g 7g
Carbohydrates 40g 30g 30g
Fat 5g 10g 13g

Each concentrate cube weighs 50 g and is crushed in water and mixed.
How can an adult (75 kg) use it to meet his daily food requirements (400 g carbohydrates,
70 g protein, 75 g fat)?

27Hint: We take the following classical system of equations from the task I: x +2y+4z = 380 II: 2x+1y+1z
= 170 III: 1x+2y+1z = 230 ...
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P46. Optimal fertilization.
For fertilization experiments, 10 kg of flower
fertilizer should be mixed from the three
types of fertilizer I, II and III, which con-
tains 40% potassium, 35% nitrogen and 25%
phosphorus. (The numbers in the table are in %.)

I II III
Potassium 40 30 50
Nitrogen 50 20 30
Phosphorus 10 50 20

What quantities are required?

P47. Handicraft supplies.
A hobby electronics technician buys
Transitors, Diodes, Condensators and
Resistors in the specified quantities on
consecutive days and pays the specified total
P price in US $.

T D C R P (US $)

1st day 1 3 2 10 17
2nd day 2 7 1 22 32.5
3rd day 3 11 6 37 58.5
4th day 1 3 5 11 22

Determine the individual prices for the electronic components from the information.

P48. Number lotto.
Winning numbers of the number lottery on
1/30/78 was:
8, 9, 18, 29, 38, 46; additional number 32.
With a system tip, player A won one prize
class IV and 20 times prize class V. He re-
ceived a total of 160 $. The table shows the
data for a further four players:

player I II III IV V profit ($)

A - - - 1 20 160
B - - 2 5 - 6300
C 1 1 8 - - 414000
D - 2 - 10 - 80600
E 1 2 10 15 - 460900

How high were the winnings in the individual prize categories at that time?

P49. UVW economy – an Input-output analysis.
A simple economy is divided into three sectors U, V and W, with the following exchange
relationships in WE:

received sectors
U V W prod

delivering U 2400 1500 600 8000
sectors V 1600 2000 600 5000

W 800 5000 1200 3000

a. What is the input matrix? Which final demand results from the given situation? b.
How does the production level X(= total output) change, if the market is supplied with
Y = [1500, 600, 1200] = [yU , yV , yw]?

P50. Design of a ski jump.
A ski jump should be built according to the following specifications of the client:
– the hill starts at a height of 100 m and ends at a height of 10 m above the base.
– the horizontal distance from start to finish is 120 m.
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– a ski flyer takes off from a horizontal position and takes off at the end of the ramp table
at an angle of 30o to the horizontal.
◦ What is the cross-section of the ski jump?

A common way to draw curves of a desired shape is to specify a few points on the path
and then find a polynomial whose graph goes through those points.
For example, two given points clearly define a straight line, this is the graph of a polynomial
of degree 1. Three non–collinear points generally determine uniquely a parabola, this is
the graph of a polynomial of degree 2 (if the points have different x coordinates).
Suppose we are looking for a path through the points (0; 7), (1; 6), (2; 9). So we are looking
for the unique parabola with the equation

P (x) = ax2 + bx + c

whose graph goes through these three points.
a. What is the associated linear system? Solve it with Eigenmath.
b. Draw the graph of P (x) = ax2 + bx + c with the coefficients that were determined in
a. and do a graphical test.
c. Calculate the jump with the client’s data.
d. Calculate paths for self-selected data sets for cubic (n = 3) polynomials and polynomials
of 4th degrees. Observations?
e. Get the data for a real ski jump from the Internet: state the source, include photo(s)
in your report, . . .

P51. ∗Building a ski jump hill with cubic splines.
As in the previous project, we are looking for a smooth curve that goes through some given
data points. The previous project showed that usually curves with high oscillations arise.
This is often undesirable.
◦ A better technique is to use a cubic spline, in which successive points are connected by a
cubic (= 3rd degree) polynomial and each interval uses a different cubic polynomial. Here
is the graph of a cubic spline through eight data points with the coordinates x = 1, 2, ...8:
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This spline uses seven cubic polynomials: s1 is defined on 1 ≤ x ≤ 2, s2 on 2 ≤ x ≤ 3,
etc. The graph looks smooth because we also require neighboring cubics should have the
same 1st and 2nd derivatives. E.g. we demand at the point x = 2 that s′1(2) = s′2(2) and
s′′1(2) = s′′2(2) should apply in addition to s1(2) = y2 and s2(2) = y2.
a. First consider the point list (−1.4), (0.5) and (1.2) as a data set:

b. Derive the equations of the cubic splines for these data points. There are 2 cubic
polynomials:

s1(x) = a1x
3 + a2x

2 + a3x + a4, −1 ≤ x ≤ 0

s2(x) = a5x
3 + a6x

2 + a7x + a8, 0 ≤ x ≤ 1

Find 6 equations for the 8 unknowns a1, . . . , a8; note:

s1(−1) = 4

s1(0) = 5

· · · = . . .

s′′1(0) = s′′2(0)

◦ We need two further equations for the unambiguous solution. An additional condition
that is often required is that the second derivatives should be zero at the two end points.
What does this mean in our case?
Solve the resulting 8×8 linear system and draw the cubic spline e g. with octave online.
◦ Draw a cubic spline that goes through 8 given points. Choose evenly distributed x
coordinates and 8 randomly chosen y coordinates.
◦ Reproduce the figure from the assignment.
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P52. Flow in a net I. The following digraph shows schematically the flow of traffic
on four one-way streets in a city. In the case of a traffic count, the average number of
vehicles per minute was determined in eight places and entered as data in the plan. The
city planners want to determine the traffic densities x1, x2, x3 and x4.

50 50
↑ ↓

100 ←− S
x3←− R ←− 50

x4 ↑ ↓ x2

100−→ P
x1−→ Q −→ 150

↑ ↓
200 100

◦ What assumptions are to be made to the model?
◦ Support the planners in determining the traffic densities x1, x2, x3 and x4 in the streets
of the quarters.
◦ Why can’t the traffic flows xi be negative? What is the minimum value for x1, i.e. the

traffic flow
−→
PQ from P to Q?

◦ Construction work has to be carried out on the
−→
PQ route. Determine the smallest

possible flow of traffic that does not lead to traffic jams.
◦ For a diversion, the streets between R and Q or S and P will be reoriented. Construction

work has to be carried out on the
−→
PQ route. Determine the smallest possible flow of traffic

between the P and Q intersections.

P53. Flow in a net II.

The following digraph schematically shows the flow of traffic on a section of a one-way

network of a city. Repair work is to be carried out on the sections
−−→
CB and

−−→
DC :

200 100 100
↓ ↑ ↓

400 −→ F
x3−→ E

x7−→ D −→ 600
x4 ↓ ↑ x2 x6 ↓

200←− A
x1←− B

x5←− C ←− 800
↓ ↑ ↓

400 800 1000

◦ What assumptions are to be made to the model?
◦ How many vehicles still have to pass the route if there is no traffic jam in the road
network?
◦ Make a reasoned, planning-based decision on how to handle the traffic situation.
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P54. The balance of unchangeable components.
Sulfur dioxide is e.g. used as a bleach for wool or as a preservative for fruit. In the
extraction of sulfur dioxide, the ore pyrites (FeS2) is roasted in an oxygen stream (O2).
This creates sulfur dioxide (SO2) and gravel burn-off (Fe2O3), which can be further reduced
to iron.
For a detailed description of this reaction, the question must be answered:
What are the exact proportions of the substances involved in this reaction?

aFeS2 + bO2 −→ cFeO3 + dSO2

The mathematical model to answer this question assumes that three elements Fe, S,

O do not change in the course of the reaction. The question of the correct proportions

also implies that a complete conversion of the starting materials into the end products

takes place, i.e. the composition of each element is the same before and after the

chemical reaction:

The conditions are resumed in the following 3×4 - LGS

before = after
Fe: a = 2c
S: 2a = d
O: 2b = 3c + 2d

a. Write the numbers of this 3×4 –LGS as 3×5 - augmented system matrix and compute
the solution.
b. Interpret the solution in the chemical context, i.e. find the smallest integer solution of
the LS and give the reaction equation with it.28

◦ Problems? Reasons? Suggested solutions?

P55. ∗... Exercises from Lay’s book.
Do as many exercises e.g. from [5] as you like. Use Eigenmath to assist you or control
your training. Good luck.

28Answer: 4FeS2 + 11O2 −→ 2FeO3 + 8SO2
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6.6.1 Appendix I: Source code of gjBox1.txt

####################

## Gauss Jordan Box1 -- (2020) Dr. W.Lindner, Leichlingen GE

####################

Em(k,i,j) = do( M=unit(n,n), M[j,i]=k, M)

-- Row interchange

Gi(i,j)=do( Gii=unit(n),

N= Gii[i],

M= Gii[j],

Gii[j]=N,

Gii[i]=M,

Gii)

---- GAUSS matrix I, elimination downstairs

Gm(k,A) = do( n = dim(A,1), -- get the dim

Gmm = unit(n), -- k th column

for(i,k+1,n, Gmm[i,k] = - A[i,k]/A[k,k]),

Gmm )

---- GAUSS matrix II, elimination upstairs

Gu(k,A) = do( n = dim(A,1), -- get the dim

Gmm = unit(n), -- k th column

for(i,k,1, Gmm[i,k] = - A[i,k]/A[k,k]),

Gmm )

---- NORMalization of diagonal

Gn(A) = do( n = dim(A,1), -- get the dim

Gmm = unit(n), -- k th column

for(k,1,n, Gmm[k,k] = 1/A[k,k]),

Gmm )

---- GAUSS elimination

Ge(A) = do( n=dim(A,1),

X = zero(dim(A,1),dim(A,1),dim(A,2)),

X[1]=A,

for( i,1,n-1, X[i+1]=dot(Gm(i,X[i]),X[i]) ),

X)

---- JORDAN elimination

Gj(A) = do( n=dim(A,1),

X = zero(dim(A,1),dim(A,1),dim(A,2)),

X[n]=A,
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for( i,n-1,1, X[i]=dot(Gu(i+1,X[i+1]),X[i+1]) ),

X)

---- Row Reduced Echelon Form

RREF(A)= do( n = dim(A,1),

U = Ge(A),

V = Gj(U[n]),

X=dot(Gn(V[1]),V[1]),

X)

backSubst(U) = do( n = dim(U,1),

Z = zero(2,n),

x = Z[1],

x[n] = U[n,n+1] / U[n,n],

for(i,n-1,1,

x[i] = (U[i,n+1] - sum(j,i+1,n, U[i,j]*x[j])) /U[i,i]),

x)

---- syntactic sugar

doGm(j, M) = dot(Gm(j, M), M)

doGu(j, M) = dot(Gu(j, M), M)

doGn(M) = dot(Gn( M), M)

doGi(i,j,M) = dot(Gi(i,j,M), M)

doGn(M) = dot(Gn(M), M)

################### End of gjBox1 ###################
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6.6.2 Appendix II: Source code of gjBox.txt

###################

## Gauss Jordan Box -- (2020) Dr. W.Lindner, Leichlingen GE

###################

Em(k,i,j) = do( M=unit(n,n), M[j,i]=k, M)

-- Row interchange

Gi(i,j)=do( Gii=unit(n),

N= Gii[i],

M= Gii[j],

Gii[j]=N,

Gii[i]=M,

Gii)

---- GAUSS matrix I, elimination downstairs

Gm(k,A) = do( n = dim(A,1), -- get the dim

Gmm = unit(n), -- k th column

for(i,k+1,n, Gmm[i,k] = - A[i,k]/A[k,k]),

Gmm )

---- GAUSS matrix II, elimination upstairs

Gu(k,A) = do( n = dim(A,1), -- get the dim

Gmm = unit(n), -- k th column

for(i,k,1, Gmm[i,k] = - A[i,k]/A[k,k]),

Gmm )

---- NORMalization of diagonal

Gn(A) = do( n = dim(A,1), -- get the dim

Gmm = unit(n), -- k th column

for(k,1,n, Gmm[k,k] = 1/A[k,k]),

Gmm )

---- GAUSS elimination

Ge(A) = do( n=dim(A,1),

X = zero(dim(A,1),dim(A,1),dim(A,2)),

X[1]=A,

for( i,1,n-1, X[i+1]=dot(Gm(i,X[i]),X[i]) ),

X[n])

---- JORDAN elimination

Gj(A) = do( n=dim(A,1),

X = zero(dim(A,1),dim(A,1),dim(A,2)),

X[n]=A,
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for( i,n-1,1, X[i]=dot(Gu(i+1,X[i+1]),X[i+1]) ),

X[1])

---- syntactic sugar

doGm(j,M) = dot(Gm(j,M), M)

doGu(j,M) = dot(Gu(j,M), M)

doGn(M) = dot(Gn(M), M)

doGi(i,j,M) = dot(Gi(i,j,M), M)

doGn(M) = dot(Gn(M), M)

---- Row Reduced Echelon Form

RREF(A) = doGn( Gj( Ge(A) ))

backSubst(U) = do( n = dim(U,1),

Z = zero(2,n),

x = Z[1],

x[n] = U[n,n+1] / U[n,n],

for(i,n-1,1,

x[i] = (U[i,n+1] - sum(j,i+1,n, U[i,j]*x[j])) /U[i,i]),

x)

################### End of gjBox ###################
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