Exploring Math With MAXIMA

Introductory Differential Equations

with MAXIMA

Dr. Wolfgang Lindner

dr.w.g.Lindner@gmail.com Leichlingen, Germany 2023

CONTENTS

Contents

1	What	t is an Ordinary Differential Equation?									4
	1.1 I 1.2 F	Definition of ODE	• •	•••	•	•	•	•	•••	•	4 8
	1.2 1	Existence emqueness incorem informed torration	• •	••	•	•	•	•	•••	•	0
2	Analy	ytical Solution Methods									13
	2.1 .	the case $y' = f(x)$: direct integration of ODE		· •	•	•	•	•		•	13
	2.2 .	the case $y' = f(y) \dots \dots \dots \dots \dots \dots \dots \dots$	• •	••	•	·	•	•		•	17
	2.3 .	the case $y' = f(x) \cdot g(y)$: Separation of Variables	• •	•	•	·	•	•		•	20
	2.4 .	the case $y' = f(x) \cdot y + g(x)$: linear ODE	• •	••	·	·	•	•		•	24
	2.5 .	the case $f_x + f_y \cdot y' = 0$: exact ODE	• •	••	•	·	•	•	•••	·	28
	2.6 .	the case $y' = f(\frac{y}{x})$: substitutions	• •	••	•	·	•	•		•	33
3	Intermezzo: iterate						36				
	3.1 i	terate by hand									36
	3.2 i	terate by iterate									37
	3.3 I	First Applications of iterate					•				41
	3.4 I	Implict differentation and the TAYLOR method for ODE's						•		•	46
4	Numerical Solution Methods for IVP					52					
	4.1 F	RK1 alias the EULER Method									53
	4.2 F	RK2h alias Heun's Method									60
	4.3 F	RK2m alias the Midpoint Method									62
	4.4 F	RK4 alias the classic RUNGE-KUTTA method			•			•			64
5	Systems of IVP's					69					
	5.1 8	Solving IVP systems									70
	5.2 I	$VP of 2^{nd} Order \dots \dots$						•			74
6	Boundary Value Problems - Numerical Methods					82					
	6.1 S	Shooting Method									82
	6.2 I	Finite Difference Method		, .			•	•		•	92
7	Appe	endix: Collection of Source Code									99
8	Bibliography 10				105						

CONTENTS

Preface

In the 90ties of last century the CAS Derive was very popular in Austria and Germany and was profusely used in Mathematics courses in college and university. I was particularly impressed be the versatile and omnipresent Derive function iterate/s, which was programmed by Albert RICH and David STOUTEMYER. So I used a function iterate for MAXIMA just to see, how useful it is for downsizing the programming bureaucracy w.r.t. the use of loop and recurrence constructs.

It turned out that essential functions in the field of elementary Differential Equations shrank to 1-5 liners when using **iterate** as control structure - which is in my opinion a great benefit for the beginner in order to concentrate on the discussed methods and to provide a unified treatment (no index juggling necessary).

In this booklet there are only sketches of the mathematic reasoning given, because there is a vast set of specialized books and online informations available. For the mathematical treatment of Differential Equations (DE) parallel with this script, I recommend the books by BRONSON [9], BULIRSCH–STOER [46], BURDEN-FAIRES [10], LOWE/BERRY [29] and on the internet BAZETT [5], DAWKINS [13], HELLEVIK [21], LEBL [28], HAIRER/LUBICH [20], SÜLI [47] or AMMARI & AL. [1] – all cited in the bibliography.

The content of this script is limited to the treatment of some rudimentary analytical solution methods for Ordinary Differential Equations (ODE), e.g. from direct solution techniques to exact ODE's. The numerical solution methods for initial value problems (IVP) range from the classical EULER method via HEUN and Midpoint method to RUNGE-KUTTA RK4 methods – all these methods are easily coded in MAXIMA using iterate and friends. Systems of ODEs are numerically solved using RK variants, likewise ODEs of 2^{nd} order. Boundary value problems (BVP) are only approximately solved with two methods: the shooting method and the Finite Difference Method (FDM).

Examples and exercises are borrowed from the above (quoted) sources, so the reader may control own solutions therein.

The collection of the MAXIMA examples and exercise scripts in this booklet not only want to help the reader to dive into the praxis of solving ordinary Differential equations and observing phenomena, but also to become comfortable with the use of the CAS MAXIMA in this field. Therefore, to program the necessary concepts as simply and directly as possible, I limit myself to the use of short self-made or build-in functions.

I hope that this collection of MAXIMA programs and the corresponding selection of examples from diverse sources will encourage the beginner to go further into the theory.

To run a MAXIMA script of this booklet no installation is necessary, *everything runs directly online*: a click on a link like \triangleright Click here to Run. in this text is enough to invoke MAXIMA^{on line}. Such a link is at the same time a silent invitation to become active. Of course, it is far better and more convenient to run MAXIMA in the wxMAXIMA variant on the PC. If you own a Mac or Linux PC, there is the option to install the app MAXIMA

CONTENTS

free of charge and run the scripts of this booklet by *mark-copy-paste* into the wxMAXIMA window. There are also accompanying ***.wxm** scripts for each chapter for download on my homepage https://lindnerdrwg.github.io.

The author studied Numerical Mathematics from his academic teacher Prof. Dr. Roland Z. BULIRSCH at the university of Cologne, Germany, in the 70ies of the last century. There I heard for the first time of the so-called shooting method to solve BVP's and I was impressed by the idea to transform a BVP to an IVP in order to use RK methods. At that time, we had to program in Fortran, coding our scripts on punch cards, which had to be delivered to the computer center. This has now all changed for the better, this booklet try to demonstrate this with MAXIMA for calculations and plots in the field of ODEs.

Sadly, Prof. Roland BULIRSCH passed away in 2022.

Roland Z. BULIRSCH, 1934–2022

User comments are very welcome.

Wolfgang Lindner Leichlingen, Germany June 2023 dr.w.g.Lindner@gmail.com https://lindnerdrwg.github.io

We use the following abbreviations.

L

EXICON	shorth and	meaning
	ODE	ordinary differential equation
	IVP	initial value problem
	BVP	boundary value problem
	IC	initial condition(s)
	BC	boundary condition(s)

1 What is an Ordinary Differential Equation?

Differential equations make heavy use of *(partial)* differentiating and integrating functions. We start with a definition what a *(ordinary)* differential equation is. Then we code a procedure **iterate**, which we will use very often. A first use of **iterate** will be the construction of the so called successive PICARD-LINDELÖF approximations, which establish a constructive proof of the existence of solutions of ODE's under special conditions.

1.1 Definition of ODE

Let U be subset of \mathbb{R}^2 . Let $f: U \to \mathbb{R}$ be a function on U. Then we call

$$f' = f(x, y) \tag{1.1}$$

an ordinary differential equation (short: ODE), i.e. we look for an interval $J \subset \mathbb{R}$ and a differentiable function $y: J \to \mathbb{R}$ with

2

- $(x, y(x)) \in U$ for all $x \in J$ (1.2)
- $f(x, y(x)) = y'(x) \qquad \text{for all} \quad x \in J \tag{1.3}$

• A given ODE's should be transformed in the "standard" form (1.1), because most facts and methods relay on this representation.

• As a first preview on what follows have a look at the following two figures:

Basic perception/mental image of an ODE and its solutions: left: the direction field of ODE $y' = f(x, y) = y - x^2$. right: the direction field of $y' = y - x^2$ including ...

Figure 1: ...: the special solution y(x) with initial condition y(0) = 1. ...: the special solutions y(x) going through the points (0, n), n = 2, 3, 4, 5, i.e. y(0) = n, i.e. n is the initial value of y(x) at x = 0.

Comment. The so called *direction field* gives a rough picture of an ordinary differential equation y' = f(x, y) in a region U of \mathbb{R}^2 .

1. The left figure shows the *direction field* of the ordinary differential equation (ODE) $y' = f(x, y) := y - x^2$. At every point (x, y) of the grid we plot a tiny directed line segment ('vector') whose slope is as great as the value f(x, y) prescribe, e.g. at point (1, 2) the slope is $f(1, 2) = 2 - 1^2 = 1$.

2. The right figure shows the same *direction field* of the given ODE, but with 5 special solution functions y(x) inscribed. The blue solution function y(x) goes across the point (0, 1), which means that this solution fulfills the supplementary condition y(0) = 1. We call this situation an *initial value problem* (IVP).

Example 1. (Plotting the direction field of an ODE) Here is the code to reproduce the plot Fig.1.RHS using wxMAXIMA:

If you use e.g. $MAXIMA^{on \ line}$ instead of wxMAXIMA, then you must use a bit other syntax – the suffix wx.. has to be dropped.

```
LEXICONMAXIMA<br/>on linewxMAXIMAdirection fieldload(drawdf);<br/>drawdf(y - x^2);load(draw);<br/>wxdrawdf(y - x^2);
```

Here is the above code prepared to copy & paste into the online frame of MAXIMA^{on line}:

▷ Mark-Copy-Paste the magenta code lines and RUN it with MAXIMA^{on line}.

The MAXIMA^{on line} output:

Remark. (A hint for the use of wxMAXIMA resp. $MAXIMA^{on \ line}$) If you see a link like

• \triangleright Mark & Copy & Paste code and \Box_{RUN} it.

you will be linked to $MAXIMA^{on \ line1}$ to run, work or alter this (maybe a little adjusted) code script. You have the focus in $MAXIMA^{on \ line}$, if you click into the frame \Box and it changed to blue \Box .

• Anyway: You should interpret such a link to become active and really run the blue code lines from an input cell [_] of wxMAXIMA or in the MAXIMA^{on line} box \Box .

¹Thanks to Mario RIOTORTO for his work on it.

Example 2. (Examples of ODE's)

a. ODE: y' = -y + t + 1. Here f(t, y) := -y + t + 1. An initial value problem would be y' = -y + t + 1 with y(t = 0) = 2. b. ODE: y' = y. Here f(x, y) := y. An initial value problem would be y' = y and y(1) = 0. c. ODE: $y' = 1 + y^2$. Here $f(x, y) := 1 + y^2$. An initial value problem (IVP) would be $y' = 1 + y^2$ with y(3) = 2. d. ODE: y' = 2xy. Here f(x, y) := 2 * x * y. An IVP would be y' = 2xy with y(x = 4) = -2. e. ODE: y' = t/y. Here $f(t, y) := \dots$ An IVP would be y' = -t/y with y(0) = 2. f. ODE: $y' = y^2 \sin 2x$ on $U =]0, 6[\times]0, 5[$. Here $f(x, y) := \dots$ An IVP would be $y' = f(x, y) = \dots$ with y(1.5) = 2.

Exercise 1. Plot the direction fields of the ODE's of example 2 and the corresponding solution function of the IVP.

Exercise 2. (a geometric problem leading to an ODE)

Determine those curves y = f(x), where the cut point of the tangent with the ordinate axis from the origin of the coordinate system has the same distance as the touching point of the tangent with the curve.

Hint: Determine a corresponding ODE. Restrict your solution to positive values of x and y.

Verify: the ODE is $y - xy' = \sqrt{x^2 + y^2}$. Plot the direction field of the ODE and some corresponding solution functions y. What do you observe?

Exercise 3. Review on IVP: ▷ HELLEVIK: ivp.

1 WHAT IS AN ORDINARY DIFFERENTIAL EQUATION?

1.2 Existence-Uniqueness Theorem - PICARD iteration

The Existence-Uniqueness Theorem for the ODE $y' = f(x, y) \land y(a) = b$ guaranties the existence of a locally unique solution y under certain conditions on f, cf. e.g. [47, p.1 ff], [1, p.20], [10, p.238, P7] or [12, p.149], \triangleright HELLEVIK: E and U.

This solution y is constructed with the *method of successive approximations* after PICARD-LINDELÖF with this recipe:

(1) start with the initial solution

$$y_0(x) := b.$$
 (1.4)

(2) construct the new approximating solution function $y_{n+1}(x)$ through the following recursion formula for $n \in \{0, 1, 2...\}$

$$y_{n+1}(x) := b + \int_{a}^{x} f(x, y_n(x)) dx$$
(1.5)

Then $y_n(x) \xrightarrow{n \to \infty} y(x) :=$ solution.

Remark. The RHS of (1.5) is only dependent of the variable x, because the process starts with the constant function b via (1.4). Therefore the integral is direct calculable.

1.2.1 PICARD by hand

We construct the solution of the IVP y' = 2xy, y(0) = 1 along the recipe (1.4) and (1.5). We have: f(x, y) := 2xy; a = 0; b = 1.

 $-(x^2+x^4/4)^{\frac{x}{1}}-1+x^2+x^4$

$$y_0(x) := 1$$
 (1.6)

$$y_1(x) := 1 + \int_0^x 2x \cdot y_0(x) dx = 1 + x^2 \Big|_0^x = 1 + x^2$$
 (1.7)

$$y_2(x) := 1 + \int_0^x 2x \cdot y_1(x) dx = 1 + \int_0^x (2x + 2x^3) dx$$
(1.8)

$$y_{3}(x) := 1 + \int_{0}^{x} 2x \cdot y_{2}(x) dx = 1 + \int_{0}^{x} (2x + 2x^{3} + x^{5}) dx$$
(1.9)

$$= (x^{2} + x^{4}/4 + x^{6}/6) \Big|_{0}^{x} = 1 + x^{2} + \frac{x^{4}}{2} + \frac{x^{6}}{6}$$

...
$$y_{n}(x) := \frac{x^{0}}{0!} + \frac{x^{2}}{1!} + \frac{x^{4}}{2!} + \frac{x^{6}}{3!} + \frac{x^{8}}{4!} + \dots + \frac{x^{2n}}{n!}$$
(1.10)

Please watch, how the result y_k of a previous step is substituted into the term $f(x, \Box)$ for the next iterate y_{k+1} . This is made visible by using different colors for the y_k .

1 WHAT IS AN ORDINARY DIFFERENTIAL EQUATION?

Exercise 4. Verify (1.10) via induction.

Following (1.10) we conclude:

$$y_n(x) := \sum_{k=0}^n \frac{(x^2)^k}{k!}$$
 (1.11)

$$y(x) := \sum_{k=0}^{\infty} \frac{(x^2)^k}{k!} \equiv \exp(x^2)$$
 (1.12)

We check with MAXIMA that $y(x) := e^{x^2}$ is indeed the solution of IVP y' = 2xy, y(0) = 1:

```
/* wxMaxima */
y(x):= exp(x^2);
y(0);
diff(y(x),x);
2*x*y(x);
```

 \triangleright Mark-Copy-Paste the blue code lines and RUN it.

The wxMaxima output:

Comment. Eq. (%o3) = (%o3) verifies, that $y = e^{x^2}$ is a solution of the ODE and (%o2) fulfills the IVP y(0) = 1. With the method of successive approximation along lines (1.6)...(1.10) we have constructed the solution of the IVP y' = 2xy, y(0) = 1 and therefore established the existence and uniqueness of the solution function y.

We will now implement this method in MAXIMA.

1.2.2 PICARD by MAXIMA

```
/* MAXIMA --- PICARD iteration --- */
fpprintprec: 5$
ratprint: false$
kill(functions, values, arrays)$ /* kill arrays !*/
f(x,y):= 2*x*y;
[a,b]: [0,1]; /* (0) */
y[0](x) := b; /* (1) */
y[n](x) := b + integrate(f(t,y[n-1](t)),t,a,x); /* (n) */
y[3](x), expand; /* (3) */
makelist(y[n](x),n,0,4); /* (4) */
```

 \triangleright Mark-Copy-Paste and RUN the code lines.

The wxMAXIMA output:

$$\begin{array}{ll} (\% 04) & f(x,y) := 2 \, x \, y \\ (\% 05) & [0,1] \\ (\% 06) & y_0(x) := b \\ (\% 07) & y_n(x) := b + \int_0^x f(t,y_{n-1}(t)) dt \\ (\% 08) & \frac{x^6}{6} + \frac{x^4}{2} + x^2 + 1 \\ (\% 08) & [1,x^2+1,\frac{x^4}{2} + x^2+1,\frac{x^6}{6} + \frac{x^4}{2} + x^2 + 1,\frac{x^8+4 \, x^6+12 \, x^4+24 \, x^2}{24} + 1] \end{array}$$

Comment. In (0) we set the IV's to a := 0 and b := 1. Line (2) corresponds to (1.4) and line (n) is the translation of (1.5). Because y[.] is an indexed variable (without creating a list first), an *undeclared* array (also called 'hashed' array) is created that grows dynamically with its indices: so a recursive process is established which allows to call a arbitrary function y[k](x) or a particular value y[9](1.2), e.g. see (3). In (4) we display the first 5 approximate solution functions. We see in (%o9) this list shows the results (1.6) to (1.9). • Warning: you should always start the use of a hashed array with kill(arrays); in order to have an empty array for a fresh use. Otherwise the old values in the array slots could irritate the computation!

Let's visualize the approximation process.

```
/* wxMaxima */
ratprint:false$
Pic: makelist([1,y[n](1)],n,0,4), numer; /* (5) */
wxdraw2d(xaxis = true,
```

```
/* user_preamble="set size ratio -1", */
                                            /* (6) */
xrange = [0,2], yrange = [-0.1,4],
xlabel="x", ylabel="y",
color=cyan,
              explicit(y[0](x),x,0,2 ),
                                            /* (7) */
color=blue,
              explicit(y[1](x),x,0,2 ),
color=green, explicit(y[2](x),x,0,2),
color=yellow, explicit(y[3](x),x,0,2),
              explicit(exp(x^2),x,0,2),
                                           /* (8) */
color=red,
point_size=2, points_joined=false,
color=magenta, points( Pic ),
title="PICARD iteration")$
```

▷ Mark-Copy-Paste and RUN the code in wxMAXIMA.

The wxMaxima output:

(Pic) [[1,1],[1,2],[1,2.5],[1,2.6667],[1,2.7083]]

The plot shows the approximating functions y[0](x), y[1](x), y[2](x), y[3](x), which tend to always better approach to the exact solution $y(x) = \exp(x^2)$. Figure 2: The state $y(x) = \exp(x^2)$.

The points list (5), which is $(1, y_n(1))_{n=0,1,2,3}$, tends to approach the limit value $y(1) = e^1 = e \approx 2.71828$. It is visualized as magenta crosses +.

Comment. In (5) we pick a point on each approximating function at the same position at x = 1 and collect them in the list Pic(ard). If you uncomment line (6) you get a an equal scale on each axis. In (7) we plot the start function y_0 as a constant line above the interval [0, 2] in color cyan. (8) plots the exact solution function y.

Exercises.

Exercise 5. Construct the solution y of the IVP $y' = x - y^2$, y(0) = -0.5 using PICARD iterates.

[Control: $y_6(x) = -\frac{1}{2} + \frac{1}{4}x + \frac{3}{8}x^2 + \frac{5}{48}x^3 + \dots$

Exercise 6. Construct the solution y of the IVP $y' = x^2 + y^2$, y(0) = 0 via successive approximation. Plot its direction field and show the solutions, which fulfill the IVP's y(0) = -1, y(0) = 0 and y(0) = 1.

Exercise 7. Given the IVP $dy/dx = x - y \wedge y = 1$ at x = 0, use PICARD's method to approximate y when x = 0.2. [Control: $y_5(0.2) \approx 0.83746$. - Exact solution: $y = x - 1 + 2e^{-x}$.

Exercise 8. Calculate the solution y of $y' = y^2 - xy$, which has value y = 1 for x = 0. [Control: $y_5(0.5) \approx 1.6987$. - Exact solution: $y(x) = (1 - \int_0^x e^{-1/2 \cdot t^2} dt)^{-1} \cdot e^{-1/2 \cdot x^2}$, cf. [24, p.308].

Exercise 9. Find the solution to the equation $y'(t) = 1 + y(t)^2$ with initial condition $y(t_0) = y_0 = 0, t_0 = 0$. Plot the first 4 PICARD iteration steps. [Result: $y(x) = \tan(x)$ url: \triangleright WIKI: Picard-Lindelöf.

Exercise 10. An ODE is given through $x' = \sin(t) - x$ with IC x(0) = 1. Do two steps of the PICARD iteration. See \triangleright : Wiki: Picard-Iteration

Exercise 11. Construct the PICARD iterates for the IVP y' = 2t(y+1), y(0) = 0 and show that they converge to the exact solution $y(t) = e^{t^2} - 1$. Cf. [11, p.110].

Exercise 12. Construct the PICARD iterates for the initial value problem in [1, p.20, Example 2.7].

Exercise 13. Do example 2.3.2 at \triangleright HELLEVIK: Taylor's method.

2 Analytical Solution Methods

In this chapter we speak about some types of ODEs, which can be solved without a special theory, but only with elementary knowledge of integration. We want to accompany these analytical procedures with support by MAXIMA.

These ODE types are:

ODE:	type	solution method
Ι	y' = f(x)	direct integration
II	y' = f(y)	homogen ODE
III	$y' = f(y) \cdot g(x)$	separation of variables
IV	$y' = f(x) \cdot y + g(x)$	linear ODE
V	y' = f(x/y)	variable transformation
VI	$h_x + h_y \cdot y' = 0$	exact ODE

To use one of the corresponding solution procedures one has to decide, in which of these shapes a given ODE falls.

2.1 ... the case y' = f(x): direct integration of ODE

Figure 3: The plot shows four of the infinity many solution functions $y(x) = F(x) = \frac{1}{3}x^3 + c$ of the ODE $y' = x^2$ with initial value y(0) = 1. The special solution function F + c with y(0) = F(0) = 1 is plotted in *red* and has c = 1.

• The ODE type I is: y' = f(x), i.e. the right-hand side of the ODE depends only on x.

The theoretical solution method for an ODE of shape I: y' = f(x) is by direct integration, i.e. if we know the indefinite integral ² F(x) for f(x) on an interval $[a, b] \subset \mathbb{R}$, then every other solutions of y' = f(x) is of the form y(x) = F(x) + c, $c \in \mathbb{R}$, see Fig. 3:

$$y(x) = F(x) := \int_{a}^{x} f(t)dt + c, \ c \in \mathbb{R}$$
 (2.1)

The solution method for the IVP y' = f(x), $y(y_o) = x_o$ is in 3 steps:

- I1: $\int_{x_{-}}^{x} f(t)dt + C = y(x)$
- I2: solve $y(x_o) = y_o$ for C
- I3: Solution: y(x) + C.

Example 3. The ODE $y' = x^2$, y(0) = 1 is of type I, because $f(x, y) = x^2 = f(x \text{ only})$. **a.** The solution function y(x) is constructed in 3 steps:

I1: $\int_{x_o}^x t^2 dt + C = \frac{x^3}{3} + C = y(x).$ I2: $y(x_o = 0) = \frac{0^3}{3} + C = 1 \rightsquigarrow C = 1.$ I3: Solution: $y(x) = \frac{x^3}{3} + 1.$

b. We write the solution process as a user defined MAXIMA function odefx:

The invoke arguments of odefx(u, x, xo, yo) are as follows:

- 1. u: the RHS of the ODE u = f(x), which depends only on x
- 2. **x**: the integrating variable
- 3. xo: the initial value x_o on the x-axis
- 4. yo: the initial value y_o on the y-axis

Let's test our function odefx:

odefx(x², x,0,1); /* (5) */ odefx(x², x,1,1); /* (6) */

²(i.e. per definition F' = f)

 \triangleright Mark-Copy-Paste and RUN the code lines.

The MAXIMA output for the test cases (5) and (6) are:

$$(\%02)$$
 $\frac{x^3}{3} + 1$
 $(\%03)$ $\frac{x^3}{3} + \frac{2}{3}$

Comment. In (1) we calculate the indefinite integral $F = \int f$ and add the integration constant C to it in order to build all solutions. In (3) we put x_o into I2 and solve this equation for C. With this C we pick the particular IVP solution I4.

c. We now solve the ODE $y' = x^2$, y(0) = 1 with the build-in MAXIMA function ode2:

```
/* Maxima -- IVP example with build-in function ode2*/
'diff(y,x) = x^2;  /* the given ODE */
ode2(%,y,x);  /* solve ODE */
ic1(%,x=0,y=1);  /* solve ODE respecting the IVP y(0)=1 */
```

 \triangleright Mark-Copy-Paste and RUN the code lines.

The MAXIMA output for the test cases (5) and (6) are:

The direction field of the ODE $y' = x^2$ shows, that every Figure 4: point with the same x-coordinate has the same slope: this is visualized through the blue vertical lines, see [24, p.6].

Exercises.

Solve the following ODEs by hand, then using our function odefx and MAXIMA's ode2. Check the plausibility of the solution by an slope plot.

Exercise 14. Do some of the exercises of [28, p.21-26]. You will find the solutions at \triangleright BAZETT: Integral solutions.

Exercise 15. Solve $x^2 \cdot y''(x) = 3x^4 - 1$ given y = 0 when x = 1 and y'(1) = 2. Cf. LOWE [29, p. 35].

Exercise 16. Solve $y'(x) = \frac{1}{x} - \sin(x)$.

Exercise 17. Solve $\sqrt{1-x^2} \cdot y'(x) = 1$.

Exercise 18. (LOWE [29, p.38]) The height h of a ball thrown vertically upwards from ground level satisfies the equation h''(t) = -10.

The initial speed of the ball h'(t) is 20 m/s.

a. Find the time to reach the highest point.

- **b.** How high will the ball go?
- c. What is the total time of the flight?
- d. Find the spees with which the ball hits the ground.

Exercise 19. Do the problems of Case 1 of \triangleright FAN/CIFARELLI: ODEs.

2.2 ... the case y' = f(y)

• The ODE type II is: y' = f(y), i.e. the right-hand side of the ODE depends only on y.

A rough theoretical derivation should motivate the MAXIMA code for this kind of ODE, see [22, p.140]. We have:

$$y' = f(y) \xrightarrow{1} \frac{y'}{f(y)} = 1 \xrightarrow{2} (F(y))' \xrightarrow{3} \frac{1}{f(y)} \cdot y' = 1 \rightsquigarrow F(y) = x + c \xrightarrow{4} y = F^{-1}(x + c)$$

under some assumptions³.

Example 4. The ODE $y' = \cos^2(y)$, y(1) = 1 is of type II, because $f(x, y) = \cos^2(y) = f(y \text{ only})$. **a.** $y' = \cos^2(y) \xrightarrow{1} \frac{y'}{\cos^2(y)} = 1 \rightsquigarrow (\tan(y)))' = 1 \rightsquigarrow \tan(y) = x + c \rightsquigarrow y = \arctan(x + c)$ for functions with values in $\left[-\frac{\pi}{2}, +\frac{\pi}{2}\right]$. Solution: $y(x) = \arctan(x + c)$.

b. We write the theoretical solution process as a user defined MAXIMA function **odefy**, which allows to follow a semi-automatic solution process and gives insight into the blackbox **ode2(.)**:

The invoke arguments of odefy(u,y,xo,yo) are as follows:

- 1. u: the RHS of the ODE u = f(y), which depends only on y
- 2. y: the integrating variable

Let's test our function odefy (watch the term u, which is a function in y !):

odefy(1/cos(y)², y, 1,1);

 \triangleright Mark-Copy-Paste and RUN the code lines.

The output is (watch the intermediate variables F,Sol,eq,c using print statements) ...

³¹⁾ $f(x) \neq 0$ ²⁾ F(y) is indefinit integral of $\frac{1}{f(y)}$ ³⁾ $(F \circ y)' = F'(y) \cdot y' = \frac{1}{f(y)}y'$ ³⁾ F(y) = x + c is solvable for x. – We note \rightsquigarrow ('leads to') instead of \Leftrightarrow ('is equivalent') as a warning for not being 'fully' mathematical precise. So you should always check your solution by a derivative and/or a direction field: is the proposed solution plausible?

tan(y)
solve: using arc-trig functions to get a solution.
Some solutions will be lost.
y=atan(x+C)
1=atan(C+1)
tan(1)-1
[y=atan(x+C), tan(1)-1]

.. and allows to read off the result in I4 as y=atan(x+tan(1)-1).

c. We now solve the ODE $y' = \cos^2(y)$, y(0) = 1 by invoking the build-in function ode2:

```
/* Maxima --- ODE type II using ode2 --- */
ode2( 'diff(y,x) = cos(y)^2, y, x);
ic1(%,x=1,y=1);
solve(%,y);
```

 \triangleright Mark-Copy-Paste and RUN the code lines.

The MAXIMA output is:

```
(%0177) tan(y)=x+%c
(%0178) tan(y)=x+tan(1)-1
solve: using arc-trig functions to get a solution.
Some solutions will be lost.
(%0179) [y=atan(x+tan(1)-1)]
```

Please observe, that MAXIMA's full-automatic solver ode2 also presents its solution *not-inverted*: therefore we have to solve the ic1 result for y. We get the same result as our semi-automatic solution with odefy.

The direction field of the ODE $y' = 1/cos(y)^2$ shows, that Figure 5: every point on the same parallel w.r.t. the x-axis has the same slope: observe the blue horizontal lines, see [24, p.7].

Exercises.

Solve the following ODEs by hand, then using our function odefy and MAXIMA's ode2. Check the plausibility of the solution by an slope plot.

Exercise 20. Solve the ODE y' = ky, k > 0.

Exercise 21. Solve the ODE $y' = y^2$, y(0) = 1.

Exercise 22. Solve the ODE $y' = \sqrt{1-y^2}$.

Exercise 23. Solve the corresponding IVP y(1) = 2 for the exercises 20–22.

Exercise 24. Do exercises 1.1.5, 1.1.6, 1.1.7 from \triangleright BAZETT: Integrals as solutions.

Exercise 25. Do the problems of Case 2 of \triangleright FAN/CIFARELLI: ODEs. If you like: do some of the Review problems.

2.3 ... the case $y' = f(x) \cdot g(y)$: Separation of Variables

• The ODE type III is: $y' = f(x) \cdot g(y)$, i.e. the right-hand side of the ODE depends on x, y – but is a product of two functions, which each depend on one of both variables alone.

This method is a generalization of the two special cases before: setting f(x) := 1 we get ODE shape I and setting g(y) := 1 we get ODE shape II.

A rough theoretical motivation is: write the given ODE in the old-fashioned 'differential form' as $y' \equiv \frac{dy}{dx} = f(x) \cdot g(y)$. Then it can be solved by the *method of separation of the variables*: collect terms with y at LHS and terms with x on RHS.

$$\begin{aligned} y' &= \frac{dy}{dx} = f(x) \cdot g(y) & \rightsquigarrow \quad \frac{1}{g(y)} dy = f(x) \, dx \\ & \rightsquigarrow \quad G(y) := \int_{yo}^{y} \frac{1}{g(y)} dy = \left(\int_{xo}^{x} f(x) \, dx\right) =: F(x) \\ & \rightsquigarrow \quad G(y) = F(x) + c \\ & \rightsquigarrow \quad y = \dots \text{ hopefully solvable to } y \end{aligned}$$

Example 5. The ODE $y' + xy^2 = 0$, y(0) = 2 is of type III, because $y' = f(x, y) = -xy^2 = h(x) \cdot g(y)$. **a.** We argue: $y' = -xy^2 \xrightarrow{1}{\longrightarrow} \frac{y'}{y^2} = -x \xrightarrow{2}{\longrightarrow} (-\frac{1}{y})' = -x \rightsquigarrow \frac{1}{y} = \frac{1}{2}x^2 + C \rightsquigarrow y = \frac{2}{x^2 + C}$ with the remark ¹): separate! ²): $(-\frac{1}{y})' = (-\frac{1}{y(x)})' \xrightarrow{\text{Chain rule}} (-y(x)^{-1})' = y(x)^{-2} \cdot y'(x)$. **b.** We write the theoretical solution process as a user defined MAXIMA function odefxgy, which allows to follow a semi-automatic 'pedagogical' solution process :

```
/* MAXIMA --- ODE type III --- */
odefxgy(f,g, x,y, xo,yo):= block(
   F: integrate(f,x,xo,x),
   G: integrate(1/g,y,yo,y),
   print("DGL:", 'diff(y,x) = f*g ),
   print(". initial condition:", y(xo) = yo),
   print("1. step - identify f(x) and g(y): ", f, ", ", g),
   print("2. step - calculate F(x)=", 'integrate(f,x,xo,x)= F),
   print("3. step - calculate G(y)=", 'integrate(1/g,y,yo,y) = G),
   print("4. step - set up Eq. F(x)=G(y):", F=G),
   print("5. step - solve Eq. F(x)=G(y(x)) for y: ", Sol: solve(F=G,y)),
   print("solution: Sol ="),
   Sol)$
```

The invoke arguments of odefxgy(f,g, x,y, xo,yo) should be self-explaining.

Let's test our function odefxgy for the example above $y' = f(x, y) = -xy^2 = h(x) \cdot g(y)$:

 \triangleright Mark-Copy-Paste and RUN the code lines.

The output of the dialog is ...

Is y-1 positive, negative or zero?p; $DGL: \frac{d}{dx}y = -xy^{2}$... initial condition: y(0)=11. step - identify f(x) and g(y): -x, y^{2} 2. step - calculate $F(x) = -\int_{0}^{x} x dx = -\frac{x^{2}}{2}$ 3. step - calculate $G(y) = \int_{1}^{y} \frac{1}{y^{2}} dy = 1 - \frac{1}{y}$ 4. step - set up Eq. $F(x)=G(y): -\frac{x^{2}}{2}=1-\frac{1}{y}$ 5. step - solve Eq. F(x)=G(y(x)) for y: $[y=\frac{2}{x^{2}+2}]$ 6. step - choose solution with y(0)=1solution: Sol = (%035) $[y=\frac{2}{x^{2}+2}]$

.. and allows to read off the result in (%o35) $y=\frac{2}{x^2+2}$

c. We now solve this IVP by invoking the build-in function ode2:

```
/* Maxima -- ODE type III by ode2 -- */
ode2( 'diff(y,x) = -x*y^2, y, x);
ic1(%,x=0,y=1);
solve(%,y);
```

 \triangleright Mark-Copy-Paste and RUN the code lines.

The MAXIMA output is:

$$(\%054) \quad \frac{1}{y} = \frac{x^2}{2} + \%c$$

$$(\%055) \quad \frac{1}{y} = \frac{x^2 + 2}{2}$$

$$(\%056) \quad [y = \frac{2}{x^2 + 2}]$$

Please observe, that MAXIMA's full-automatic solver ode2 also needs help by *inverting* the ic1 result for y. We get the same result as our semi-automatic solution with odefxgy.

The direction field of the ODE $y' = xy^2$ shows a kind of Figure 6: symmetry. But it also shows that this ODE has the function $y(x) \equiv 0$ (blue line) as an – maybe overseen – solution.

d. If we prefer to have a compact function for solving separable ODE's without commenting hints we can do:

separable(-x,y², x,y, 0,1);

 \triangleright Mark-Copy-Paste and RUN the code lines.

The MAXIMA output is:

Is y-1 positive, negative or zero?p;

$$(\% 63) [y = \frac{2}{x^2 + 2}]$$

Exercises.

Solve the following ODEs by hand, then using our functions odefxfy, separable and MAXIMA's ode2. Check the plausibility of the solution by an slope plot.

Exercise 26. Solve the ODE $(1 + x^2)xy\frac{dy}{dx} = 1 - y^2$, cf. [27, p.239].

Exercise 27. Solve the IVP $\sin^2 x + (\frac{dy}{dx})^2 = 1$ with $y(x_0) = y_0$, cf. [27, p.229].

Exercise 28. Why is the ODE $y' = x - y^2$ not solvable by separation of the variables?

Exercise 29. Solve the IVP $y' = -\frac{y^2}{2x+1}$, at x = 0 is y = 1, cf. [12, p.38].

Exercise 30. Solve the IVP $y' = x^2 - x^2y$, at x = 1 is y = 5. Is $y(x) \equiv 1$ a solution?

Exercise 31. Solve the IVP $xy' = y \ln y$, y(1) = 2.

Exercise 32. Solve $t\varphi' + \varphi^2 - 1 = 0$.

Exercise 33. Solve yy' = x, y(1) = 1.

Exercise 34. A sky diver falls so that his speed changes according to $\frac{dv}{dt} = 10 - 0.3v$. Solve this differential equation given that v = 0 when t = 0. Plot the solution and state the terminal speed of the sky diver. See [6, p.281].

Exercise 35. The population P of a colony of insects grows by $\frac{dP}{dt} = \frac{P}{4}$. Find the time taken for the population to double in size, cf: [6, p.281].

Exercise 36. Do some of the exercises of [28, p.33 ff]. You will find the solutions at \triangleright BAZETT: Separable equations.

Exercise 37. Do some of the examples and exercises of \triangleright DAWKINS, P.: Separable Equations.

Exercise 38. Do exercises 1.1.5, 1.1.6, 1.1.7 from \triangleright BAZETT: Integrals as solutions.

Exercise 39. Do example 1.2 from [1, p.7].

Exercise 40. Do some examples and review problems of \triangleright FAN/CIFARELLI: Separable ODEs.

2.4 ... the case $y' = f(x) \cdot y + g(x)$: linear ODE

• The ODE type IV is: $y' = f(x) \cdot y + g(x)$, i.e. the shape of the right-hand side of the ODE is in analogy to a straight line y = ax + b'. The *linear part* is $f(x) \cdot y$ and the so called *inhomogeneity* is g(x).

The solution method is called the *variation of the constant* and is a generalization of the two special cases before: setting f(x) := 1 we get ODE shape I and setting g(y) := 1 we get ODE shape II.

We first solve the linear part of the ODE and then the whole ODE.

 $\mathbf{1}^{st}$ solve linear part, i.e. solve $y' = f(x) \cdot y$, y(a) = b. But this is case III which can be solved by the *method of separation of the variables* and leads to an explicit solution:

 2^{st} solve the given ODE, i.e. solve y' = f(x)y + g(x), y(a) = b. We make the ansatz (guess) to substitute the constant b in $y(x) = b \cdot \int_a^x f(t) dt$ through an suitable function $\phi(x)$ of x, which fulfills the initial condition $\phi(a) = b$ and then assume the following function h be a solution of the ode:

$$h(x) := \phi(x) \cdot \exp(\int_{a}^{x} f(t) dt)$$
(2.2)

This method is therefore called the *variation of the constant*. For the moment we also compactify the 2nd factor of h to be $F(x) := \exp(\int_a^x f(t) dt)$, so we have:

$$\begin{array}{rcl} y' \stackrel{ODE}{=} f(x) \cdot y + g(x) & \rightsquigarrow & h'(x) = f(x) \cdot h(x) + g(x) & (\text{because } h \text{ solves the ode}) \\ & \stackrel{(2.2)}{\rightsquigarrow} & \phi'(x) \cdot F(x) + \phi(x) \cdot f(x) \cdot F(x) = f(x) \cdot \phi(x) \cdot F(x) + g(x) \\ & \stackrel{:F(x) \neq 0}{\rightsquigarrow} & \phi'(x) \cdot F(x) = g(x) \rightsquigarrow \phi'(x) = \frac{g(x)}{F(x)} \\ & \rightsquigarrow & \phi(x) = b + \int_a^x \frac{g(t)}{F(t)} dt \end{array}$$

So we arrive at the explicit solution formula y(x) of the linear ODE:

$$y(x) :\stackrel{(2.2)}{=} (b + \int_{a}^{x} \frac{g(u)}{\exp(\int_{a}^{u} f(t) \, dt)} \, du) \cdot \exp(\int_{a}^{x} f(t) \, dt)$$
(2.3)

The formula (2.3) is easily transformed to MAXIMA:

Example 6. The ODE y' + y = 1, y(0) = 1 is of type III,

because y' = f(x, y) = -y + 1 with f = -y, g = 1, a = 0, b = 1, cf. [29, p.65]. **a.** To solve by hand, we put the ODE in another form: y'(x) + p(x)y(x) = q(x), i.e. y' + y = 1, p = 1 = q and choose $M(x) := e^{\int_0^x p(x)dx} = e^{\int_0^x 1dx} = e^x$ as 'integrating factor':

 $y' + y = 1 \xrightarrow{\bullet M(x)} e^x y' + e^x y = e^x \xrightarrow{\text{prod.rule}} (ye^x)' = e^x \rightsquigarrow ye^x = e^x + C \xrightarrow{:e^x} y = 1 + Ce^{-x}$ Determine C: $1 = y(0) = 1 + Ce^{-0} \rightsquigarrow 1 = 1 + C \rightsquigarrow C = 0$

b. In a. we solved the ODE in a slightly modified method, called the *integrating factor method* alias the *variation of the constant*. We code their steps in the following MAXIMA function VoC, which allows to follow the steps of the semi-automatic 'pedagogical' solution process :

The invoke arguments of VoC(p,q, x,y, xo,yo) should be self-explaining. Let's test our function VoC for the example above y' + y = 1, y(0) = 1:

VoC(1, 1,x,y,0,1); /* p q */

 \triangleright Mark-Copy-Paste and RUN the code lines.

The output of the dialog is ...

```
Step 1: check correct shape y'+py=q : d/d x y+y=1
.... with initial condition: y(0)=1
Step 2 - choose integrating factor M(x) = exp(fp) = %e<sup>x</sup>
Step 3 - multiply ODE by M*(y'+py=q), integrate : %e<sup>x</sup> y=%e<sup>x</sup>
Step 4 - divide through M : y=C%e<sup>-x</sup>+1
Step 5 - calculate C for yo=y(xo) : [C=0]
(%o28) [C=0]
```

- .. and allows to read off the result in (%o28) $y \equiv 1$.
- c. We now solve this IVP by invoking the build-in function ode2:

```
/* Maxima -- ODE type IV -- */
ode2( 'diff(y,x) = -y+1, y, x);
ic1(%,x=0,y=1);
```

 \vartriangleright Mark-Copy-Paste and RUN the code lines.

The MAXIMA output is:

(%o7) y=%e^{-x} (%e^x+%c) (%o8) y=1

c. We now solve this IVP by invoking our user-bulid function linear1:

linear1(-1,0,x,y,0,1);

▷ Mark-Copy-Paste and RUN the code lines.

The MAXIMA output is:

```
(%06) %exp(-x)
```


Figure 7: The direction field of the ODE y' = 1 - y shows the special solution y(x) = 1 and the solution with IVP y(0) = 2.

Exercises.

Solve the following ODEs by hand, then using our functions linear1, VoC and MAX-IMA's ode2. Check the plausibility of the solution by an slope plot.

Exercise 41. Solve the ODE y' = x + y.

Exercise 42. Solve the ODE $y' - \frac{y}{x} = \frac{x-1}{x}$.

Exercise 43. Solve the IVP $4s\psi' - 2\psi = 3s^2$, $\psi(1) = 0$.

Exercise 44. Solve the IVP $\dot{z}\cos t + z\sin t = 1$ z(0) = 1.

Exercise 45. A cylindrical vessel containing a liquid, rotates with the constant angular velocity ω around its vertical axis. Which is the shape of the liquid surface after entering the stationary state?

[Result: $z = \frac{\omega^2}{2g}r^2 + z_0$ (paraboloid of revolution) cf. [12, p.248].

Exercise 46. Do some of the exercises of [28, p.40 ff]. You will find the solutions at url \triangleright BAZETT: Linear equations and the integrating factor.

Exercise 47. Do some of the examples and exercises of \triangleright DAWKINS, P.: Linear Differential Equations.

Exercise 48. Do exercise 1.4 on p.9 of \triangleright AMMARI: integrating factors.

2.5 ... the case $f_x + f_y \cdot y' = 0$: exact ODE

Figure 8: Left: The exact ODE $(x^2 + y^2) + 2 \cdot y \cdot (x+1) \cdot y' = 0$ has an implicit solution f(x, y) = C, which is part of ... Right: .. one of the contour lines of the contour plot of f(x, y),

i.e. y(x) is solution, if its graph runs on an 'isocline' of same high.

• The ODE type V is: $P(x, y) + Q(x, y) \cdot y'(x) = 0.^4$ A function y(x) is solution of such an ODE, if there exists a C^1 -function f(x, y) on a region in \mathbb{R}^2 with $f_x = P$, $f_y = Q$ and f(x, y(x)) = const – because we then have $\frac{d}{dx}f(x, y(x)) = \frac{\partial}{\partial x}f(x, y) + \frac{\partial}{\partial y}f(x, y) \cdot y'(x) =$ $P + Q \cdot y' = 0$, cf. [22, p.148]. ODEs of this comfortable type V are called *exact*.

Definition. (exact ODE) The ODE $P(x, y) + Q(x, y) \cdot y'(x) = 0$ is called *exact*, iff there is a C^1 -function f(x, y) with $\frac{\partial f}{\partial x} \equiv f_x = P$ and $\frac{\partial f}{\partial y} \equiv f_y = Q$.

Fact. (*Test for exactness*) IF we are given two C^1 -functions P(x, y) and Q(x, y) on a rectangle $R \subset \mathbb{R}^2$, THEN the ODE $P(x, y) + Q(x, y) \cdot y'(x) = 0$ is exact iff $P_y = Q_x$.

A rough theoretical argument and a method how to find such an function f is as follows, cf. [22, p.149]: first determine the indefinite integral F(x, y) of P by integrating along the x-axis (i.e. $F_x = P$), e.g.

$$F(x,y) := \int_{xo}^{x} f(t,y)dt \tag{2.4}$$

⁴Often denoted as $P(x, y) \cdot dx + Q(x, y) \cdot dy = 0$.

Then choose an anonymous function A(y), which only depends on y. It follows:

$$\begin{split} f(x,y) &\coloneqq F(x,y) + A(y) &\Rightarrow f_x = F_x + A_x(y) = P + 0 = P \\ &\rightsquigarrow f_y = F_y + A'(y) = 0 + Q = Q \\ &\rightsquigarrow A'(y) = Q - F_y \\ &\rightsquigarrow A(y) = \int (Q - F_y) dy \\ &\rightsquigarrow f(x,y) = \int f(x,y) dx + \int (Q - F_y) dy \end{split}$$

and because of $Q_x - F_{xy} = Q_x - P_y = 0$ the integrand $(Q - F_y)$ only depends on y.

Example 7. The ODE $(x^2 + y^2) + 2 \cdot y \cdot (x+1) \cdot y' = 0$ is of type V, with $P(x, y) = (x^2 + y^2)$ and $Q(x, y) = 2 \cdot y \cdot (x+1)$.

a. The ODE is exact: $P_y = 2y = Q_x$, ok.

b. We follow now the theoretical solution process to construct the solution:

$$\begin{split} F(x,y) &:= \int P(x,y) dx = \int (x^2 + y^2) dx = \frac{x^3}{3} + xy^2 \\ f(x,y) &:= F(x,y) + A(y) \implies f_y = F_y + A'(y) = 0 + Q = Q \\ & \rightsquigarrow \quad A'(y) = Q - F_y = 2y \\ & \rightsquigarrow \quad A(y) := \int (Q - F_y) dy = y^2 + C \\ f(x,y) &= F(x,y) + A(y) = xy^2 + \frac{x^3}{3} + y^2 + C. \end{split}$$

Maxima code. Here is an implementation of a MAXIMA function exact(.), which constructs an implicit solution f(x, y) = C of an exact ODE $P(x, y) + Q(x, y) \cdot y'(x) = 0$ along this theoretical method. It goes along the steps $F \to \ldots \to f$.

Comment: In (1) we check, if the ODE is indeed exact. It it is, we work through the steps. In (2) we construct the helper function A using MAXIMAS funmake⁵ concept. In (3) we solve the equation C for A and pick their right-hand side. This RHS is integrated along y and gives the solution function f(x, y).

The invoke arguments of exact(P,Q, x,y) should be self-explaining.

Example 8. Let's test our function exact for the ODE $(x^2 + y^2) + 2 \cdot y \cdot (x+1) \cdot y' = 0$: a.

In (4) we solve the implicit solution f(x, y(x)) = 1 for an explicit solution $y(x) = \dots$ The output of this dialog is⁶

⁵=make an anonymous function named A dependent only on y.

⁶Using MAXIMA^{on line} the last line of the code snippet reads draw2d(explicit(sqrt(3/(x+1)-x*x*x/(x+1))/sqrt(3), x,-2,2));

Comment: Left: The implicit solution $f(x, y) = xy^2 + y^2 + x^3/3$ of the exact ODE $(x^2 + y^2) + 2 \cdot y \cdot (x+1) \cdot y' = 0$ is displayed in (%050). In (%051 RHS) the explicit solution for f = 1 is displayed. Right: The graph of y is plotted and corresponds to the y > 0 part of Fig.8 LHS.

 \triangleright Mark-Copy-Paste and RUN the code lines.

b. We now solve this ODE by invoking the build-in function ode2:

```
/* Maxima -- ODE type V EXACT ODE -- */
(x^2+y^2)+2*y*(x+1)*'diff(y,x)=0;
ode2(%,y,x);
solve(%,y);
```

The MAXIMA output is:

(%64) 2 (x+1)
$$y \left(\frac{d}{dx}y\right) + y^2 + x^2 = 0$$

(%65) $\frac{(3x+3)y^2 + x^3}{3} = \%c$

Please observe, that MAXIMA's full-automatic solver ode2 also needs help by calculating the *explicit* solution y. We get the same result as our semi-automatic solution with exact(.).

• Looking back, we see that an explicit solution y(x) of an exact ode is always part of an niveau line of the implicit solution f(x, y):

Exercises.

Solve the following ODEs by hand, using our functions exact and MAXIMA's ode2. Check the plausibility of the solution by an slope plot.

Exercise 49. Solve the ODE $2xy \, dx + x^2 \, dy = 0$. Cf. [29, p.89].

Exercise 50. Solve the ODE $y' = -\frac{3x^2 + 4xy}{2x^2 + 2y}$.

Exercise 51. Solve $(xe^y + \cos(y))y' = -e^y$. Cf. [16, p.61].

Here are some exercises from KRYSICKI [27, p.299 ff]:

Exercise 52. Solve the ODE $2x - y + (4y - x)\frac{dy}{dx} = 0$.

Exercise 53. Solve the ODE $e^{x}(1 + e^{y}) = -e^{y}(1 + e^{x})y'$.

Exercise 54. Solve the ODE $(\frac{x}{y} - 2y)y' = 2x - \ln y$.

Exercise 55. Do some of the examples and exercises of [28, p.63 ff]. You will find the solutions at \triangleright BAZETT: Exact equations.

Exercise 56. Do some of the examples of \triangleright DAWKINS: Exact Equations.

Exercise 57. Read §1.3.2 and do examples 1.12 - 1.14 on p.11 of \triangleright Ammari: Exact equations.

Exercise 58. Read about isoclines and do some of the problems of \triangleright FAN/CIFARELLI: Isoclines.

2.6 ... the case $y' = f(\frac{y}{x})$: substitutions

Sometimes the introduction of new coordinates may transform a given ODE in an equivalent, but better hand-able form. Often one Figure 9: transforms ('substitutes') the dependent variable y into a new one u, then solves the transformed ODE and transforms this u-solution back to get a solution y of the original ODE: $y(x) \to u(x) \to y(x)$.

• The ODE type VI is: $y' = f(\frac{y}{x})$, i.e. the right-hand side of an ODE of this type depends only on the quotient $\frac{y}{x}$. Such an ODE is called a *homogenous* ode and is solved after the substitution $u := \frac{y}{x}$ by the method of separation of variables.

Definition. (homogenous ODE)

The ODE y'(x) = f(x, y) is called *homogenous*⁷, iff $f(t^1x, t^1y) = f(x, y)$ for all $t \in \mathbb{R}$.

A rough theoretical motivation of the solution method is:

LEXICON Transformation Back-Transformation
$$u(x) := \frac{y(x)}{x} | y(x) = x \cdot u(x)$$

It follows for the back-transformed y(x) of a function u(x)

$$y(x) = x \cdot u(x) \quad \rightsquigarrow \quad y' = u + x \cdot u' \quad (\rightsquigarrow y'' = 2u' + x \cdot u'' \dots)$$
(2.5)

$$y'(x) = f(y/x) = u(x) + x \cdot u'(x) = f(u(x))$$

$$\rightsquigarrow \quad u'(x) = \frac{f(u) - u}{x} = \frac{du}{dx}$$

$$\rightsquigarrow \quad \frac{f(u) - u}{du} = \frac{x}{dx}$$

$$\rightsquigarrow \quad \text{now solve this ODE via separation of the variables}$$
(2.6)

 \rightsquigarrow and solve the original ODE via back-substitution.

Example 9. Solve the IVP $y' = \frac{y+x}{x}$, y(0) = 2. **a.** The ODE is of type VI, because $y' = \frac{y+x}{x} = \frac{y}{x} + 1$. **b.** We argue:

$$y' = \frac{y+x}{x} \qquad \stackrel{(2.5)}{\leadsto} \qquad u+x\frac{du}{dx} = \frac{xu+x}{x}$$
$$\rightsquigarrow \qquad x\frac{du}{dx} = 1$$
$$\stackrel{\text{separate var's}}{\leadsto} \qquad \frac{dx}{x} = du$$
$$\rightsquigarrow \qquad u = \ln|x| + C$$
$$\stackrel{\text{back-subst}}{\leadsto} \qquad \frac{y}{x} = \ln|x| + C$$
$$\rightsquigarrow \qquad y(x) = x\ln|x| + x \cdot C$$

Maxima code. Here is a small script to run this solution method in MAXIMA. It goes along the steps (2.5) to (2.6).

Comment: In (1) we write down the RHL of the given ODE. (2) translates equation (2.5) into MAXIMA language and substitutes u * x for y in the RHS f(x, y) of the ODE. This equation (eq1) is rearranged in (3) to give $du = \dots$ Now this new ODE in variables x, u is solved via the user-defined function SEPARABLE and the solution u is saved in (eq2). In (4), we now back-substitute y/x for u in the u-solution (eq2) and resolve this for y. ok.

 $\,\triangleright\,$ Mark-Copy-Paste and RUN the code lines.

The output of the dialog is ...

```
(%o61) f(x,y) := \frac{y+x}{x}
(eq1) \frac{du x}{dx} + u = \frac{u x+x}{x}
(%o63) [du = \frac{dx}{x}]
(eq2) \log(x) = u
(eq3) \log(x) = \frac{y}{x}
(%o67) [y = x \log(x)]
```

.. and displays the solution in (%067) to be $y \stackrel{\text{Maxima}}{=} x \cdot \log(x) + C \stackrel{\text{Math}}{=} x \cdot \ln(x) + C$.

c. We solve this ODE by invoking the build-in function ode2:

```
'diff(y,x) = (y+x)/x ;
ode2(%,y,x);
method;
```

 \triangleright Mark-Copy-Paste and RUN the code lines.

The MAXIMA output is:

(%071) $\frac{d}{dx}y = \frac{y+x}{x}$ (%072) $y = x (\log(x) + %c)$ (%073) linear

Please observe, that MAXIMA's full-automatic solver ode2 interprets this ODE as a linear one and therefore uses another solution method. Please do this as an exercise.

Exercises.

In the exercises we point also to other substitutions.

Exercise 59. Solve the ODE $x^2y' = y^2 + xy$, y(1) = 1. Choose the substitution u = y/x. Cf. [28, p.46].

Exercise 60. Solve the ODE $y' = (x - y + 1)^2$. Choose the substitution u = x - y + 1. Cf. [28, p.49].

Exercise 61. Do some of the exercises of [28, p.46 ff]. You will find the solutions at \triangleright BAZETT: Substitutions.

Exercise 62. Do some of the examples and exercises of \triangleright DAWKINS: Substitutions.

Exercise 63. Solve the IVP $y' = \sin(\frac{y}{x+1}) + \frac{y}{x+1}$, where for $x_0 = 1$ we have $y_0 = \pi/2$. a. First use MAXIMAS ode2 to solve the IVP.

Result by Mathematica, cf. [16, p.51]: $y(x) = 2(1+x) \arctan((1+x)/2 \cdot \tan(\pi/8))$.

b. Transform the IVP by means of the substitution $u(x) := \frac{y(x)-y_0}{x-x_0}$ in a separable ode. **c.** Transform the IVP by means of the substitution $v(x) := \tan(u(x)/2)$ in a separable ode. Compare with b.

PS: look for the MAXIMA function isolate(expr,x). Maybe it is of some help ...

Exercise 64. (BERNOULLI equation) Study the type $y' + f(x) \cdot y + h(x) \cdot y^{\alpha} = 0, \alpha \neq 1$.

a. Transform the ODE by means of the substitution $u := y^{1-\alpha}$ in a separable ODE.

b. Solve the corresponding IVP in general for y(a) = b.

c. Solve the IVP $y' + \frac{y}{1+x} + (1+x)y^4 = 0$, y(0) = 1. Cf. [26, p.91].

Exercise 65. Read §1.2.2 and do example 1.3 on p.8 of \triangleright Ammari: Change of variables.
3 Intermezzo: iterate

As prototype example for an iteration process we chose the well-known HERON algorithm to approximately calculate the square root of a reell number, see \triangleright WIKI: HERON method. We first study this process by a hand calculation to get a feeling for the procedure and then introduce the corresponding MAXIMA function **iterate** to fully automate it.

3.1 iterate by hand

Let's calculate approximately $\sqrt{2}$ starting with x = 3, i.e. $\sqrt{2} \approx 3$. Watch the process:

Step	variable	recurrence term
n	x	$f(x) = 0.5 \cdot (x + 2/x)$
1	3	
2	1.8333	$f(3) = 0.5 * (3 + 2/3) \approx 1.8333$
3	1.4621	$f(1.8333) = 0.5 * (1.8333 + 2/1.8333) \approx 1.4621$
4	1.415	$f(1.4621) = 0.5 * (1.4621 + 2/1.4621) \approx 1.415$
5	1.4142	$f(1.415) = 0.5 * (1.415 + 2/1.415) \approx 1.4142$

So we have the following recurrence (sequence) process, which after 5 iteration steps gives $\sqrt{2} \approx 1.4142$:

$$3 \xrightarrow{f} 1.8333 \xrightarrow{f} 1.4621 \xrightarrow{f} 1.415 \xrightarrow{f} 1.4142 \xrightarrow{f} \dots$$

Or a little bit abstracted:

$$x_1 \stackrel{f}{\rightsquigarrow} x_2 \stackrel{f}{\rightsquigarrow} x_3 \stackrel{f}{\rightsquigarrow} x_4 \stackrel{f}{\leadsto} \dots \stackrel{f}{\rightsquigarrow} x_n \stackrel{f}{\rightsquigarrow} x_{n+1} = f(x_n)$$

Let's visualize this approximation process.

Left: Recurrence: The result f(x) for its 'old' input x is substituted in f again and therefore recurs as new input x, i.e. in sequence language: $f(x_n) = x_{n+1}$.

Figure 10: I.e. In sequence language: $f(x_n) = x_{n+1}$. *Right: Visualization*: the starting red rectangle with length x = 2 and width y = 1 is transformed in 3 steps to a square \Box with equal sides $\sqrt{2} \approx 1.4$.

• Following the pattern of the PICARD iterates we may code the HERON algorithm using a hashed array:

 \triangleright Mark-Copy-Paste and RUN the code lines.

The wxMAXIMA output:

(%o1) 1.4142

3.2 iterate by iterate

We now abstract the recurrence pattern from Fig.10 $x_0 \stackrel{u}{\rightsquigarrow} x_{new} \stackrel{u}{\rightsquigarrow} x_{newnew} \dots$ to a MAXIMA function *iterate(u,x,x0,n)⁸*, which automates this iterated substitution process. We implement two versions, a 1-dimensional version and a 2-dimensional version. Both are heavily used as a working horse for recurrences in the following chapters - despite its innocent looking code.

3.2.1 the one-dimensional function iterate

The invoke arguments of iterate(u,x,x0,n)⁹ are as follows:

- 1. u: the recurrence formula u(x), which depends on the variable x
- 2. **x**: the changing recurrence variable
- 3. $\mathbf{x0}$: the initial value of x
- 4. n: the number of repeated substitutions

Comment. We elaborate on the code of iterate. (2) makes a list of n pieces of updated x0 values, where each x0 is actualized in (3) by means of subst by inserting the old x0 for x in the term u(x). The iteration process itself is done by the build-in MAXIMA-function makelist and repeats because of (4) n times. At the beginning of the iteration process the makelist-list is empty and cons fills this empty start list with the initial value x0.

⁸This function mimics the omnipresent function iterate of CAS DERIVE, which was implemented by Albert RICH and David STOUTEMYER. In this way we may connect MAXIMA to the DERIVE literature.

⁹Originally I used the definition in §3.2.3.A. I owe this more compact and MAXIMA-like 1-liner to a private communication with Richard FATEMAN.

Example 10. Let's test our function on the HERON algorithm to calculate $\sqrt{2}$:

fpprintprec: 5\$		/*	(4)	*/
iterate(0.5*(x+2/x),	x,3, 4);	/*	(5)	*/

Here iterate(...) produces the first 5 iterations (i.e. repeating 4 times) of the recurrence relation $x_{n+1} = 0.5 \cdot (x_n + \frac{2}{x_n})$ starting with the given value $x_o = 3$ for n=1. > Mark-Copy-Paste and RUN the code lines.

The MAXIMA output reproduce in (%o3) the results in §3.1:

```
(%i3) fpprintprec:5$
    iterate(0.5*(x+2/x), x,3,4); /* sqrt 2 */
    (%o3) [3,1.8333,1.4621,1.415,1.4142]
```

Exercise 66. Let x > 0. Take the HERON iteration $x_{n+1} = 0.5 \cdot (x_n + \frac{2}{x_n})$. **a.** Verify: $x = 0.5 \cdot (x + \frac{2}{x}) \Leftrightarrow \cdots \Leftrightarrow x^2 - 2 = 0$.

b. Calculate iterate(x*x - 2, x,3, 4); - What do you observe? Consequence?

Exercise 67. Write a function power(x,n) := iterate(...) to compute the *n*-th power of a number x.

Exercise 68. Write a function factorial(n) := iterate(.) to compute n! of a number n.

3.2.2 the two-dimensional function iterate2

Comment. Function iterate2 is very similar to iterate. But the variable x0 is now a list of 2 elements ('points') and subst awaits therefore a list of defining equations¹⁰ in the updating process.

Example 11. Let's test our function iterate2 on the HERON algorithm to calculate $\sqrt{2}$.

```
fpprintprec: 5$
Sqrt2 : iterate2([n+1, 0.5*(x+2/x)], [n,x], [1,3],4); /* (6) */
transpose(Sqrt2); /* (7) */
```

The MAXIMA output displays in (Sqrt2) the results of §3.2.1, supplemented by the counter in the first slot:

```
(%i16) fpprintprec:5$
    Sqrt2 : iterate2([n+1, 0.5*(x+2/x)], [n,x], [1,3],4);
    (Sqrt2) [[1,3],[2,1.8333],[3,1.4621],[4,1.415],[5,1.4142]]
```

 $^{^{10}\}mathrm{I}$ thank Michel TALON for pointing me to this syntax difference.

Code line (7) allows to give the output of the list Sqrt2 in a rough table shape by transposing the matrix Sqrt2:

Code line (7) also allows to give the output of the original list Sqrt2 as a graphical point list:

```
/* wxMaxima */
wxdraw2d(xaxis = true,
    user_preamble="set size ratio -1", /* axis equal scaled */
    xrange = [0,5], yrange = [-0.1,2],
    xlabel ="x",ylabel ="y",
    point_size=2, points_joined=false,
    color = magenta,
    points( Sqrt2 ),
    title="HERON iteration for Sqrt2");
```


▷ Mark-Copy-Paste and RUN the code lines.

Exercise 69. Write a function fib(n) := iterate2(..., [0,1], n) to compute the *n*-th FIBONOCCI number of an integer *n*.

3.2.3 *Variants of iterate

In 3.2.1 we coded the user-defined function iterate in a very short and clear version, which was proposed by R. FATEMAN¹¹.

A. Here is the originally used version of iterate:

Comment. We elaborate on the code of iterate. (1) prepares two local variables inside the block structure: The list 1 is filled with the starting value xo of the iteration process and will collect all following outputs x_i , the variable val gets the initial value xo. The for loop repeats the process (2) n times. In (2) variable val is actualized via subst by inserting the old val for x in the term u(x). Afterwards this updated val is pushed in front of the current list 1 via cons. Because the newest value is now in front of the list, we invert it in (3) using reverse to see the latest value of x at the end of the list.

a. Test this function on the HERON algorithm to calculate $\sqrt{2}$.

b. Discuss pros and cons of both versions.

B. (FATEMAN) Another technique using more 'functional' style programming use just f, the name of a function of one argument – instead of providing both u = f(x), and x separately. This shortens the calling sequence:

```
iterate1a(f,y0,n):= cons(y0, makelist(y0: apply(f,[y0]), i,1,n));
```

```
iterate1a( lambda([x], 0.5*(x+2/x)), 3, 4);
```

We may also use recursion technique, see rec:E or rec:D

For the functions iterate1a/1b, the *first argument must be a function, not an expression*.. c. Look on Maxima's online help and read about apply and cons. Now think about the code lines of the functions iterate1a/1b.

Remark. In our function iterate we set the option numer:true.

This is because we mainly use *numerical* methods to solve IVP's in the following chapters.

d. Check, what happens, if you set the option numer:false (or cancel the line numer:true) in your test of the HERON algorithm to calculate $\sqrt{2}$.

¹¹in a communication on the Maxima discussion list, see FATEMAN: Introductory DE.

3.3 First Applications of iterate

To convince us of the power of iterate/2 we demonstrate its use for the approximation of the root of a function with the help of the so called NEWTON-RAPHSON method and the Secant method. We also introduce an alternative for the PICARD iterates: the TAYLOR method for the approximate solution of an ODE.

3.3.1 simplified NEWTON-RAPHSON method

Red: The graph of $f(x) = x^2 - 2$. Where is the root of f? **Blue:** The tangent on Graph(f) at point P = (1, -1). Graphically the root ξ of f(x) = 0 is located where the graph of f crosses the x-axis, i.e. $\xi \approx 1.4$.

Figure 11: Idea of NEWTON-RAPHSON method: If we know - e.g. by looking at the graph of f on [a, b] - that a root ξ of f exists between a and b, then we take the intersection x_1 of the tangent of f going through point (a, f(a)) with the x-axis as the initial guess for $\xi \approx x_1$.

Green: The sequence of approximate solutions towards the root ξ using the simplified NEWTON method for $x^2 - 2 = 0$ tending to $\sqrt{2} \approx 1.41$.

• How to get a recurrence formula for this idea?

The equation of the tangent line at point $(x_0, f(x_0))$ is $y = f(x_0) + f'(x_0)(x - x_0)$. Crossing the x-axis means y = 0, so we get $0 = f(x_0) + f'(x_0)(x - x_0)$ and solving for x and setting $c := f'(x_0)$, we get using MAXIMA

```
solve(0 = f(x_0) + c*(x-x_0), x), expand;

\begin{bmatrix} (\%014) & [x=x_0 - \frac{f(x_0)}{c}] \end{bmatrix}
```

for the next guess $x_1 := x_0 - f(x_0)/c$. So we arrive at the recurrence formula

$$x_{n+1} = x_n - \frac{f(x_n)}{c}$$
(3.1)

with $c := f'(x_0)$. We implement this formula using iterate:¹²

Comment. In (1) we translate $c := f'(x_0)$ into MAXIMA language. (2) takes the recurrence as RHS of (3.1) with an arbitrary term u instead of f(x). Updating $x_n \rightsquigarrow x_{n+1}$ is done automatically by iterates.

Example 12. (3) and (4) demonstrate two invocations of newton1.

```
newton1( x<sup>2</sup>-2 ,x,1, 9);  /* (3) */
f(x):= x<sup>2</sup>-cos(x);
newton1(f(x),x,1,5);  /* (4) */
```

 $\,\triangleright\,$ Mark-Copy-Paste and RUN the code lines.

Output:

```
(%011) [1,1.5,1.375,1.4297,1.4077,1.4169,1.4131,1.4147,1.414,1.4143]

(%012) f(x) := x^2 - \cos(x)

[1,0.83822,0.82632,0.82448,0.82419,0.82414]
```

Exercise 70. The recurrence formula (3.1) is called the *simplified* NEWTON-RAPHSON method, because it uses the same constant slope $c := f'(x_0)$ of the first tangent at the touching point unaltered in every step of the iteration. If the slope f'(x) is actualized in each step, the recurrence formula is changed to the *original* NEWTON-RAPHSON method

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
(3.2)

Then we get the MAXIMA function

```
newton(u,x,a,n) := iterate( x - u/diff(u,x), x,a, n);
```

a. Run newton(x*x-2,x,1,5) and newton($x*x-\cos(x)$), x, 1, 5) using floating point precision fpprintprec:5. Compare the results with (3) and (4).

b. Look at \triangleright WIKI: NEWTON method. and watch the animation of the changing tangents.

¹²Please observe: using iterate it is not necessary to use indices as in (3.1) – the RHS is sufficient!

Exercise 71. Reproduce Fig.11 with this code:

```
/* wxMaxima */
f(x):= x*x-2; a: 1; b: 2;
m: at(diff(f(x),x),x=a);
X: makelist(0,i,1,6);
Y: newton1(f(x),x,3,4); /* you must run newton1 before its use ! */
XY: makelist([Y[i],X[i]], i,1,5);
wxdraw2d(xaxis = true,
    point_size = 2, color = green, points(XY),
    point_size = 2, point_type = filled_circle,
    color =magenta, points([[a,f(a)]]),
    color =red, explicit( f(x), x,0.5,2.5),
    color =blue, explicit( m*(x-a)+f(a), x,0.5,2.5),
    title="simplified NEWTON-RAPHSON method")$
```

Think about every line of the code and its purpose.

3.3.2 simplified Secant method

Red: The graph of $f(x) = x^2 - 2$. Where is the root of f? Graphically the root ξ of f(x) = 0 is located where the graph of f crosses the x-axis, i.e. at $x \approx 1.4$.

Green: The sequence of approximate solutions for the root.

Idea of Secant method: If we know - eg by looking at the graph Figure 12: of f on [a, b] - that a zero ξ of f exists between a and b, then we take the intersection x_1 of the secant (blue line) of f through the two points (a, f(a)) and (b, f(b)) as a first approximate value for $\xi \approx x_1$.

• How to get a recurrence formula for this idea?

If we consider the tangent in §3.3.1 approximately replaced by the secant, we should replace the constant slope c := f'(a) in the recurrence formula (3.1) with the constant slope $c := \frac{f(b)-f(a)}{b-a}$ of the secant. This gives us the new simplified recurrence formula

$$x_{n+1} = x_n - \frac{f(x_n)}{c} = x_n - C \cdot f(x_n)$$
(3.3)

with $C := \frac{b-a}{f(b)-f(a)}$. We implement this formula using iterate:

Comment. In (1) we translate u(a) into MAXIMA language as subst(a,x,u). (2) takes the recurrence as RHS of (3.3) with an arbitrary term u instead of f(x).

Example 13. Let's do the two tests from above:

```
secant1(x<sup>2</sup>-2,x, 1,2, 5);
```

Output:

[(%07) [1,1.3333,1.4074,1.4138,1.4142,1.4142]

f(x):= x^2-cos(x); secant1(f(x),x, 1,2, 5), numer;

Output:

 $\begin{array}{c} (\% 28) & f(x) := x^2 - \cos(x) \\ (\% 29) & [1, 0.88381, 0.84668, 0.83293, 0.82761, 0.82551] \end{array}$

 \triangleright Mark-Copy-Paste and RUN the code lines.

Exercise 72. (sign change test) In Fig.12 the function values of f at points (a, f(a)) and (b, f(b)) have different signs, so we can argue that (our continuous) function f must cross the x-axis and therefore must have a root ξ between a and b.

Here is function signChange, that checks, if there is a sign change on the interval [a, b]:

signChange(a,b) := if f(a)*f(b) < 0 then true else false;</pre>

Test function **signChange** by running

f(x):= x*x-2; signChange(-2,2); signChange(0,2);

Exercise 73. (the general secant method) The recurrence formula (3.3) is called the *simplified Secant* method, because it uses the same constant slope C of the first secant unaltered in every step of the iteration. If the slope C is actualized in each step, we get the *original Secant* method. We will derive it in this exercise. We follow [17, p.39, p.56 ff]. **a.** Verify, that the straight line (secant) through the points (a, f(a)) and (b, f(b)) is given by

$$y = \frac{f(b) - f(a)}{b - a} \cdot x + \frac{b \cdot f(b) - a \cdot f(a)}{b - a}$$
(3.4)

b. The straight line **a.** crosses the x-axis at y = 0, so we have $0 = \frac{f(b) - f(a)}{b-a} \cdot x + \frac{b \cdot f(b) - a \cdot f(a)}{b-a}$. Use MAXIMA to show: $x = \frac{a \cdot f(b) - b \cdot f(a)}{b-a}$.

c. Implement MAXIMA function iterate3(u,x,xo,n) := block([l:[[xo[1],xo[2],xo[3]]], ...), which operates on lists of 3 elements.

d. Then define for a global defined user function f(x):

```
iterate3(u,x,xo,n) := block( [l:[[xo[1],xo[2],xo[3]]], ...); /* by you */
slope(x,y):= (x*f(y)-y*f(x))/(f(y)-f(x));
secants(a,b,n) := iterate3([x,y,slope(y,z)],[x,y,z],[a,b,slope(a,b)],n);
```

d. Test your functions with

f(x):= x²-2; transpose(secants(0,2, 5));

The output should be:

```
(%050)

[0,2,1.3333]

[0,2,1.4]

[0,2,1.4118]

[0,2,1.4138]

[0,2,1.4138]
```

e. Functions slope and secants work for a global defined function f. Alter both functions to work on an universal local function u a la slope(u,x,y) resp. secants(u,a,b,n), so that a call secants(x*x-2, 0,2, 5) is possible.

Remark. The theme of determine the roots of a function is part of general Numerical Analysis/Methods. For our purpose to solve boundary value problems (BVP) of an ODE our function **secant1** will be stable enough to serve as a possible helper function for the Shooting method.

Exercise 74. Reproduce Fig.12 with this code:

```
/* wxMaxima */
f(x):= x^2-2;
a:1; b:2;
```

```
(f(a)-f(b))/(a-b), numer;
m:
X: makelist(0,i,1,5)$
Y: secant1(f(x), x, 1, 2, 5)$
XY: makelist([Y[i],X[i]], i,1,5);
wxdraw2d(xaxis = true,
    point_size=2,
    color=green, points(XY),
    point_size = 2,
    point_type = filled_circle,
    color=magenta, points([[a,f(a)],[b,f(b)]]),
                   explicit(f(x), x, 0.5, 2.5),
    color=red,
                   explicit(m*(x-a)+f(a),x,0.5,2.5),
    color=blue,
    title="simplified Secant method")$
```

Think about every line of the code and its purpose.

Implict differentation and the TAYLOR method for ODE's 3.4

To show the usefulness of the function iterate, we have shown some examples that are not directly related to ODE's. We now return to dealing with the solution of an ODE. For this we implement the TAYLOR method as an alternative to the PICARD iteration. We start by implementing a helper function *idiff*, which shows another application of the Swiss army knife iterate.

We need two requisites: the 2-dimensional Chain rule and the TAYLOR expansion.

3.4.1implicit differentiation.

Let's remember the advanced calculus course. Quoting MARSDEN [33, p.780] we have

Theorem (2-dimensional Chain Rule; implicit differentiation)

IF f(x,y) (e.g. the RHS of an ODE) has continuous partial derivatives and the utility U(x) := f(g(x), h(x)) is a function of x alone with g(x) and h(x) differentiable,

THEN with $f_x := \frac{\partial f}{\partial x}$

$$U'(x) = f_x(g(x), h(x)) \cdot g'(x) + f_y(g(x), h(x)) \cdot h'(x)$$
(3.5)

i.e. to get U'(x) you have to multiply the partial derivatives of f(x,y) w.r.t each variable x and y with the derivatives of g and h and add the products.

You may prefer the other notation of (3.5): $\frac{\partial U}{\partial x} = \frac{\partial f}{\partial x} \cdot \frac{dg}{dx} + \frac{\partial f}{\partial y} \cdot \frac{dh}{dx}$. Because of the dependence of U on two interior intermediate functions g and h this differentiation process is called *implicit differentiation with respect to x*.

Example 14. Consider the ODE y' = f(x, y) := xy, i.e. more precise: $y'(x) = f(x, y(x)) \equiv y'(x)$ f(g(x), h(x)) with g(x) := x and h(x) := y(x). Calculate the first three derivatives of U(x) := f(x, y(x)).

Solution. U depends only on x. We want to use equation (3.5). We have g'(x) = 1 and $h'(x) = y'(x) \stackrel{ODE}{=} xy$. Therefore

$$y''(x) = U'(x) = f_x(g(x), h(x)) \cdot g'(x) + f_y(g(x), h(x)) \cdot h'(x)$$

= $(xy)_x \cdot x' + (xy)_y \cdot y'(x) = y \cdot 1 + x \cdot y'(x) \stackrel{y'=xy}{=} y + x \cdot xy$
= $y(x) + x^2 \cdot y(x)$

Again U' depends only on x. So we have a new function $U_2(x) := U'(x) = y(x) + x^2 \cdot y(x)$ and we can repeat the implicit differentiation via the chain rule (3.5). Therefore

$$y'''(x) = U'_{2}(x) = U''(x) = \frac{\partial}{\partial x}(y + x^{2}y) \cdot x' + \frac{\partial}{\partial y}(y + x^{2}y) \cdot y'$$

$$\stackrel{y'=xy}{=} (2xy) \cdot 1 + (1 + x^{2}) \cdot xy = 2xy + xy + x^{3}y$$

$$= 3xy + x^{2} \cdot y$$

$$=: U_{3}(x)$$

We see an emerging pattern for the sequence of new functions U_n :

$$U'_{n}(x) = \frac{\partial}{\partial x} U_{n-1} \cdot x' + \frac{\partial}{\partial y} U_{n-1} \cdot f(x,y)$$
(3.6)

Exercise 75. Determine y'''(x) for the ODE y' = xy.

3.4.2 idiff.

Exercise 75 shows that it becomes annoying and uncomfortable to iterate the implicit differentiation of f(x, y) to get more derivatives of y'(x). So let our function iterate do this work for us by defining a function idiff ('implicit' diff)¹³. We use the recursion (3.6) for the recurrence term in idiff, cf. [17, p.206 ff]:

The invoke arguments of idiff(f,x,y,m) are as follows:

- 1. **f**: the function f(x, y) (i.e. the right-hand side of an ODE y' = f(x, y)) ...
- 2. $x, y : \dots$ depending on the variables x and y.
- 3. m: the number of repeated substitutions of new functions u according to (3.6).

¹³In 1999 Dan STANGER wrote an implicit differentiation function in MAXIMA. The files are in share/contrib/impdiff.mac and makeOrders.mac. In contrast to our idiff it is a very professional code.

Comment. In (1) the recurrence term diff(u,x,1)+f*diff(u,y,1) is $\frac{\partial u}{\partial x} \cdot 1 + \frac{\partial u}{\partial y} \cdot f(x,y)$, i.e. the translation of (3.6) to MAXIMA. The iteration variable here is u, i.e. the each newly created function u in the process (3.6)! That is why the initial value for u in the process is the function f(x,y). In (1) the build-in function diff is not evaluated because of the quote 2; therefore we have explicitly to ev(aluate) the diff function in the IMP1 term in (2).¹⁴

Example 15. Check example 14 and exercise 75 with idiff. *Solution.*

```
expand( idiff(x*y,x,y,4) );
```

 \triangleright Click to RUN the code.

The output displays all implicit derivatives starting with f until y''', i.e. the list [y, y', y'', y''']:

$$[x y, x^2 y + y, x^3 y + 3 x y, x^4 y + 6 x^2 y + 3 y]$$

In case you only want to look at the result of exercise 75, do

 $\begin{array}{ccc} (\%i7) & expand(\ idiff(x*y,x,y,4)[4] \); \\ (\%o7) & x^4 \ y+6 \ x^2 \ y+3 \ y \end{array}$

3.4.3 TAYLOR method for ODEs.

Let y' = f(x, y), $y(x_0) = x_0$ be an ODE. If we assume the solution y(x) to be an analytic function, we may approximate its values near x by a TAYLOR polynomial of degree m, i.e.:

$$y(x+h) \approx y(x) + \frac{y'(x)}{1!} \cdot h + \frac{y''(x)}{2!} \cdot h^2 + \frac{y'''(x)}{3!} \cdot h^3 + \dots + \frac{y^{(m)}(x)}{m!} \cdot h^m$$
(3.7)

Since we want to get a recurrence formula for $y_{k+1} \approx y(x_{k+1}) = y(x_k + h)$, we define

$$y_{k+1} := y_k + \frac{y'(x_k)}{1!} \cdot h + \frac{y''(x_k)}{2!} \cdot h^2 + \frac{y'''(x_k)}{3!} \cdot h^3 + \dots + \frac{y^m(x_k)}{m!} \cdot h^m$$
(3.8)

In (3.8) we need the derivatives $y'(x_k), y''(x_k), y'''(x_k), \dots$ But these derivatives are interpreted and therefore determined as implicit derivatives of f(x, y), which we can easily calculate via our self-defined function idiff: so equation (3.8) gives the recurrence term

¹⁴I thank Michel Talon who friendly helped in coding (2).

of the 'implicit' Taylor method of oder m. Please observe: In difference to the 'normal' Taylor expansion we have to use idiff instead of diff.

We may also look at equation (3.8) as a scalar product of the two lists (ok: vectors)

$$y_{k+1} = [y, y', y'', y''', ..] \bullet [h, \frac{h^2}{2}, \frac{h^3}{6}, \frac{h^4}{24}, ...]$$
(3.9)

This motivates the function iTaylor, cf. [17, p.208]:

```
/* MAXIMA --- IMPLICIT TAYLOR METHOD of order m --- */
/* include our functions iterate(u,x,xo,n) and idiff(f,x,y,m) here */
iTaylor(f,x,y, h, m) := y + idiff(f,x,y,m).makelist(h^r/r!, r,1,m);
```

Example 16. We test iTaylor on the IVP y' = xy with y(0) = 1.

```
makelist(h^r/r!, r,1,4);
iTaylor(x*y, x,y, h,3);
iTaylor(x*y, x,y, 1/5, 3),expand;
```

The output displays all Taylor method order 3 terms with its implicit derivatives

```
\begin{bmatrix} (\%i9) & iTaylor(x*y,x,y,h,3); \\ (\%o9) & \frac{h^3 x (x^2+3) y}{6} + \frac{h^2 (x^2+1) y}{2} + h x y + y \\ \end{bmatrix}
\begin{bmatrix} (\%i10) & iTaylor(x*y, x,y, 1/5, 3), expand; \\ (\%o10) & \frac{x^3 y}{750} + \frac{x^2 y}{50} + \frac{51 x y}{250} + \frac{51 y}{50} \end{bmatrix}
```

For the IVP the command at (%, [x=0, y=1]), float; gives (%012) 1.02.

Exercise 76. Look at the following MAXIMA script:

```
iterate2(u,x,x0,n) := block([numer:true],
    cons(x0, makelist(x0:subst([x[1]=x0[1],x[2]=x0[2]],u), i,1,n)))$
```

```
fpprintprec: 5$
iterate2([x+0.2, iTaylor(x*y, x,y, 0.2, 3)], [x,y], [0,1], 5); /*(1)*/
```

 \triangleright Click to RUN the code.

The output of (1) is

(%07) [[0,1],[0.2,1.02],[0.4,1.0828],[0.6,1.1964],[0.8,1.3757],[1.0,1.6463]]. Explain: what does command (1) do?

Exercise 77. a. Use a TAYLOR method of order 2 to approximate the solution of the IVP $y' = \frac{3x^2}{2y}$ with y(0) = 1 for $0 \le x \le 2$ using 4 steps of length 0.5, see [43, p.237]. – Code: fprintprec:5; ratprint : false

iterate2([x+0.5, iTaylor(3*x*x/(2*y),x,y, 0.5,2)], [x,y], [0,1], 4);

Result: (%08) [[0,1],[0.5,1],[1.0,1.3574],[1.5,2.0738],[2.0,2.9991]]

b. Verify: the exact solution of the IVP is $y(x) = \sqrt{1 + x^2}$.

c. Calculate the 'global absolute error', i.e the summed distances of all y-approximate values from their corresponding exact values of the solution function y(x). [Result: 0.0606 d. Plot the exact solution y and the points of the approximate solution values y_k to visualize the global absolute error.

e. Do part a. by hand ..

3.4.4 iTaylorsol (TAYLOR solution method for ODE)

Example 16 shows a TAYLOR method of order 3 to approximate the solution of the IVP y' = xy with y(0) = 1 for $0 \le x \le 1$ using 5 steps of length 0.2. We will now abstract this procedure to a function **iTaylorsol**, which will iterate the TAYLOR recurrence relation for given data to establish a full automatic TAYLOR solution method of a prescribed order¹⁵:

```
/* MAXIMA --- TAYLOR SOLUTION METHOD of ODE y'=f(x,y) --- */
/* include functions iterate2(u,x,xo,n), idiff(f,x,y,m)
    and iTaylor(f,x,y,h,m) here */
iTaylorsol(f,x,y, xo,yo, h, m, n) :=
        iterate2([x+h, iTaylor(f,x,y, h, m)], [x,y], [xo,yo], n);
```

The set of invoke arguments of iTaylorsol(f, x,y, xo,yo, h, m, n) is as follows:

- 1. **f**: the right-hand side of the ODE y' = f(x, y))
- 2. **x**, **y**: the names for the variables x and y of the function f
- 3. xo, yo: the IVP initial values for x and y, i.e. $y(x_o) = y_o$
- 4. h: the positive constant step size
- 5. m: the order of the method, i.e. the highest exponent of the Taylor expansion
- 6. n: the number of iterations, i.e. the number of iterated invocations of iTaylor

Example 17. Let's check iTaylorsol for the IVP $\begin{cases} y'=xy \\ y'(0)=1 \end{cases}$:

iTaylorsol(x*y, x,y, 0,1, 0.2, 3, 5) ;

MAXIMA output:

(%08) [[0,1],[0.2,1.02],[0.4,1.0828],[0.6,1.1964],[0.8,1.3757],[1.0,1.6463]]

Exercises.

Exercise 78. Someone wrote this piece of MAXIMA code.:

```
Taylor3(x,y, xo,yo, h,n):=
    iterate2([x+h, y+h*x*y + h^2/2*(x^2*y+y) + h^3/6*(x^3*y+3*x*y)],
        [x,y],[xo,yo],n)$
```

```
Taylor3(x,y, 0,1, 0.2, 5);
```

- \triangleright Click to RUN the code.
- a. What does Taylor3 do? What looks a corresponding call to iTaylorsol like?
- **b.** Write Taylor2 and Taylor4.
- c. Discuss pros and cons of Taylor3 w.r.t. iTaylorsol.

Exercise 79. Use a Taylor method of order 3 to solve the IVP $y' = x - y^2$, y(0) = -0.5. Compare with exercise 4.

Exercise 80. Construct the solution y of the IVP $y' = x^2 + y^2$, y(0) = 0 via a Taylor method of order 2. Compare with exercise 5.

Exercise 81. Given the IVP dy/dx = x - y, y = 1 at x = 0, use a Taylor method of order 4 to approximate y when x = 0.2, cf. [3, p. 189]. [Control: $y_5(0.2) \approx 0.83746$. - Exact solution: $y = x - 1 + 2e^{-x}$.

Exercise 82. Calculate the solution y of the ODE $y' = y^2 - xy$, which has value y = 1 for x = 0, via a Taylor method of order 3, cf. [24, p.79, p.308]. [Control: $y_5(0.5) \approx 1.6987$.

Exercise 83. Find the approximate solution to the equation $y'(t) = 1 + y(t)^2$ with initial condition $y(t_0) = y_0 = 0, t_0 = 0$ via a Taylor method of order 4. Compare with exercise 8. [Result: $y(x) = \tan(x)$

Exercise 84. An ODE is given through $x' = \sin(t) - x$ with IC x(0) = 1. Do a Taylor method of order 3 to approximate the solution x. Compare with exercise 9.

Exercise 85. Find an approximate solution to the initial value problem y' = 2t(y+1), y(0) = 0 using a Taylor method. Compare with the exact solution $y(t) = e^{t^2} - 1$, cf. [11, p.110].

Exercise 86. Discuss: what are the similarities and differences between iTaylor(.) and iTaylorsol(.).

4 Numerical Solution Methods for IVP

We discussed several methods of approximating solutions to an initial value problem (IVP). We may think of the solution y(x) to an IVP as describing a physical system that changes in time, for example the displacement of a swinging pendulum from its rest position. The initial conditions $y(x_o) = a$ and $y'(x_o) = b$ correspond to specifying the displacement and the velocity of the Pendulum at time $t = x_o$. We set the Pendulum in motion and watch it for some interval of time x_o to x_e by means of the ODE. – Read \triangleright AMMARI: Examples.

BRÄUNING [12, p.11] motivates the dealing with differential equations through their use in the natural sciences and presents examples like:

Left:(pendulum) "A small body of mass m is attached to point A with a thread of length ℓ . Let's deflect the body out of its resting position, keeping the thread taut and then leaving the body to itself, it will oscillate around this resting position. We describe this swing of a pendulum by means of this ODE: $-\mathbf{m}\ell\ddot{\varphi} - \mathbf{mg}\sin\varphi = \mathbf{0}$."

Figure 13: Right: (swinging spring) "An elastic spring is attached to a suspension point A, to which a mesh m is attached at the other end, which is located in a liquid for damping. c is the spring constant. A coordinate system is directed in its x-direction downward so, that its origin is the rest position of the center of gravity. If the mass is deflected from its rest position in the x-direction and then released, it performs vertical oscillations around the rest position. The associated differential equation for describing this movement is $-m\ddot{x} - k\dot{x} - cx = 0$, where $k \in \mathbb{R}$ a constant w.r.t damping."

We now study numerical ('approximative') solution methods for ODE's and make extensively use of our user-defined functions iterate/2/3, which allows to program compact code for methods like EULER, HEUN or RK4 in 2-4 lines, to focus on the underlying recurrence formulas and relieve of programming technical bureaucracy. Therefore this chapter can profit from some ideas of the books [17, p.175 ff], [29, p.101 ff] and [43, p.228 ff]. Error analysis for the methods are left to the literature, e.g. [29], [1], [47], [20].

4.1 RK1 alias the EULER Method

We start by looking at the idea of the EULER method for approximately solving ODE's.

Red: $y(x) = exp(\frac{x^2}{2})$ is the exact solution of ODE $y' = x \cdot y$, y(0) = 1. **Blue:** We try to follow the graph of y approximately by a polygon. **Idea** of EULER method: If we are at a point (x_3, Y_3) on the approximating

Figure 14: polygon near the exact point (x_3, y_3) on the solution, then we follow the tangent at (x_3, y_3) with slope $y'(x_3) = f(x_3, y_3) = x_3 \cdot y_3$ a bit - but starting at (x_3, Y_3) on the polygon. This way we arrive at the next approximation point $(x_4, Y_4) \approx (x_4, y_4) \in graph(y)$. This process is then repeated starting at (x_4, Y_4) .

• How to get a recurrence formula for this idea? I.e. how to calculate Y_4 ? Y_n ? We start with the observation, that the slope of the tangent at the point (x_3, y_3) on the graph of the solution y(x) is the same as the slope of the approximating polygon line between x_3 and x_4 :

$$y'(x_3) = f(x_3, y_3) \approx f(x_3, Y_3) = \frac{Y_4 - y_3}{x_4 - x_3} = \frac{Y_4 - y_3}{h}$$
 (4.1)
 $\rightsquigarrow f(x_3, Y_3) \approx (Y_4 - y_3)/h$

$$\underset{a \approx Y_2}{\leadsto} \quad y_3 + f(x_3, Y_3) \cdot h \approx Y_4.$$

$$Y_4 = Y_3 + h * f(x_3, Y_3)$$
 (4.2)

$$\stackrel{\text{yy analogy}}{\rightsquigarrow} Y_{n+1} = Y_n + h * f(x_n, Y_n) \tag{4.3}$$

Formula (4.3) is called the EULER recurrence formula.

Remark.

1. In equation (4.3) we denote the approximative values on the polygon with uppercase letters Y. and the exact values of the solution function y(x) with lowercase letters x..., y... in order to distinguish between them.

For more information about the EULER method and derivations of (4.3) see e.g. ▷
 Wiki: EULER method - Derivation or ▷ Cheever: EULER method, [47, p.4], [20, p.1], [1, p.44].
 To organize the steps of the calculation, program flow charts were used in the past, especially when using programmable pocket calculators, cf. BRÄUNING [12, p.145]:

4. The EULER method is an algorithm with only one evaluation of the function f(.,.) in (4.3). We will see that the other numeric algorithms need more f-evaluations.

Example 18. We calculate the data for Fig.14 by studying the ODE $y' = f(x, y) = x \cdot y$, y(0) = 1. We know: the exact solution y_e of this ODE is $y_e(x) = \exp(\frac{x^2}{2})$, because the derivative of y_e is again y_e with a factor x in front, i.e the equation $y'_e = x \cdot y_e$ is fulfilled and verified by MAXIMA:

```
ye: exp(x^2/2);  /* exact solution ye */
yp: diff(ye, x);  /* their slope ye' */
```

 \triangleright Click to RUN the code.

(ye) $\frac{x^2}{8e^2}$ (yp) $x \% e^{\frac{x^2}{2}}$

First we do a semi-automatically calculation by hand and then a fully automatic iteration. **1.** (EULER method by hand) We use formula (4.3) with $f(x, y) := x \cdot y$ and a step-size $h := x_4 - x_3 = 0.2$. We do 5 steps from $x_0 = 0$ until $x_5 = 1$. If we have e.g. $x_3 = 0.6 = 3 \cdot h$ and $y_3 = 1.1232$, it follows $y_4 = y_3 + h \cdot f(x_3, y_3) = 1.1232 + 0.2 \cdot 0.6 \cdot 1.1232 = 1.257984$.

To make such steps semi-automatic, we first define and invoke a helper function E(x, y), starting with x = 0 and y = 1, catch the corresponding result by eye and use it as input for the next call E(0.2, 1) and so on. So we step through the points of the polygon in Fig.13:

 \triangleright Click to RUN the code.

We may now reproduce the plot of Fig.13:

```
XY: [E(0,1),E(0.2,1),E(0.4,1.04),E(0.6,1.1232),E(0.8,1.257984)];
wxdraw2d(xaxis = true,
    point_size=2, points_joined=true,
    xlabel="xi", ylabel="Yi",
    points(XY),
    color=red,
    explicit(exp(x<sup>2</sup>/2),x,0,1), /* exact solution ye */
    title="EULER polygon")$
```

 \triangleright Click to RUN the code.

2. (EULER method by iterate) We use formula (4.3) with $f(x, y) := x \cdot y$ and step through the points of the polygon in Fig.13 automatically via **iterate2** (because we construct points with 2 coordinates), where the helper function E(x, y) is now incorporated as the recurrence term [x + h, y + h * f(x, y)].¹⁶

```
f(x,y):= x*y;
xo: 0;
yo: 1;
h: 0.2;
```

¹⁶ \heartsuit Don't forget to call iterate2 beforehand !

```
n: 5; /* recurrence__term vars. initial steps */
iterate2( [x+h, y+h*f(x,y)], [x,y], [xo,yo], n );
```

 \triangleright Click to RUN the code. The results are the same as above.

4.1.1 The Euler Method for IVP

We now abstract the whole approximation process by constructing an MAXIMA function EULER to fully-automate the calculation process. We check the correctness by repeating the handish calculation in 1. in (1).

```
/* MAXIMA : --- EULER method --- */
EULER(x,y, xo,yo, h, n) := iterate2([x+h, y+h*f(x,y)],[x,y],[xo,yo],n);
/* Test ODE y'= xy with y(0)=1 */
fpprintprec: 5$
f(x,y):=x*y;
EULER( x,y, 0, 1, 0.2, 5);  /* (1) */
```

 \triangleright Click to RUN the code. The results are the same as above. \heartsuit Don't forget to call iterate2!

- The invoke arguments of EULER(x,y, xo,yo, h, n) are as follows:
 - 1. **f** : the RHS of the ODE y'(x) = f(x, y(x)) given global before the call
 - 2. \mathbf{x}, \mathbf{y} : the variables used in the iteration (coordinates) i.e. by f
 - 3. xo, yo : the initial values with $y(x_o) = y_o$
 - 4. h : the step size of the EULER method
 - 5. **n** : the number of repeated iterations

Comment. We elaborate on the code of EULER. The recurrence formula [x+h, y+h*f(x, y)]in EULER updates permanently both the x value and the y value of [x, y], starting with $[x, y] := [x_o, y_o]$. To the x value of [x, y] is added the stepsize h at each step. The corresponding y slot of [x, y] is replaced by y + h * f(x, y). This updating procedure runs n times.

Remark. If we want to emphasize that only 1 function evaluation k_1 is required in each step of the iteration process, we may write our function EULER as follows and then call this variant the RUNGE-KUTTA method of 1st kind, denoted RK1:

```
/* MAXIMA : --- EULER method denoted as RK1 --- */
RK1(x,y, xo,yo, h, n) := block(
    k1: f(x,y),
    iterate2([x+h, y+h*k1],[x,y],[xo,yo],n));
```

Exercises.

Exercise 87. Use Euler's method with step size h = 0.1 to find an approximate solution of $\frac{dy}{dx} = x - y^2$, y(0) = -0.5, see [12, p.145]. [Intermediate result: $y_3 = -0.5520$]

Exercise 88. (the local error of the EULER method) Study the following code snippet:

 \triangleright Click to RUN the code.

a. Explain each code line in your own words.

b. Write a MAXIMA function localError(.). – See e.g. [47, p.7], [20, p.3].

c. Write a MAXIMA function truncation error truncError(.), which relates the global error to the mesh count n, i.e. the number of steps. See e.g. [47, p.7].

Exercise 89. a. Use Euler's method to approximate the solution of $y' = \frac{3t^2}{2y}$, y(0) = 1 on the interval $0 \le t \le 2$ using n = 2, 4, 8 steps, see [43, p.230].

b. Find the local error between your approximations and the exact solution $y = \sqrt{1 + t^3}$.

Exercise 90. a. Use Euler's method to approximate the solution of the IVP $y' = y^2 \sin(2x), \ y(0.5) = 1$ on the interval $0.5 \le x \le 3.5$ using n = 6, 12, 24, 48 steps, **b.** Find the local error between your approximations and the exact solution $y = \frac{2}{\cos(2x)+2-\cos(1)}$.

Exercise 91. a. Use Euler's method with step size h = 0.1 to find the solution of the IVP $\frac{dy}{dx} = yx$, y(0) = 1 at the points with x = 0.1, 0.2, 0.3, ...10. Cf. [17, p.179]. **b.** Use Euler's method with step size h = 0.01 to find the solution of $\frac{dy}{dx} = yx$, y(0) = 1 at the points with x = 0.01, 0.02, 0.03, ...10. **c.** Plot analogous figures to Fig.14 for a. and b. What do you observe?

Exercise 92. Do the examples in \triangleright Hellevik: Euler's method. and the example in \triangleright 2.6.4.

4.1.2 Modified EULER method alias 'RK2e of order 2'

Idea: we want to change the EULER procedure a bit to achieve a noticeable improvement with the same increment as before. We again calculate the slope in x_1, y_1 , but start drawing the corresponding line element *not* at x_1, y_1 – we start the new line element at x_0, y_0 with the double argument length ending at point x_2, y_2 . Here the process begins again ...

• Here is the *modified* EULER *recurrence formula*, see [17, p.186], [10, p.258], [1, p.47] :

$$Y_{n+1} = Y_n + \frac{h}{2} \cdot \left(f(x_n, Y_n) + f(x_{n+1}, Y_n + h \cdot f(x_n, Y_n)) \right)$$
(4.4)

A derivation of the formula (4.4) is given at [17, p.185ff] or at ▷ BAZETT: Integral solutions.
a. The following 'modified' EULER method¹⁷ solves example 18 semi-automatic:

```
fpprintprec:5$
f(x,y) := x*y;
k1 : f(x,y);
k2 : f(x+0.2, y + 0.2*k1);
iterate2([x+0.2, y + 0.2*(k1+k2)/2],[x,y],[0,1],5);
```

 \triangleright Click to RUN the code.

b. Here is the MAXIMA function modiEULER, which abstracts the above method.

 $^{^{17}\}mathrm{sometimes}$ also called the RUNGE-KUTTA method of order 2

 \triangleright Click to RUN the code.

Verify: recurrence (4.4) can be written as y+h/2*(k1+k2) using k_1 and k_2 . Solve exercises 85..89 using modiEULER.

c. Calculate the local/global/trunc errors of the modified EULER method for the ODE of Exercise 86. Compare with the errors of the simple EULER method.

d. Here is the equivalent code of the RUNGE-KUTTA method of order 2, which is a 1-1 translation of the recurrence formula (4.4) to MAXIMA:

 \triangleright Click to RUN the code.

Discuss pros and cons of modiEULER vs. RK2e!

e. Plot analogous figures to Fig.14 for a. or c. What do you observe?

f. Plot a figure analog to Fig.14, which shows simultaneous the exact solution, the EULER method approximation and the RK2e approximation for a step size of h = 0.1 for the ODE of exercise 87.a. What do you observe?

Exercise 93. Solve $y'(x) = \frac{1}{x} - \sin(x)$ and $\sqrt{1 - x^2} \cdot y'(x) = 1$ approximately.

Exercise 94. Look at this code:

- **a.** What is the discussed IVP?
- **b.** Find the exact solution y_e of the ODE.
- c. Complete code line (?) with the term of y_e and plot the scene.
- d. What about the trunc error of the method in this example?

Exercise 95. Do some of the examples/exercises in \triangleright Wiki: EULER method - Derivation. or in \triangleright Cheever: EULER method. or \triangleright Bazett: EULER method. or \triangleright Fan: numerical methods.

4.2 RK2h alias HEUN's Method

We start by looking at the idea of the HEUN method for approximately solving ODE's.

Figure 15: The modified EULER recurrence was written as $Y_{n+1} = Y_n + \frac{h}{2}(k_1 + k_2)$. Idea: maybe we get a better approximation, if we weight the average of k_1 and k_2 towards k_2 in the ratio of 3:1 instead of 1:1, see Fig.14. A is the approximative value Y_{n+1}^E for y_{n+1} using EULER's method. B and it's approximative value Y_{n+1}^H (red dot) for y_{n+1} using HEUN's method is closer to y_{n+1} (blue dot), cf. [17, p.198].

• Here is the HEUN recurrence formula, also known as RALSTON's method:

$$Y_{n+1} = Y_n + \frac{h}{4} \cdot \left[f(x_n, Y_n) + 3 \cdot f(x_n + \frac{2}{3}h, Y_n + \frac{2}{3}h \cdot f(x_n, Y_n)) \right]$$
(4.5)

- A derivation of the formula (4.5) is in [10, p.258] or at \triangleright WIKI: HEUN's method.
- A MAXIMA implementation of the HEUN recurrence formula is:

 \triangleright Click to RUN the code.

```
(%011) [[0,1],[0.2,1.02],[0.4,1.0826],[0.6,1.1954],[0.8,1.3733],[1.0,1.641]]
```

Exercise 96. Verify: the explicit recurrence formula (4.5) for the HEUN algorithm can be written as y+h/4*(1*k1+3*k2) using the values of k_1 and k_2 .

Exercises.

Exercise 97. Use HEUN's method with step size h = 0.1 to find an approximate solution of $\frac{dy}{dx} = x - y^2$, y(0) = -0.5, see [12, p.145]. [Intermediate result: $y_3 = -0.5520$]

Exercise 98. (*the global error of the* HEUN *method*) Study the following code snippet:

```
fpprintprec:5$
k(z):= z[2];
ye(x):=exp(x^2/2);
f(x,y):= x*y;
P : HEUN(x,y, 0,1, 0.2, 5);
L1: map(k,P);
L2: makelist(ye(x),x,0,1,0.2);
abs(L2-L1);
globalErrorHEUN: sum(abs(L2-L1)[i],i,1,length(L1));
```

▷ Click to RUN the code. Explain each code line in your own words. What is the corresponding truncation error?

Exercise 99. Use the HEUN method to solve the initial-value problem

$$\frac{dy}{dt} = \tan(y) + 1, \quad y_0 = 1, \ t \in [1, 1.1]$$

with step size h = 0.025. Control your results by looking at \triangleright wiki: Runge-Kutta>Use.

Exercise 100. Investigate the 'critical' IVP example in fig.1. of \triangleright HAIRER/LUBICH: p.2. Use EULER and modiEULER and HEUN.

Exercise 101. Do some of the examples and exercises of w.r.t. the HEUN ('improved' EULER) method in \triangleright FAN: Numerical Methods. If you like: do some of the Review problems.

Exercise 102. Review \triangleright HELLEVIK: Heun's method. and solve the examples there at \triangleright : Newton's equation., \triangleright : Falling sphere. Maybe study \triangleright : Generic second order Runge-Kutta method.

4.3 RK2m alias the Midpoint Method

We start by looking at the idea of the *Midpoint method* ('half step method') for approximately solving ODE's.

For the ODE y' = f(x, y), $y(x_0) = y_0$ one calculates $y'_0 = f(x_0, y_0)$ and walks in this direction to point $(x_{\frac{1}{2}}, y_{\frac{1}{2}}) := (x_0 + \frac{1}{2}h, y_0 + \frac{1}{2}hy'_0)$. For this point the new slope y'_1 (dashed) is calculated with f(x, y) and one goes again - starting at P_0 in this direction along a straight line to $P_1(x_1, y_1) := (x_0 + h, y_0 + hy'_{\frac{1}{2}})$. – Repeat this process starting at $P_1(x_1, y_1)$ instead of $P_0(x_0, y_0)$, cf. KAMKE [24, p.90].

• Here is the *Midpoint recurrence formula*:

$$Y_{n+1} = Y_n + h \cdot f\left(x_n + \frac{h}{2}, \ Y_n + \frac{h}{2} \cdot f(x_n, Y_n)\right)$$
(4.6)

- A derivation of the formula (4.6) is in [10, p.257] or at \triangleright WIKI: Midpoint method.
- A MAXIMA implementation of the MIDPOINT recurrence formula is:

```
/* MAXIMA : --- MIDPOINT METHOD --- */
midpoint(x,y, xo,yo, h,n) :=
         iterate2([x+h, y+h*f( x+h/2, y+h/2*f(x,y) ) ],[x,y],[xo,yo],n);
/* Test with ODE y'= xy with y(0)=1 */
f(x,y):=x*y;
midpoint( x,y, 0,1, 0.2, 5);
```

```
\triangleright Click to RUN the code.
```

(%o11) [[0,1],[0.2,1.02],[0.4,1.0826],[0.6,1.1954],[0.8,1.3733],[1.0,1.641]]

Exercises.

Exercise 103. Use the Midpoint method with step size h = 0.1 to find an approximate solution of $\frac{dy}{dx} = x - y^2$, y(0) = -0.5, see [12, p.145]. [Intermediate result: $y_3 = -0.5520$]

Exercise 104. (the global error of the Midpoint method) Study the following code snippet:

```
fpprintprec:5$
k(z):= z[2];
ye(x):=exp(x^2/2);
f(x,y):=x*y;
P : midpoint(x,y, 0,1, 0.2, 5);
L1: map(k,P);
L2: makelist(ye(x),x,0,1,0.2);
abs(L2-L1);
globalErrorMidpoint: sum(abs(L2-L1)[i],i,1,length(L1));
```

 \triangleright Click to RUN the code.

Compare this error with that of the EULER and HEUN methods.

Exercise 105. A RUNGE-KUTTA (RK) like formulation of the midpoint method using slope constants to structure the calculation is

A small variant is the following: (compare the 3 variants! Global errors?)

a. Do some of the examples in ▷ FAN: Numerical Methods. with the Midpoint method.
b. If you like: do also some of the Review problems.

4.4 RK4 alias the classic RUNGE-KUTTA method

We start by looking at the idea of the *classic* RUNGE-KUTTA method of order 4 for approximately solving ODE's, cf. \triangleright WIKI: Runge-Kutta, flow chart by [12, p.170].

Figure 17: A RUNGE-KUTTA step for the ODE y' = f(t, y) starting at (t_0, y_0) . Figure 17: Red: Use four different slopes at different points near the solution. Green: New (green) slope as weighted mean of the 4 red slopes. This process is then repeated, now starting at (t_1, y_1^R) , a R(unge)-point.

The classic RUNGE-KUTTA method (RK4) gets the slope at 4 points and calculates the slope for the next step by an 'appropriate weighted' average of these 4 slopes k_1, k_2, k_3, k_4 : RUNGE-KUTTA use a weighted average in a ratio of $k_1 : k_2 : k_3 : k_4 = 1 : 2 : 2 : 1$.

4.4.1 the RUNGE-KUTTA RK4 recurrence

$$Y_{n+1} = Y_n + \frac{1}{6} \cdot \left[1 \cdot f(x_n, Y_n) + \frac{1}{2} \cdot f(x_n, Y_n)\right] + 2 \cdot f(x_n + \frac{h}{2}, Y_n + \frac{1}{2} \cdot f(x_n, Y_n)) + 1 \cdot f(x_n + \frac{h}{2}, Y_n + \frac{h}{2} \cdot f(x_n + \frac{h}{2}, Y_n + \frac{h}{2} \cdot f(x_n, Y_n))\right] + 1 \cdot f(x_n + \frac{h}{2}, Y_n + \frac{h}{2} \cdot f(x_n + \frac{h}{2}, Y_n + \frac{h}{2} \cdot f(x_n, Y_n)))$$

• (4.7) displays the explicit **RUNGE–KUTTA** recurrence formula for the above idea.

• A derivation of the formula (4.7) is in \triangleright WIKI: Runge-Kutta > Derivation or in [24, p.92-93]. Formula (4.7) is incomprehensible in the presented explicit form, not memorizable and shadows the simple structure of the RUNGE-KUTTA method.

So forget about it and let's program it structured and shortened using the four slopes $k_1, ..., k_4$: Then this classic method becomes a captivating simplicity and focus on the nice property that the successive calculation of the slopes k_i only need the previous value k_{i-1} , see [35, p.98] and [17, p.201] or \triangleright Süll: p.13–19 or \triangleright HELLEVIK: RK 4th.

• The classic RUNGE-KUTTA method (RK4) in MAXIMA using the 4 slopes k_1, k_2, k_3, k_4 :

```
▷ Click to RUN the code.
(‰17) [[0,1],[0.2,1.0202],[0.4,1.0833],[0.6,1.1972],[0.8,1.3771],[1.0,1.6487]]
```

4.4.2 the build-in rk(.) method

RK4 is build-in in MAXIMA as function

rk(f(x,y), y, yo, [x, xo,b, h])
ODE var init domain

cf. https://maxima.sourceforge.io/docs/manual/maxima_112.html#index-rk

 \triangleright "The independent variable y is specified with *domain*, which must be a list of four elements as, for instance: [x, 0, 8, 0.1] – the first element of the list identifies the independent variable x, the second and third elements are the initial x_0 and final values b for that variable, and the last element sets the increments h that should be used within that interval.

Example: To solve numerically the differential equation $\frac{dy}{dx} = x - y^2$ with initial value y(x=0) = 1, in the interval of x from 0 to 8 and with increments of 0.1 for x, use:

Exercises.

Exercise 106. Solve the test ODE: y' = xy with y(0) = 1 using the build-in method rk().

Exercise 107. a. Use RK4 function with step size h = 0.1 to find an approximate solution of ODE $\frac{dy}{dx} = x - y^2$, y(0) = -0.5, see [12, p.145]. [Intermediate result: $y_3 = -0.5520$] b. Solve a. with the built-in function rk, see the remark above.

c. Calculate the global error for the methods in a. and b. Compare.

Exercise 108. Solve $y'(x) = 2 \cdot (x - \frac{1}{5})(y + \frac{1}{2}), \ y(\frac{1}{5}) = \frac{1}{2}$ approximately using RK4 only for the first RK-step, i.e. for h = 1, cf. [35, p.98].

- Calculate the four slopes $k_1, ..., k_4$ at the x-positions seen in the figure.
- Calculate now 'by hand' the 'green' slope k as weighted mean of the red slopes k_i .
- Check the result for plausibility.
- Plot the whole scene of the figure.
- Redo this exercise using built-in function rk.

Exercise 109. Look at \triangleright wiki: Runge-Kutta and the ODE $y' = \sin(t)^2 \cdot y$:

a. Solve the ODE $y' = \sin(t)^2 \cdot y$ approximately with RK4/rk on the domain of the figure. b. Determine the exact solution $y_e(x)$ (red in the figure).

c. The figure also shows the methods HEUN (green), modified EULER (cyan) and EULER (magenta). Use these methods to solve the given ODE.

Exercise 110. Look at \triangleright WIKI NL: Runge-Kutta and the ODE $\frac{dx}{dt} = \frac{-t}{x}$. **a.** Solve the ODE $\frac{dx}{dt} = \frac{-t}{x}$ approximately with RK4/rk on the domain $t \in [0, 1]$ with x(0) = 1 and h = 0.1.

b. Determine the exact solution y(x).

RK3(x,y, 0,1, 0.2, 5);

Exercise 111. (RK3) This is RK3 method formulated in MAXIMA language:

 \triangleright Click to RUN the code.

a. Do exercise 105 using method RK3. Compare. Truncation error(s)?

b. Do exercise 107 using RK3 and reproduce the plot incl. method RK3.

Exercise 112. Solve the OVP $\frac{dy}{dx} = \frac{2y-x}{x}$, cf. [42, p.26] **a.** ... approximately with RK4/rk/RK3 on the domain $x \in [0, 2]$ with the IV y(0) = 0.5 using h = 0.2.

b. ... exact with solution y(x) =? [Result: $y(x) = x^2 + x$

Exercise 113. Solve the OVP $y' = y - t^2 + 1$, cf. [18, p.260], ...

a. approximately with RK4/rk on the domain $t \in [1,3]$ with y(1) = 2 and h = 0.1.

b. Determine the exact solution y(t). [Result: $=y(t) = (t+1)^2 - \frac{1}{2}e^t$

c. Compare the methods EULER (with h=0.025), Midpoint (h=0.05), RK4/rk (h=0.1) on the mesh points 0.1, 0.2, 0.3, 0.4, 0.5 working on this ODE, where each of the techniques requires 20 evaluations. Make an EXCEL like table with MAXIMA.

d. Calculate the absolute errors for the methods in c. Compare.

Exercise 114. Read \triangleright CHEEVER: Runge-Kutta Method and do the example with our RK4.

Exercise 115. Read \triangleright WIKI: Runge-Kutta>Use and do the example with our RK4.

Exercise 116. Read >HELLEVIK: Falling sphere using RK4. and do the example with our RK4.

Exercise 117. Read \triangleright ESE: Runge-Kutta and do the example ODE $y' = x^2$ and the exercise with our RK4.

Exercise 118. Do the examples and problems in \triangleright FAN: Numerical Methods. w.r.t. the RK method. If you like: do some of the Review problems.

Exercise 119. Re-do the four examples in \triangleright Hellevik: EXERCISES.

Exercise 120. * Study \triangleright Hellevik: Basic notions on numerical methods for IVPs. and adapt these notations for 'our' error handling. Look also at \triangleright ... On errors.

Exercise 121. ** Study >HELLEVIK: Absolute stability of numerical methods Euler, Heun, RK.

Exercise 122. Do some Further Reading, e.g.
▷ STACKEXCHANGE: Lehmann: On history
▷ SCHOLARPEDIA: BUTCHER: Runge-Kutta
▷ SCHOLARPEDIA: SHAMPINE & THOMPSON: IVPs
▷ HAIRER/LUBICH

 \heartsuit

Let's sum up our numerical solution methods for IVPs:

METHOD	Math	Maxima
	IVP $y' = f(x, y), \ y(x_o) = y_o$	f(x,y):=;
	Euler	EULER(x,y, xo,yo, h, n); or RK1()
	modified Euler	<pre>modiEULER(x,y, xo,yo, h,n); RK2e()</pre>
	HEUN	HEUN(x,y, xo,yo, h, n); RK2h()
	Midpoint	<pre>midpoint(x,y, xo,yo, h,n)); RK2()</pre>
	classic 4th Runge–Kutta	RK4(x,y,xo,yo,h,n)
where		
	х,у	the variables used in the iteration by f
	xo,yo	the initial values with $y(x_o) = y_o$
	h	the step size used in the method
	n	the number of repeated iterations
		-
	2	()

5 Systems of IVP's

A physical process is often not described by a *single* differential equation, but by a system of *two* or more differential equations which are related to one another, i.e. are coupled. Such a system of two simultaneously working and coupled 1^{st} -order ODEs has the form

$$ODEsys: \begin{cases} x' = f(t, x, y), \ x(t_o) = x_o \\ y' = g(t, x, y), \ y(t_o) = y_o \end{cases}$$
(5.1)

For a system of two ODEs, two initial conditions are now required. We seek for two solution functions x(t) und y(t) that fulfills both equations f and g and both initial conditions. Moreover, a 2nd-order differential equation of the form y'' = f(x, y, y') can be replaced by two coupled 1st-order differential equations. It is therefore sufficient to know a solution method for two coupled 1st-order differential equations.

BRÄUNING [12, p.11] motivates the dealing with systems of ordinary differential equations through their use in the natural sciences like:

Left:(*circuit*) "An electrical circuit contains a generator with the timedependent voltage E(t), a spool with the inductance L an ohmic resistor R1 as well as in series the parallel connection of a second ohmic resistor R 2 and

Figure 18: 1 capacitor with the capacity C. If we want a differential equation for the time of the voltage uC on the capacitor, the result is system of 2 first-order differential equations: $\mathbf{L}\frac{\mathrm{d}\mathbf{i}}{\mathrm{d}\mathbf{t}} + \mathbf{R_1}\mathbf{i} + \mathbf{u_C} = \mathbf{E}(\mathbf{t}) \& \mathbf{i} = \mathbf{C}\frac{\mathrm{d}\mathbf{u_C}}{\mathrm{d}\mathbf{t}} + \frac{\mathbf{u_C}}{\mathbf{R_2}}$." *Right: (coupled springs)* "When examining the plane movement of a double pendulum, one is led to a complicated 4th order differential equation system, where the highest derivatives therein are $\ddot{\varphi}$ and $\ddot{\psi}$"

In this chapter we first study systems of two ODEs and corresponding MAXIMA solution methods. Then we deal with 2^{nd} -order differential equations of the form y'' = f(x, y, y') and specialized numerical solution methods.

5.1 Solving IVP systems

Example 19. (solving an IVP system of 2 equations in MAXIMA) Solve numerically the system

$$\frac{dx}{dt} = 4 - x^2 - 4y^2 \& \frac{dy}{dt} = y^2 - x^2 + 1$$

for t between 0 and 4, and with values of -1.25 and 0.75 for x and y at t = 0. Cf. https://maxima.sourceforge.io/docs/manual/maxima_112.html#index-rk

Solution: We have the system $\begin{cases} x'=f(t,x,y)=4-x^2-4y^2, x(0)=-1.25\\ y'=g(t,x,y)=y^2-x^2+1, y(0)=0.75 \end{cases}$. To get the solutions x(t) and y(t), we call the build-in MAXIMA function **rk(.)**:

The plots show the solutions for variables x and y as a function of t and the plot (x_t, y_t) .

5 SYSTEMS OF IVP'S

5.1.1 iterate3

In order to program our own numerical solution methods for systems of ODEs using iterate, we need a version iterate3, which deals with 3 recurrent entries.

```
/* MAXIMA --- iterate3 for triples --- */
iterate3(u,x,x0,n) := block([numer:true],
    cons(x0,makelist(x0: subst([x[1]=x0[1],x[2]=x0[2],x[3]=x0[3]],u) ,i,1,n)));
```

We show two examples of a simple approximative solutions of ODE pairs using iterates3.

Example 20. (a simple Euler method for a system of 2 coupled ODEs, cf. [9, p.258]) Solve the system $\begin{cases} x'=f(t,x,y)=y, & x(0)=4\\ y'=g(t,x,y)=-ty-x-6t^2, & y(0)=0 \end{cases}$.

 \triangleright Click to RUN the code.

(%o21) [[0,4,0],[0.125,4,-0.5],[0.25,3.9375,-1.0039], 3.6231,-2.0227],[0.625,3.3702,-2.5367],[0.75,3.0 [1.0,2.2253,-4.0878],[1.125,1.7143,-4.6049],[1.2 5.635],[1.5,-0.20578,-6.1467],[1.625,-0.97412,-(-2.7015,-7.667],[2.0,-3.6598,-8.1691]]

The display shows in the last triple entry, that for t = 2.0 we get $x(2) \approx -3.6598$ and $y(2) \approx -8.1691$.

Example 21. Solve the system $\begin{cases} y'=f(x,y,z)=2x-3z, \ y(0)=1\\ z'=g(x,y,z)=y-2z, \ z(0)=0 \end{cases}$. This system has the exact solution $(y_x, z_x) = (\cosh(x) + 2\sinh(x), \sinh(x)).$

```
fpprintprec:5$
h: 0.1;
f(x,y,z) := 2*y-3*z;
g(x,y,z) := y-2*z;
iterate3([x+h, f(x,y,z)*h + y, g(x,y,z)*h + z], [x,y,z], [0,1,0], 10);
/* test: */
y5: cosh(1.0)+2*sinh(1.0);
z5: sinh(1.0);
```
\triangleright Click to RUN the code.

```
(%o6) [[0,1,0],[0.1,1.2,0.1],[0.2,1.41,0.2],[0.3,1.632,0.3
,0.51001],[0.6,2.3916,0.62006],[0.7,2.6839,0.73521],[0
1.0,3.7163,1.1225]]
(y5) 3.8935
(z5) 1.1752
```

 \heartsuit We now transfer our knowledge about solution methods for a single ordinary differential equation in MAXIMA in rapid succession to systems of 2 coupled IVPs. We demonstrate the respective procedure with a typical example directly after the implementation.

5.1.2 Euler's method for systems of IVPs

We interpret the EULER method for a single ODE now for a system of 2 IVP's, cf. BRONSON [9, p.258], \triangleright HELLEVIK: Systems., \triangleright : Free fall. We have:

```
/* MAXIMA --- EULER method for systems of IVP --- */
EULERsys(t,x,y, to,xo,yo, h,n) :=
    iterate3([t+h, x+h*f(t,x,y), y+h*g(t,x,y)], [t,x,y], [to,xo,yo], n)$
/* Test: */
f(t,x,y) := y;
g(t,x,y) := x+t;
EULERsys(t,x,y, 0,0,1, 0.2, 5);
```

 \triangleright Click to RUN the code.

5.1.3 PICARD-LINDELÖF method of successive approximation for systems

BRÄUNING [12, p.160] formulate the PICARD–LINDELÖF method for a system of 2 IVP's, which I quote here:

```
fpprintprec:5$ ratprint:false$ kill(arrays)$
f(x,y,z) := z;  /* =y' */
g(x,y,z) := y + x; /* =z' */
[a,b] : [0,0];  /* y(a) = b */
[c,d] : [0,1];  /* z(c) = d = y'(c) */
y[0](x) := b;
y[n](x) := b + integrate( f(t, y[n-1](t), z[n-1](t)), t,a,x);
```

```
z[0](x) := d;
z[n](x) := d + integrate( g(t, y[n](t), z[n-1](t)), t,c,x);
y[5](x), expand;
y[5](1), numer;
z[5](1), numer;
```

 \triangleright Click to RUN the code.

(%075)
$$z_n(x) := d + \int_c^x g(t, y_n(t), z_{n-1}(t)) dt$$

(%076) $\frac{x^9}{181440} + \frac{x^7}{2520} + \frac{x^5}{60} + \frac{x^3}{3} + x$
(%077) 1.3504
(%078) 2.0862

- v

5.1.4 RK4sys alias RUNGE-KUTTA method for Systems of IVP's

We define the analogon of RK4 for a system of IVP's, cf. *Bronson* [9, p.258] or BRÄUNING[12, p.258].

```
/* MAXIMA --- RUNGE-KUTTA method RK4sys for systems of IVP --- */
     RK4sys( x,y,z, xo,yo,zo, h,n):= block(
         k1 : h*f(x,y,z),
         11 : h*g(x,y,z),
         k2 : h*f(x+1/2*h, y + 1/2*k1, z + 1/2*l1),
         12 : h*g(x+1/2*h, y + 1/2*k1, z + 1/2*l1),
         k3 : h*f(x+1/2*h, y + 1/2*k2, z + 1/2*l2),
         13 : h*g(x+1/2*h, y + 1/2*k2, z + 1/2*12),
                                  k3, z + 13),
         k4 : h*f(x+h, y +
         14 : h*g(x+ h, y +
                                  k3, z + 13),
         iterate3([x+h, y + 1/6*(1*k1+2*k2+2*k3+1*k4),
                        z + 1/6*(1*11+2*12+2*13+1*14)],
                  [x,y,z],[xo,yo,zo],n) )$
     /* Test: ODE system {f=z, g=y+x} with y(0)=0 & z(0)=1. Wanted: y=? & z=? */
     fpprintprec:5$
     f(x,y,z) := z;
     g(x,y,z) := y+x;
     RK4sys(x,y,z, 0,0,1, 0.2, 5);
\triangleright Click to RUN the code.
      (%o50) [[0,0,1],[0.2,0.20267,1.0401],[0.4,0.42149,1.1621],[0.6,0.67329,1.3709],
```

```
,0.97619,1.6749],[1.0,1.3504,2.0861]]
```

5.2 IVP of 2^{nd} Order

One can replace a second-order differential equation y'' = f(x, y, y') by two coupled first-order differential equations and then use the methods in 5.1 for systems of differential equations to solve such an equation: we make the simple substitution y' = z, and the second-order differential equation y'' = f(x, y, y') transforms into the two 1st order ODEs y' = z & z' = f(x, y, y'). Ergo, it is in principe sufficient to know a solution method for two coupled 1st-order differential equations to solve a a 2nd-order ODE.

We demonstarte this in the next example.

Example 22. (one 2^{nd} order ODE \rightsquigarrow two 1^{st} order ODEs, cf. BRONSON, [9, p.258]) a. Reduce the IVP y'' - y = x; $\frac{y(0)=0}{y'(0)=1}$ of order 2 to a system of two 1^{st} order IVP's. b. Find y(1) using Euler's method EULERsys for systems with h = 0.1.

c. Find y(1) using RK4sys method for systems with h = 0.1.

d. Find y(1) using PICARD-LINDELÖF method with a 'good' index i for (y[i](1), z[i](1)).

e. Find y(1) using rk(.) for systems with h = 0.1.

Solution:

a. Defining z := y', we have z(0) = y'(0) = 1 and z' = y''. The given ODE is therefore y'' = y + x = z'. To sum up:

TRANSFORMATION	one 2^{nd} order ODE	two 1^{st} order ODEs
	y'' = f(x, y, y')	$y':=z\ \wedge\ z'=f(x,y,y')$
	$y(x_o) = a$	$y(x_o) = a$
	$y'(x_o) = b$	$z(x_o) = b$
here		
	y'' = f(x, y, y') = y + x	$\Big \ y':=z \ \land \ z'=f(x,y,y')=y+x$
	y(0) = 0	y(0) = 0
	y'(0) = 1	z(0) = 1

We obtain the 1st order ODE system $\{y' = z, z' = y + x, y(0) = 0, z(0) = 1\}$, which we have used in the tests 5.1.2 to 5.1.4 before.

We now calculate the particular solution point y(1) of the solution function y(x) using numeric methods from 5.1

b. Euler's method

```
f(x,y,z) := z;
g(x,y,z) := y+x;
EULERsys(x,y,z, 0,0,1, 0.1, 10);
```

 \triangleright Click to RUN the code.

```
(%081) [[0,0,1],[0.1,0.1,1],[0.2,0.2,1.02],[0.3,0.302,1.06],[0.4,0.408,
0.5,0.52002,1.201],[0.6,0.64012,1.303],[0.7,0.77042,1.427],[0.8,0.9,
1.0705,1.7454],[1.0,1.2451,1.9424]]
```

c. RK4sys method

```
fpprintprec:5$
f(t,x,y):=y;
g(t,x,y):=x+t;
RK4sys(t,x,y, 0,0,1, 0.1, 10);
```

 \triangleright Click to RUN the code.

(%o66) [[0,0,1],[0.1,0.10033,1.01],[0.2,0.20267,1.0401],[0.3,0.30904,1 0.4215,1.1621],[0.5,0.54219,1.2553],[0.6,0.67331,1.3709],[0.7,0.8 0.97621,1.6749],[0.9,1.153,1.8662],[1.0,1.3504,2.0862]]

d. PICARD-LINDELÖF method

```
fpprintprec:5$ ratprint:false$ kill(arrays)$ /* because of y[n] */
f(x,y,z):= z;
g(x,y,z):= y+x;
[a,b] : [0,0]; /* x0=a, b=y0=y(x0) */
[c,d] : [0,1]; /* x0=c, d=y'(x0)=z(x0) */
y[0](x) := b;
y[n](x) := b;
y[n](x) := b + integrate( f(t, y[n-1](t), z[n-1](t)), t,a,x);
z[0](x) := d;
z[n](x) := d + integrate( g(t, y[n](t), z[n-1](t)), t,c,x);
y[9](x), expand;
y[9](1), numer;
```

 \triangleright Click to RUN the code.

(%i80) z[10](1), numer; (%o80) 2.0862 (%i81) y[10](1), numer; (%o81) 1.3504

e. rk(.) build-in for systems

We check on the left graph of x(t), that $x(t = 1) \approx 1.3$ and on the right graph of y(t), that $y(t = 1) \approx 2.1$, which looks OK.

 \heartsuit

We now present two specialized functions called RK4ode2 and RK4romer, which allows to give up the transformation 2^{nd} order ODE $\rightsquigarrow 1^{st}$ order System and direct use the given 2nd order ODE y'' = f(x, y, y') as input for these methods.

5.2.1 Braeuning's method for 2^{nd} order IVP

Braeuning [12, p.181 ff] discuss the following variant of RK4sys and give recurrence formulas and an example. We translate this algorithm to MAXIMA, yp ('y prime') is y'.

```
/* MAXIMA -- BRAEUNING's method for 2nd order IVP --- */
RK4ode2( x,y,yp, xo,yo,ypo, h, n):= block(
        k0 : 1/2*h^2* f(x,y,yp),
        k1 : 1/2*h^2* f(x+h/2, y + 1/2*h*yp + 1/4*k0, yp + k0/h),
       k1p : 1/2*h^2* f(x+h/2, y + 1/2*h*yp + 1/4*k0, yp + k1/h),
        k2 : 1/2*h^2* f(x+h,
                                       h*yp + k1p,
                                                      yp + 2*k1p/h),
                               y +
        k : 1/3*(k0+ k1+ k1p
                                  ),
         1 : 1/6*(k0+2*k1+2*k1p+k2),
      iterate3([x+h, y+h*yp+k, yp+2*1/h],[x,y,yp],[xo,yo,ypo],n) );
/* Test 2nd order IVP y''=x+y+y' with y(0)=1 and y'(0)=1 */
f(x,y,yp):=x+y+yp;
RK4ode2(x,y,yp, 0,1,1, 0.1, 10);
```

 \triangleright Click to RUN the code.

```
(%o69) [[0,1,1],[0.1,1.1107,1.221],[0.2,1.2458,1.4887],[0.3,1.4102,1.8107],[0.4,
1.61,2.1962],[0.5,1.8519,2.6558],[0.6,2.1441,3.2023],[0.7,2.4958,3.8505],[0.8,2
,4.6179],[0.9,3.424,5.5251],[1.0,4.0286,6.5965]]
```

Remark. If the IVP of 2^{nd} order does not depend on y' (yp), there are more simplifications possible. Example: $y'' = -\sin(y), y(0) = 0, y'(0) = 2$. Solve this 2^{nd} order IVP.

Exercise 123. (BRÄUNING, [12, p.27]) We let a ball roll on a fall line of a parabolic cylinder, where the dimensions can be taken from the picture. We measure x and y in centimeters, so the path of the ball has the equation $y = \frac{1}{90}x^2$. We use the value g = 981 $[c/s^2]$ for the gravitational acceleration.

N: German English

Rollweg | path of contact point

Then one gets – for physical reasons 18 – the differential equation of the motion

$$\ddot{x} = -\frac{x}{2025 + x^2} \cdot (31532 + \dot{x}^2)$$

Calculate the motion x(t) of the ball for x(0) = 30 cm and x'(0) = 0 cm. What is the approximative value of x(20)?

5.2.2 Romer's method for 2^{nd} order IVP

Romer [42, p.28 ff] discuss the following variant of RK4sys, which we translate to MAXIMA.

```
/* MAXIMA --- ROMER's method for 2nd order ODE --- */
     RK4romer( x,y,yp, xo,yo,ypo, h, n):= block(
               k1 : h* f(x,y,yp),
               k2 : h* f(x+h/2, y + 1/2*h*yp + h/8*k1, yp + k1/2),
               k3 : h* f(x+h/2, y + 1/2*h*yp + h/8*k1, yp + k2/2),
                                         h*yp + h/2*k3, yp + k3),
               k4 : h* f(x+h,
                                y +
               iterate3([x+h, y+h*(yp+1/6*(k1+k2+k3)), yp+1/6*(k1+2*k2+2*k3+k4)],
                         [x,y,yp],[xo,yo,ypo],n) );
     /* Test: 2nd order ODE y''=x+y+y' with y(0)=1 and y'(0)=1; wanted: y(1)=? */
     fpprintprec:5$
     f(x,y,yp):=x+y+yp;
     RK4romer(x,y,yp, 0,1,1, 0.1, 10);
\triangleright Click to RUN the code.
      (%o76) [[0,1,1],[0.1,1.1107,1.221],[0.2,1.2458,1.4887],[0.3,1.4102,1.8107],[0.4,
             1.61,2.1962],[0.5,1.8519,2.6558],[0.6,2.1441,3.2023],[0.7,2.4958,3.8505],[0.8,2.9
```

```
,4.6179],[0.9,3.424,5.5251],[1.0,4.0286,6.5965]]
```

¹⁸The interested reader can get the derivation (in German) of the ODE on request from the author.

Example 23. (a classic problem, ROMER [42, p.30 ff])

A perfectly flexible rope of length ℓ and mass m glide smoothly over a table edge.

We have the initial conditions: x(t = 0) = 0.1 [m], $\dot{x}(t) = 0$, g = 9.81 [m/s⁻²], $\ell = 1$ [m]. a. Determine the ropes position x(t = 0.5) [sec].

b. At which moment t the rope leave completely the table?

c. The exact solution is $x(t) = \frac{x_o}{2} \cdot (e^{-\sqrt{g/\ell} \cdot t} + e^{\sqrt{g/\ell} \cdot t})$. Compare with the approximate solution.

Solution:

ad a. : We have $M\ddot{x} = \frac{M}{\ell} \cdot x \cdot g \rightsquigarrow \ddot{x} = \frac{g}{\ell} \cdot x$

 \triangleright Click to RUN the code.

```
(%o18) f(x, y, yp) := \frac{g}{L}y

(%o19) [[0, 0.1, 0], [0.05, 0.10123, 0.049251], [0.1, 0.10495, 0.099712], [0.15, 0.11124, 0.15262], [0.2, 0.12027, 0.20929], [0.25, 0.13225, 0.27109], [0.3, 0.14749, 0.33956], [0.16635, 0.41637], [0.4, 0.1893, 0.50342], [0.45, 0.2169, 0.60283], [0.5, 0.24983, 0.717, 0.55, 0.2889, 0.84892], [0.6, 0.33507, 1.0016], [0.65, 0.38947, 1.179], [0.7, 0.45344, 1] [0.75, 0.52856, 1.6256], [0.8, 0.61667, 1.9059], [0.85, 0.71993, 2.233], [0.9, 0.84089, [0.95, 0.9825, 3.0613], [1.0, 1.1483, 3.5828]]
```

The returned values coincide with the tabulated values of the Basic program by ROMER. The ropes position at t = 0.5 [sec] is ca. x = 0.25 [m].

ad **b.** : left as exercise.

ad $\mathbf{c.}$: left as exercise.

Exercises.

Exercise 124. Reduction of Higher order Equations \triangleright Hellevik: ivp.

Exercise 125. Solve the IVP system y' - 2y = -3z; z' = y - 2z, $\frac{y(0)=0}{y'(0)=1}$. Use different numerical solving methods.

Exercise 126. Solve $y'' + \frac{5}{x}y' = -y$ of 2^{nd} order with the initial conditions $\frac{y(0)=0}{y'(1)=0}$.

Exercise 127. Solve $y'' + 6y' + 8y = 4x + 3e^{-x}$ given $\frac{y(0)=0}{y'(0)=4}$ to find y(1) correct to six decimal places, cf. [29, p.284]. [Result: y(1) = 0.598451 to 6D.

Determine the exact analytical solution $y_e(x)$ and compare with the approximative solution.

Exercise 128. Solve the system of 1^{st} order IVPs $\frac{dx}{dt} - x - 5y = 18t$; $\frac{dy}{dt} + 2x + y = 9$, given x(0) = 4, y(0) = -1, cf. [29, p.287].

Exercise 129. Solve the system $\{\frac{dx}{dt} - 2x - 3y = 3\cos t; \frac{dy}{dt} + x + 2y = \sin t\},$ given x(0) = -1, y(0) = 1, cf. [29, p.287].

Exercise 130. Express the equation $x^2y'' + 7xy' - 7y = 14 \ln x + 2$ as a pair of simultaneous 1^{st} order equations. Given x(0) = -1, y(0) = 1, find y(2) correct to six decimal places, cf. [29, p.287]. Determine the exact analytical solution $y_e(x)$ and compare with the approximative solution. [Result: $y(2) \approx 5.617612$ to 6D.

Exercise 131. (swinging door, cf. [29, p.328])

LOWE/BERRY present many solved applications of second order and simultaneous first order differential equations on about 60 pages. There is also a modeling approach to differential equations. We quote here a sample:

A swinging door has a damping device so that the mathematical model for the angular displacement $\theta(t)$ is

 $I\ddot{\theta} = -a\theta - b\dot{\theta}$

where I, a and b are constants. Consider a system for which $I = 1.5 \text{ kg s}^2 \text{ m}^{-1}$, $a = 6 \text{ kg} \text{ m}^{-1}$, $b = 7.5 \text{ kg s} \text{ m}^{-1}$ and for which the initial conditions are $\Theta(0) = \pi/3$ and $\dot{\Theta}(0) = 0$.

a. Formulate and solve an initial value problem that models this system.

b. Draw a graph of the displacement Θ with time.

c. What does your model predict as t becomes large?

Exercise 132. In fig.13Left we got the ODE of the pendulum through the equation

$$-m\ell\ddot{\varphi} - mg\sin\varphi = 0$$

We measure the length of the pendulum so, that $\frac{g}{\ell} = 1$. For small deviations of φ we may use the first 2 terms of the Taylor series of $\sin \varphi \approx \varphi - \frac{\varphi^3}{6}$ and arrive at the simplified ODE $\ddot{\varphi} = -\frac{g}{\ell}(\varphi - \frac{1}{6}\varphi^3)$ (‡)

a. Solve eq. \ddagger for the IC $\varphi(0) = 0, \dot{\varphi}(0) = 2$ with the methods

- successive approximation

- RK4sys, RK4ode2, RK4romer and \texttt{rk}^{Maxima} .

and compare the methods. Plot the solutions.

b. Solve the original not simplified 2^{nd} -order ODE: $\ddot{\varphi} = -\sin\varphi$ with $\varphi(0) = 0$ and $\dot{\varphi}(0) = 2$. (use: h = 0.2)

c. Solve the linearized and therefore simplified eq.‡: $\ddot{\varphi} = -\varphi$ with $\varphi(0) = 0$ and $\dot{\varphi}(0) = 2$.

Exercise 133. (rolling pendulum, cf. BRÄUNING, [12, p.27])

A circular cylinder with mass m and radius r, whose center of gravity S is a small distance s(0 < s < r) from the central axis, lies on a horizontal plane. The cylinder is deflected from its rest position by an angle φ and then left to its own movement. It oscillates back and forth (neglecting damping, closed physical system). – The physical investigation of the oscillation process of this roll pendulum leads to a second-order differential equation:

$$\left[\frac{\Theta_s}{m} + (r^2 + s^2 - 2rs\cos\varphi)\right]\ddot{\varphi} + (r\dot{\varphi}^2 + g)s\sin\varphi = 0 \tag{(\dagger)}$$

where Θ_s is the moment of inertia.

a. Using special values for m, Θ_s, r, s we get the specialized ODE:

$$(8 - 2\cos\varphi)\ddot{\varphi} + (\dot{\varphi}^2 + 2)\sin\varphi = 0 \tag{(\dagger\dagger)}$$

Solve (††) for the IC $\varphi(0) = \frac{\pi}{2}$, $\dot{\varphi}(0) = 0$, i.e. the pendulum is deflected just far enough, that its center of gravity is at the height of the central axis and then left to its own motion. [Result: we get for small values e.g. $\varphi(0.5) \approx 1.5395$ and $\dot{\varphi}(0.5) \approx -1.2564$.

b. Verify, that the corresponding system of simultaneous IVP's for ‡ is

$$y' = z$$

$$z' = -\frac{z^2 + 2}{8 - 2\cos y} \cdot \sin y$$

$$y(0) = \frac{\pi}{2}, \ z(0) = 0$$

Use h = 0.2 and calculate the motion over the time interval $-0.2 \le x \le 2$. [Control: $(x, Y, Z) \mid_{2.0} \approx (2.0, 1.0530, -0.5314)$

c. Redo this exercise using built-in function rk.

Exercise 134. (swinging spring, cf. BRÄUNING, [12, p.21 ff])

Look again at fig.13right:

The physical investigation of the oscillation process of this spring leads to a second-order differential equation:

$$-m\ddot{x} - k\dot{x} - cx = 0$$

where $k \in \mathbb{R}$ a constant w.r.t damping. Using the shortcuts $\frac{k}{m} =: 2d$ and $\frac{c}{m} =: \omega_0^2$, we arrive at the 2nd order IVP

$$\ddot{x} + 2d\dot{x} + \omega_0^2 \cdot x = 0$$

Discuss the motion of the swinging spring for d := 1/2 and $\omega_0^2 := 1$. Chose different IC's. Interpret your choice.

Use different methods and also the built-in function rk.

Remark.

1. WOOLLETT discuss in his publication Maxima by Example: Ch. 3, Ordinary Differential Equation Tools, see p.24 ff in §3.4.4 in great detail the linear oscillator with damping and in §3.4.6 on p.30 ff. the motion of a driven damped planar pendulum. He make primarily use of build-in analytic tools like desolve etc. I will recommend the study of his work especially for the physicist.

2. TIMBERLAKE [48, p.97 ff] discuss the damped harmonic oscillator and the pendulum on p.115 ff. He also make use of analytical methods like MAXIMA's desolve.

6 Boundary Value Problems - Numerical Methods

We presented several methods of approximating solutions to an initial value problem (IVP). Now we study approximative solutions to a boundary value problem (BVP). Such a problem consists of a differential equation together with two boundary conditions imposed at each end of the interval of definition.

We devote to methods of approximating the solution to a 2nd order boundary value problem of the form

$$y'' = f(x, y, y')$$
 with $y(x_o) = a, y(x_e) = b$ (6.1)

The solution y(x) to a BVP (6.1) may describe a physical situation, such as the height of a construction at different points and supported by posts at $x = x_o$ and $x = x_e$. The boundary conditions (BC) $y(x_o) = a$ and $y(x_e) = b$ give the height of the construction at each post at the boundary. We are only interested in the solution *between* the posts, because there is no construction outside this interval:

6.1 Shooting Method

The theoretical idea of the shooting method of approximating the solution y of a second order boundary value problem of the form y'' = f(x, y, y') with boundary conditions (BC) $y(x_o) = a, \ y(x_e) = b$ is:

1: transform the 2nd order BVP into one system of two 1st order IVP's with initial conditions (IC) using a unknown w by

ODE
differential eq.
BC:

$$y(x_o) = a, y(x_e) = b$$

IC:
 $y(x_o) = a, y(x_e) = b$
 $y(x_o) = a, z(x_0) = w = ?$
with w so, that $y(x_e) \stackrel{!}{=} b$

- **2**: define helper function F(w) := (approx. solution to IVP at $x = x_e)$ b
- **3**: solve F(w) = 0, i.e. search for w^* with $F(w^*) = 0$.
- 4: $put w^*$ back in IVP to solve the BVP.

Let's look at the idea in a figure, modified from \triangleright Heckbert: bvp:

Figure 19: Idea: a projectile is shooted from start position (0, 0) at the target • (5, 40) with different slopes w_k . The winning slope w and its corresponding trajectory is sandwiched between three trial shoots • - •. The BVP y'' = f(x, y, y') with BC $y(x_o) = a, y(x_e) = b$ is approximately solved with RK4 and a bisection of the trials w_k .

We now follow the shooting method in an example, see [43, p.403].

6.1.1 Solve BVP $y'' = y + \sin(x + y')$, y(0) = 1.2, y(3) = 2.4 by shooting.

We follow the 4-step plan of the shooting method. We use MAXIMA.

- **1**: transform 2^{nd} order BVP \rightsquigarrow system of two 1^{st} order IVP's
- **2**: define function $F(w) := (approx. solution to IVP at <math>x = x_e)$ b
- **3**: solve F(w) = 0
- 4: put w back in IVP (solves original BVP).

Solution:

ad 1: transform the 2nd order BVP into two 1st order IVP's:

Translate

$$BVP$$
 IVP

 differential eq.
 $y'' = y + \sin(x + y')$
 $y' = z \land z' = y + \sin(x + y')$

 BC1:
 $y(0) = 1.2$

 BC2:
 $y(3) = 2.4$

 IC1:
 $y(0) = 1.2$

 IC2:
 $z(w) = 2.4$ with w so, that $y(3) \stackrel{!}{=} 2.4$!

We fire two shots with guess w = 1 and w = -1:

```
fpprintprec:5$
ratprint:false$
f(x,y,z):=z;
g(x,y,z):=y+sin(x+z);
RK4sys(x,y,z, 0,1.2, 1, 3/16, 16);
```

 \vartriangleright Click to RUN the code.

```
(%o13) f(x,y,z):=z
(%o14) g(x,y,z):=y+sin(x+z)
(%o15) [[0,1.2,1],[0.1875,1.426,1.4227],[0.375,1.7363,1.8898],[0.5625,2.134,2.3479]
,[0.75,2.6149,2.7772],[0.9375,3.1751,3.2013],[1.125,3.8185,3.6771],[1.3125,4.563,
4.299],[1.5,5.4485,5.2073],[1.6875,6.5396,6.4817],[1.875,7.8881,7.9035],[2.0625,9
,9.3759],[2.25,11.434,11.312],[2.4375,13.782,13.773],[2.625,16.609,16.487],[2.812]
20.023,20.006],[3.0,24.141,24.102]]
```

last(RK4sys(x,y,z, 0,1.2, -1, 3/16, 16))[2];

 \triangleright Click to RUN the code.

(%050) 1.4358

ad **2**: define helper function $F(w) := (approx. solution to IVP at <math>x = x_e) - b$

```
fpprintprec:5$
ratprint:false$
f(x,y,z):=z;
g(x,y,z):=y+sin(x+z);
F(w):= last(RK4sys(x,y,z, 0,1.2,w, 3/16, 16))[2] - 2.4;
```

 \triangleright Click to RUN the code.

There is no output - don't be disappointed: MAXIMA has only learned and accepted this definition.

ad **3**: solve F(w) = 0, i.e. search for w^* with $F(w^*) = 0$.

• First: Let's do the built-in function find_root the search for us:

find_root(F,w,-1,0);

 \triangleright Click to RUN the code.

find_root(F,w,-1,0);
 (%051) -0.9369

Result: the optimal slope for the best shot is $w^* = -0.9369$.

• Second: Let's write a homemade *bisection search method*, named **bisec**, and use it for searching the root w, cf. [48, p.222]:

```
bisec(F,xL,xR, tol,n) := block(
    if (F(xL)*F(xR) > 0) then
        print("Sign does not change within interval.")
    else for i:1 while ((i<100) and (abs(xR-xL)>tol)) do
            (xM:(xL+xR)/2,
            if (F(xM)*F(xR) > 0)
            then xR:xM
            else xL:xM, n:n+1 , print(n, float(xM)) ,
            xM ))$
```

bisec(F, xL:-1, xR:0, tol:0.00001, n:0);

 \triangleright Click to RUN the code.

1 -0.5 2 -0.75 3 -0.875 4 -0.9375 5 -0.90625 6 -0.92188 7 -0.92969 8 -0.93359 9 -0.93555 10 -0.93652 11 -0.93701 12 -0.93677 13 -0.93689 14 -0.93695 15 -0.93692 16 -0.9369 17 -0.9369 (%o52) done

ad 4: put w^* back in IVP to solve the BVP.

RK4sys(x,y,z, 0,1.2, -0.9369, 3/16, 16);

 \triangleright Click to RUN the code.

(%o53) [[0,1.2,-0.9369],[0.1875,1.0312,-0.86288],[0.375,0.87694,-0.78061],[0.5625, 0.73978,-0.67787],[0.75,0.62478,-0.54234],[0.9375,0.53913,-0.3634],[1.125,0.4915, 0.1369],[1.3125,0.49025,0.12841],[1.5,0.54063,0.40899],[1.6875,0.64275,0.67587],[1.875,0.79196,0.90926],[2.0625,0.98136,1.1051],[2.25,1.2045,1.2716],[2.4375,1.4575],[4231],[2.625,1.7384,1.5774],[2.8125,2.0503,1.7557],[3.0,2.4,1.9864]]

Alternatively we may also use our specialized function **RK4romer** for this 2nd order IVP:

f(x,y,yp):=y+sin(x+yp); RK4romer(x,y,yp, 0,1.2,-0.9369, 3/16, 16)

 \triangleright Click to RUN the code.

(%o40) [[0,1.2,-0.9369],[0.1875,1.0312,-0.86288],[0.375,0.87694,-0.78061],[0.5625, 0.73979,-0.67786],[0.75,0.62479,-0.54232],[0.9375,0.53914,-0.36337],[1.125,0.4915, 0.13684],[1.3125,0.49028,0.12848],[1.5,0.54068,0.40909],[1.6875,0.64281,0.67599], 1.875,0.79204,0.90938],[2.0625,0.98146,1.1052],[2.25,1.2047,1.2717],[2.4375,1.4574,1.4233],[2.625,1.7386,1.5776],[2.8125,2.0505,1.7559],[3.0,2.4002,1.9866]]

Result: in both cases the RKsys functions produce the correct BC [3.0,2.4]. We check the plausibility of the solution by a plot of the situation:

 \triangleright Click to RUN the code.

Exercise 135. a. What is the (approximate) value of y(0.75)? b. What is the (approximate) value of y'(0.8)? c. Verify the results of a. and b. with your ruler on the figure.

6 BOUNDARY VALUE PROBLEMS - NUMERICAL METHODS

6.1.2 Example: solving a BVP via shooting

```
Solve the BVP y'' = \frac{y}{1+x^2} + \frac{y'}{10} with BC: y(0) = 1, y(2) = 3. cf. [43, p.398].
```

Solution.

This time we do the solution in one step: search for w using F and find_root. Therefore we use the equivalent system (f, g) of 2 IVPs \equiv 1 BVP.

```
/* MAXIMA --- SHOOTING METHOD for BVP --- */
fpprintprec:5$
ratprint:false$
f(x,y,z) := z; /* = y' */
g(x,y,z) := y/(1+x^2)+z/10;
F(w):= last( RK4sys(x,y,z, 0,1,w, 1/8, 16))[2] - 3;
find_root(F,w,0,1);
```

 \vartriangleright Click to RUN the code.

(%080)
$$f(x, y, z) := z$$

(%081) $g(x, y, z) := \frac{y}{1 + x^2} + \frac{z}{10}$
(%082) $F(w) := \left(\text{last} \left(\text{RK4sys} \left(x, y, z, 0, 1, w, \frac{1}{8}, 16 \right) \right) \right)_2 - 3$
(%083) 0 058068

We get w = 0.58068. Check:

```
f(x,y,yp):=y/(1+x^2)+yp/10;
RK4romer(x,y,yp, 0,1, 0.058068, 0.1, 20);
```

 \triangleright Click to RUN the code.

```
(%o76) f(x, y, yp) := \frac{y}{1+x^2} + \frac{yp}{10}
(%o77) [[0,1,0.058068], [0.1,1.0109,0.15928], [0.2,1.0319,0.26111], [0.3,1.0631, 0.36266], [0.4,1.1044,0.4632], [0.5,1.1557,0.56219], [0.6,1.2167,0.65927], [0.7,1.287, 0.75428], [0.8,1.3675,0.84717], [0.9,1.4568,0.93803], [1.0,1.5551,1.027], [1.1,1.6621,1.1141], [1.2,1.7778,1.1997], [1.3,1.902,1.2839], [1.4,2.0346,1.3669], [1.5,2.1754, 1.4488], [1.6,2.3243,1.5298], [1.7,2.4813,1.61], [1.8,2.6463,1.6896], [1.9,2.8192,1.7], [2.0,3.0,1.8473]]
```

Result: we see in the last slot y(2) = 3 and y'(2) = 1.8473 for the given BVP. Ok. Let us plot the approximate solution y(x):

```
f(x,y,yp):=y/(1+x^2)+yp/10;
wxdraw2d(xaxis = true,
    point_size=2,
    points_joined=true,
    points([0,0]),
    xlabel="x",ylabel="y",
    points( RK4romer(x,y,yp, 0,1, 0.058068, 0.1, 20) ),
    color=red,
    title="shooting at y(2)=3")$
```


 \triangleright Click to RUN the code.

```
Exercise 136. a. What is the (approximate) value of y(0.75)?
b. What is the (approximate) value of y'(1)?
```

c. Verify the results of a. and b. with your ruler on the figure.

Exercises.

Exercise 137. HECKBERT \triangleright byp gives the following procedural Python code for the secant method to determine roots of a function. Write a MAXIMA function secant and use it in examples 6.1.1 and 6.1.2 instead of find_root and bisec.

```
%% PYTHON code -- rocket = y
function x = secant(x1, x2, tol)
% secant method for one-dimensional root finding
global ye;
y1 = rocket(x1)-ye;
y2 = rocket(x2)-ye;
while abs(x2-x1)>tol
      disp(sprintf('(%g,%g) (%g,%g)', x1, y1, x2, y2));
      x3 = x2-y2*(x2-x1)/(y2-y1);
      y3 = rocket(x3)-ye;
      x1 = x2;
      y1 = y2;
      x2 = x3;
      y2 = y3;
end
x = x2;
return;
```

 \triangleright For each of the following BVP, use RK4sys with n = 8 steps in conjunction with find_root or bisec to approximate the solution function y(x) and answer the required questions. Check for plausibility wit RK4romer and do a plot of the scene.

Exercise 138. Solve the BVP: $y'' = 2y^3$ with BC: y(1) = 1/4, y(3) = 1/6, cf. [43, p.403]. a. What is the (approximate) value of y(1.5)?

b. What is the (approximate) value of y'(1.25)?

c. The exact solution to the BVP is $y_e(x) = \frac{1}{x+3}$ on the interval $1 \le x \le 3$.

How do your approximate values in a. and b. compare with the exact values?

d. Plot the approximate solution function y and the exact solution y_e and check the results on the graph.

Exercise 139. Solve $y'' = y^2 + y' + \frac{2}{x^3} - 3 - x^2$ with y(1) = 2, $y(2) = \frac{5}{2}$, cf. [43, p.403]. a. What is the (approximate) value of y(1.75)?

b. What is the (approximate) value of y'(1.75)?

c. The exact solution to the BVP is $y_e(x) = x + \frac{1}{x}$ on the interval $1 \le x \le 2$.

How do your approximate values in a. and b. compare with the exact values?

d. Plot the approximate solution function y and the exact solution y_e and check the results on the graph.

Exercise 140. (BULIRSCH-STOER, [46, p.156], §7.3.1) Solve the BVP $y''(x) = \frac{3}{2}y^2$ with y(0) = 4, y(1) = 1 approximately using RK4sys or RK4romer. The graph of $F(w) := \dots - 1$ has two roots, the first one is $w_1 = -8$ and has the exact solution $y(x) = \frac{4}{1-x^2}$.

Do a survey analog to exercise 138. Cf. ▷ WIKI: Example: Standard boundary value problem.

Exercise 141. (BULIRSCH-STOER, [46, p.167], §7.3.4) Solve the

BVP:
$$\begin{cases} y'' = \lambda \cdot \sinh(\lambda y) & (\lambda \in \mathbb{R}) \\ y(0) = 0 \\ y(0) = 0 \end{cases}$$

This BVP makes problems. Try to get the solution $4.5750 \cdot 10^{-2}$ for $\lambda = 5$.

Exercise 142. (BURDEN-FAIRES, [10, p.582]) a. Solve the

BVP:
$$\begin{cases} y'' = -\frac{2}{x}y' + \frac{2}{x^2}y + \frac{\sin(\ln x)}{x^2} \\ y(1) = 1 \\ y(2) = -2 \end{cases}$$
 on the interval $1 \le x \le 2$.

b. Do also example 1 ▷ BARANNYK

Exercise 143. (BORSE, [7, p.459]) Solve the

BVP:
$$\begin{cases} (y-1)^2 y'' + 2(y-1)(y')^2 = 0\\ y(0) = 2\\ y(1) = 3 \end{cases}$$

by the shooting method and compare with the exact solution $y_e(x) = 1 + (7x + 1)^{1/3}$.

Exercise 144. (BORSE, [7, p.459]) Solve the BVP $y'' + y = 2e^{-x}$, y(0) = 0, $y(\frac{\pi}{2}) = 0$ approximately using the shooting method and compare with the exact solution $y_e(x) = -e^{-\pi/2}\sin(x) - \cos(x) + e^{-x}$.

Exercise 145. (VENZ, [49, p.49]) The physical theory of a sagly rope leads to the differential equation $S \cdot y'' = -q(x)$, where S is the traction in [N] and q the load per unit of length [N/m]. On the rope lie a snow load of variable size:

We approximate the load by the function $q = q_0 \cdot \sin(\frac{\pi}{2} \cdot \frac{x}{x_b})$. Then the differential equation is

$$y'' = \frac{q_0}{S} \cdot \sin(\frac{\pi}{2} \cdot \frac{x}{x_b})$$

Calculate the rope's sag function y(x), where we have $x_a = 0$ m, $y(x_a) = 0$ m and $x_b = 1$ m, $y(x_b) = 1$ m and $\frac{q_0}{s} = 6$ [1/m]. Use a step size of h = 0.125 m.

Exercise 146. (BRÄUNING, [12, p.27]) We let a ball roll on a fall line of a parabolic cylinder, where the dimensions can be taken from the picture. We measure x and y in centimeters, so the path has the equation $y = \frac{1}{90}x^2$. We use the value $g = 981 \ [cm/s^2]$ for the gravitational acceleration.

LEXICON: German | English

Rollweg path of contact point

Then one gets – for physical reasons 19 – the differential equation of the motion

$$\ddot{x} = -\frac{x}{2025 + x^2} \cdot (31532 + \dot{x})$$

¹⁹The interested reader can get the derivation (in German) of the ODE on request from the author.

Calculate the motion x(t) of the ball for x(0) = 30 cm and x'(0) = 0 cm. Use a shooting method with a step size of h = 0.05.

Exercise 147. Do the examples from \triangleright GROTHMANN: Shooting .. >Documentation>Examples>All Examples>Shooting method for boundary Problems and at ...>Singular Boundary Value Problem.

Exercise 148. Do the examples from \triangleright IRON: byp 1, i.e. solve the BVP $y'' = -\frac{(y')^2}{y}$ with BC y(0) = 1, y(1) = 2.

Exercise 149. Do the \triangleright HECKBERT: rocket problem. using our Shooting method.

Exercise 150. Do the BVP's in \triangleright NIEMEYER: Shooting method. using our Shooting method.

Exercise 151. Do the BVP's \triangleright DORINE: Shooting method. on the deflection of a supported beam with a constant distributed load.

Exercise 152. Do the 3 BVP's \triangleright AREFIN et al.: Shooting methods. in: Analysis of Reliable Solutions to the Boundary Value Problems by Using Shooting Method

Exercise 153. Do the BVP examples on Shooting by \triangleright UNI MUENSTER, DE: Shooting methods.

Exercise 154. Do the BVP's \triangleright BERKELEY PYTHON NUMERICAL METHODS: Shooting methods.

Exercise 155. Have a look at the BVP examples in \triangleright VERSCHELDE 2022: Shooting.

Exercise 156. Look at the BVP's \triangleright HELLEVIK: NM 4 Engineers: Shooting methods. and do a few of the examples as you like

- **a.** \triangleright : Couette-Poiseuille flow.
- **b.** \triangleright : Simply supported beam.
- **c.** \triangleright : boundary value problems with nonlinear ODEs.
- **d.** \triangleright : Large deflection of a cantilever.
- **e.** \triangleright : Stokes first problem.

Here are more infos and examples:

Exercise 157. \triangleright Kumar: Shooting methods.

Exercise 158. \triangleright VESELY: Shooting methods.

Exercise 159. \triangleright PARDYJAK: Shooting methods.

Exercise 160. \triangleright NUMERICAL METHODS FOR ENGINEERS: Shooting methods.

Finite Difference Method **y**_{k+1} 50 **V**k-1 ж 20 h 10 3.5 0.5 1.5 4.5 5 **X**_{k-1} **X**k **X**_{k+1}

6.2 Finite Difference Method

Figure 20: Idea: The approximative values y_k of the solution y to the BVP y'' = f(x, y, y') of 2nd order are calculated by replacing the derivatives y'' and y' by so-called *central difference approximations*. The 4-point 'stencil' $\frac{y_k}{x_{k-1}} \frac{x_k}{x_k} \frac{x_{k+1}}{x_k}$ traverse from the first BC1: $x_0 = 0, y_0 = 0$ on the left to the second BC2: $x_n = 5, y_n = 40$ on the right in steps of length h, producing a new equation in each step.

The theoretical idea of the *Finite Difference Method* (FDM) of approximating the solution y of a second order boundary value problem of the form y'' = f(x, y, y') with boundary conditions BC: $\frac{y(x_o)=a}{y(x_e)=b}$ is:

1: replace the first and second derivatives y', y'' in the BVP equation y'' = f(x, y, y') by approximating values ('central differences') at each point of the constructed grid $(x_0, x_1, x_2, ..., x_e)$, where $x_k := x_0 + k \cdot h$ and $h := \frac{x_0 - x_e}{n}$ for a user chosen $n \in \mathbb{N}$, i.e.:

BVP:

$$\begin{array}{c|c} equation \\ y'' = f(x, y, y') \\ y'(x_k) \approx \\ y''(x_k) \approx \\ y''(x_k) \approx \\ y''(x_k) \approx \\ yp_k := \frac{y_{k+1} - y_{k-1}}{2h} \\ yp_k := \frac{y_{k+1} - 2 \cdot y_k + y_{k+1}}{h^2} \end{array}$$

2: write down the corresponding BVP_k equation for each interior point (stencil) (x_k, y_k)

3: *include* the BC equations $y_0 := a, y_n := b$ to get now a linear system of n + 1 equations for the n + 1 unknowns $y_0, y_1, ..., y_n$

4: *solve* this *tridiagonal* system of linear equations using i.e. **rref** or **linsolve** or STOP.

We now follow the Finite Difference Method (FDM) in an example, see [43, p.407]. We do one step after the other in this procedure to *semi*-automate the solution process.

6.2.1 Solve BVP y'' + 0.2y' + 4y = 3x + 1, y(0) = 0.1, y(1) = 0.7 for n = 4.

We fix n = 4.

We follow the 4-step plan of the FDM. We use MAXIMA.

- 1: replace the first and second derivatives in the BVP equation by their approximations
- **2**: write down the corresponding BVP_k equations
- **3**: *include* the BC equations
- 4: solve this tridiagonal system.

Solution:

ad 1: we define the set of unknowns y_k and the substitutions²⁰ for y', y'' in MAXIMA:

```
kill(y)$ fpprintprec:5$ ratprint:false$
```

 \vartriangleright Click to RUN the code.

Herein FDM(k,h) represents the corresponding BVP_k equation y'' + 0.2y' + 4y = 3x + 1 (see <u>2</u>:) and yp and ypp the derivatives (see <u>1</u>:).

ad 2: write down the corresponding $BVP_{k=1,2,3}$ equations, named eq[i] in MAXIMA :

```
n:4$ xo:0$ xe:1$
h: (xe-xo)/n;
eq[1]: FDM(1,h), expand, numer;
eq[2]: FDM(2,h), expand, numer;
eq[3]: FDM(3,h), expand, numer;
```

 \triangleright Click to RUN the code.

(h) $\frac{1}{4}$ (%o13) 16.4 y2-28.0 y1+15.6 y0=-0.25 (%o14) 16.4 y3-28.0 y2+15.6 y1=0.5 (%o15) 16.4 y4-28.0 y3+15.6 y2=1.25

²⁰*yp* means yprime i.e. y' and $ypp \equiv y''$.

ad **3**: include the BC equations y0=y(0) = 0.1, y4 = y(1) = 0.7 into the eq. list M:

```
M: flatten([y0=0.1, makelist(eq[i], i,1,3), y4=0.7]);
```

Comment: MAXIMA's makelist returns a list of the equations eq_k in the form [[..], [..], ..], therefore we use the MAXIMA function flatten(.) to kill the interior brackets [..] and to get a comma separated list of the BVP_k equations:

 \triangleright Click to RUN the code.

(m)

[y0=0.1,16.4 y2-28.0 y1+15.6 y0=-0.25,16.4 y3-28.0 y2+15.6 y1=0.5,16.4 y4-28.0 y3+15.6 y2=1.25, y4=0.7]

ad 4: solve this tridiagonal system.

We use a homemade routine named $rref^{21}$ to solve the system.

```
rref(a):=block([p,q,k], [p,q]:matrix_size(a), a:echelon(a), k:min(p,q),
    for i thru min(p,q) do (if a[i,i]=0 then (k:i-1, return())),
    for i:k thru 2 step -1 do
        (for j from i-1 thru 1 step -1 do a: rowop(a,j,i,a[j,i])),
    a)$
Am: augcoefmatrix(M, [y0,y1,y2,y3,y4]); /* (1) */
rref(Am), numer; /* (2) */
Y: -col(rref(Am), 6), numer; /* (3) */
```

 \triangleright Click to RUN the code.

²¹rref i.e. Row Reduced Echelon Form; this script is found at \triangleright stackoverflow: rref

Comment: Looking at the augmented coefficient matrix (Am) of our system of the equations eq_k in (1), we observe the *tridiagonal* shape of the system. The MAXIMA function **augcoefmatrix** returns the augmented coefficient matrix for the variables $x_0, ..., x_n$ of the system of linear equations $eq_0, ..., eq_4$. This is the coefficient matrix of the system with a column adjoined for the constant terms on the RHS in each equation.

Warning: Am produces wrong signs on the RHS of the system m! Therefore the same is true for the result of **rref** in (2) and we have to invert the signs to get the correct solution vector Y in (3) resp. in (%026).

4: *plot* the result.

The complicated exact solution $y_e(x)$ of the BVP is given in [43, p.409]:

 \triangleright Click to RUN the code.

Exercise 161. Repeat example 6.2.1 for n = 8.

Exercise 162. Solve 6.2.1 using linsolve or solve instead of rref.

Exercise 163. Solve 6.2.1 using invert for the matrix inverse instead of rref. You may use Cm:coefmatrix(m,[y0,y1,y2,y3,y4]); and then do Cmm1.(-col(Am,6));

Exercise 164. (augcoefmatrix)

Using MAXIMA's augcoefmatrix allows to go from the system of linear equations eq_k directly and comfortable to the matrix of coefficients and also to append the RHS's as a column vector. This allows very compact and short code lines to formulate the FDM.

• SCHONEFELD [43, p.409] has to construct the 'augcoefmatrix' 'by hand' - complicated.

• The same is true for the Python code for the FDM by HECKBERT at \triangleright BVP: FDM.

```
% PYTHON code for finite differences method to solve fireworks problem
function findif(n)
...
h = te/n;
A(1,1) = 1;
b(1) = 0; % y0 = 0
for i = 2:n
    A(i, i-1:i+1) = [1 -2 1];
    b(i) = ...;
end
A(n+1,n+1) = 1;
b(n+1) = ye;
...
```

a. Try to explicitly construct a MAXIMA function **augcoefmatrix1** along the **Python** code lines of HECKBERT.

b. Solve 6.2.1 using your homemade MAXIMA function augcoefmatrix1.

Exercise 165. Redo the FDM *fireworks example* by HECKBERT at \triangleright BVP: FDM. using our 4-step-procedure to solve an BVP.

6.2.2 the general procedure FDM for BVP $y'' = f(x, y, y'), BC : \frac{y(x_o) = a}{y(x_e) = b}$.

```
/* MAXIMA --- FINITE DIFFERENCE METHOD (FDM) for BVP of 2nd order --- */
FDM(xo,xe,a,b,n):= block( kill(y),
         : (xe-xo)/n,
    h
    x(k) := xo + k*h,
                                                                /* (1) */
          : makelist (concat (y,i), i,0, n),
    y
          : y[n+1],
    yn
    yp(k) := (y[k+2]-y[k])/(2*h),
    ypp(k):= (y[k]-2*y[k+1]+y[k+2])/h^2,
    Eqs: flatten([y0=a, makelist( BVP(i),i,1,n-1), yn=b]),
                                                              /* (2) */
    Y : map(rhs, linsolve(Eqs, y))
                                                               /* (3) */
    )$
```

```
/* Test BVP: y''+0.2y'+4y=3x+1 BC: y(0)=0.1=a, y(1)= 0.7=b */
fpprintprec:5$ ratprint:false$
```

```
BVP(k) := ypp(k) + 0.2*yp(k) + 4*y[k+1] = 3*x(k)-1; /* (4) */
FDM(xo:0, xe:1, a:0.1, b:0.7, n:8), numer; /* (5) */
```

The arguments of FDM(xo,xn, a,b,n) are as follows:

- 1. xo: the left corner of the interval $x_o \leq x \leq x_e$ of interest
- 2. **xe**: the right corner
- 3. **a**: the left BC, i.e $y(x_o) = a$
- 4. **b**: the right BC, i.e $y(x_e) = b$
- 5. **n**: the number of sub-intervals of equal length h
- 6. **BVP(k)**: the BVP equation in a standard form with lexicon $\frac{y}{y[k]} \frac{y'}{yp(k)} \frac{y''}{ypp[k]}$, see (4). Has to be defined before the call to FDM.

 \triangleright Click to RUN the code.

(%o4) BVP(k):=ypp(k)+0.2 yp(k)+4 y_{k+1}=3 x(k)-1 (%o5) [0.1,0.29143,0.45051,0.57398,0.66091,0.71261,0.73255,0.72607,0.7]

Comment: In (1) ff. we define the apparatus for the approximation, i.e. the y_i variables and the discretized derivatives $yp_i \equiv y'$, $ypp_i \equiv y''$. (2) constructs the flattend list of all discretized BVP equations, including the BC's, put at the first and last position. (3) solves the system Eqs of equations using MAXIMA's build-in routine linsolve, picks all RHS values via map(rhs,..) and saves all approximate results for the solution function yin the container variable Y.

Exercises.

Exercise 166. The test run (4) solves exercise 161. Run the test for n = 16 and do a plot a la 6.2.1.4:. Solve exercise 138 using our FDM function.

Exercise 167. Use the finite difference method with n = 4, n = 8 and n = 16 to approximate the solution to the BVP: $t^2y'' = -4xy' - 2y$ with y(1) = 12 and y(3) = 2 and compare with the exact solution $ye = \frac{3}{x} + \frac{9}{x^2}$, cf. [43, p.417].

Exercise 168. Solve exercise 139 using our FDM function.

Exercise 169. Use the finite difference method to

a. approximate the solution to the BVP: $y'' + \frac{y}{9} = 5\sin(\frac{x}{2})$ with y(0) = 0 and $y(\pi) = 0$ with $h = \frac{\pi}{10}$ and compare with the exact solution $ye = 24\sqrt{3}\sin(x/3) - 36\sin(x/2)$,

b. solve the BVP again with $h = \frac{\pi}{20}$ and compare the the absolute errors of the two calculations. Cf. [7, p.458].

Exercise 170. Do the example from \triangleright IRON: byp 3, i.e. solve the BVP $y'' = -\frac{(y')^2}{y}$ with BC y(0) = 1, y(1) = 2.

Exercise 171. Do the difficult example from \triangleright IRON: byp 4, i.e. solve the BVP $y'' - y + y^2 = 0$ with BC y'(0) = 0, $y \to 0$ as $x \to \inf, y > 0$.

Exercise 172. Do the \triangleright HECKBERT rocket problem. using our function FDM(.).

Exercise 173. Solve the BESSEL IVP $y'' + \frac{y'}{x} + y = 0$, y(0) = 1, y'(0) = 0 approximately using our FDM function, cf. [12, p.197]. Compare with the exact solution, the BESSEL function $J_0(x)$.

Exercise 174. Do the \triangleright WIKI: Standard boundary value problem. using our FDM(.) function.

Exercise 175. Do the BVP's examples 4.2.3, 4.2.5 and 4.2.6 of \triangleright NIEMEYER: FDM.

Exercise 176. Do the 2 BVP's \triangleright Berkeley Python Numerical Methods: FDM.

Exercise 177. Do the BVP's examples \triangleright UNI MUENSTER, DE: FDM methods. in §3.2.

Exercise 178. Do the example in \triangleright VESELY: Relaxation Method.

Exercise 179. Study \triangleright Hellevik: NM 4 Engineers: FDM. and \triangleright : Differences.

Exercise 180. Do some of the exercises 140 ff using our FDM(.) function.

Intro $DE - \heartsuit - the END$

7 Appendix: Collection of Source Code

This is a collection of relevant definitions from the booklet.

```
/*==== Dr. W.G. Lindner, Leichlingen, Germany, 2023 =====*/
/* PICARD approximation */
fpprintprec: 5$
ratprint: false$
kill(functions, values, arrays)$
```

```
f(x,y):= 2*x*y;
[a,b]: [0,1];
y[0](x) := b;
y[n](x) := b + integrate(f(t,y[n-1](t)),t,a,x);
```

```
I4: I1+I3 )$
```

```
/* Maxima --ODE type II */
odefy(u,y,xo,yo):= block(
    F: integrate(u,y),
    Sol: solve(F=x+C,y)[1],
    eq: at(Sol,[x=xo,y=yo]),
        c: rhs(solve(eq,C)[1]),
        I4: [Sol, c])$
```

```
/* Maxima --ODE type III */
odefxgy(f,g, x,y, xo,yo):= block(
F: integrate(f,x,xo,x),
G: integrate(1/g,y,yo,y),
print("DGL:", 'diff(y,x) = f*g ),
print(".. initial condition:", y(xo) = yo),
print("1. step - identify f(x) and g(y): ", f, ", ", g),
print("2. step - calculate F(x)=", 'integrate(f,x,xo,x)= F),
print("3. step - calculate G(y)=", 'integrate(1/g,y,yo,y) = G),
print("4. step - set up Eq. F(x)=G(y):", F=G),
```

```
print("5. step - solve Eq. F(x)=G(y(x)) for y: ", Sol: solve(F=G,y)),
print("6. step - choose solution with ", y(xo)=yo),
print("solution: Sol ="),
Sol)$
/* Maxima -- ODE type III : SEPARATION OF VARIABLES */
separable(f,g,x,y,xo,yo):=
                      solve( integrate(1/g,y,yo,y)=integrate(f,x,xo,x), y);
/* Maxima --ODE type VI : HOMOGENOUS ODE */
kill(values,arrays)$
f(x,y) := (y+x)/x;
eq1: u+x*du/dx = subst(u*x,y,f(x,y));
solve(eq1,du);
SEPARABLE(g,h, x,y) := integrate(g,x)=integrate(1/h,y)$
eq2: SEPARABLE(1/x, 1, x,u) ;
eq3: subst(y/x, u, eq2);
solve(eq3,y);
/* Maxima --ODE type IV - INTEGRATING FACTOR METHOD */
VoC(p,q, x,y, xo,yo):= block(
M: exp(integrate(p,x)), /* integrating factor */
My: integrate(P*y,x),
print("Step 1: check correct shape y'+py=q : ", 'diff(y,x)+p*y=q),
print(" ... with initial condition:", y(xo) = yo),
print("Step 2 - choose integrating factor M(x) = \exp(\text{integral } p) =", M),
print("Step 3 - multiply ODE by M*(y'+py=q), integrate : ",
                                M*y=integrate(M*q,x)),
print("Step 4 - divide through M :", y=expand(integrate(M*q,x)/M)+C/M),
     at(expand(integrate(M*q,x)/M+C/M), x=xo),
c:
print("Step 5 - calculate C for yo=y(xo) :", solve(yo=c,C) ));
/* Maxima -- ODE type IV : linear ODE and VARIATION OF CONSTANT */
linear1(f,g, x,y, xo,yo) :=
                    (yo+integrate(g/exp(integrate(f,x,xo,x)), x,xo,x))
                   * exp(integrate(f,x,xo,x));
```

```
/* Maxima --ODE type V: EXACT ODE */
exact(P,Q, x,y) :=
if is( diff(P,y) = diff(Q,x))
then
  block( [A,B,C,D],
           F: integrate(P,x),
           B: F + funmake(A, [y]),
           C: diff(B,y) = Q,
           D: rhs((solve(C,A(y))[1])),
           E: integrate(D,y),
           f: F+E )
else ("ODE is not exact.")$
/* MAXIMA --- ITERATE --- */
iterate(u,x,x0,n) := block([numer:true],
                      cons(x0, makelist(x0:subst(x0,x,u), i,1,n)))$
/* MAXIMA --- iterate2 for pairs/points --- */
iterate2(u,x,x0,n) := block([numer:true],
 cons(x0, makelist(x0:subst([x[1]=x0[1],x[2]=x0[2]],u), i,1,n)))$
/* MAXIMA --- iterate3 for triples --- */
iterate3(u,x,x0,n) := block([numer:true],
 cons(x0, makelist(x0:subst([x[1]=x0[1],x[2]=x0[2],x[3]=x0[3]],u),i,1,n)))$
/* Maxima -- SECANT METHOD
                             */
            include function iterate(..) here */
/*
secant1(u,x, a,b, n) := block(
                         [C: (a-b)/(subst(a,x,u)-subst(b,x,u))],
                         iterate( x - C*u, x,a,n)) ;
/* Maxima -- NEWTON-RAPHSON iteration */
             include our function iterate(..) here */
/*
newton1(u,x,a,n) := block([c: float(at(diff(u,x),x=a))],
                           iterate( x-u/c, x,a, n) );
/* Maxima -- IMPLICIT DIFFERENTATION */
idiff(f,x,y,m):=block(
                IMP1: iterate('diff(u,x) + f*'diff(u,y), u,f,m-1),
                factor(ev(IMP1, diff)) )$
```

```
/* Maxima -- IMPLICIT TAYLOR METHOD of order m */
/* include our functions iterate(u,x,xo,n) and idiff(f,x,y,m) here */
iTaylor(f,x,y, h, m) := y + idiff(f,x,y,m).makelist(h^r/r!, r,1,m);
/* Maxima -- TAYLOR SOLUTION METHOD of ODE y'=f(x,y) */
/* include functions iterate2(u,x,xo,n), idiff(f,x,y,m)
           iTaylor(f,x,y,h,m) here */
   and
iTaylorsol(f,x,y, xo,yo, h, m, n) :=
                iterate2([x+h, iTaylor(f,x,y, h, m)], [x,y], [xo,yo], n);
/* MAXIMA : --- EULER method ---* /
EULER(x,y, xo,yo, h, n) := iterate2([x+h, y+h*f(x,y)],[x,y],[xo,yo],n);
/* MAXIMA : --- modified EULER method --- */
modiEULER(x,y, xo,yo, h,n):= block(
              k1 : f(x,y),
              k2 : f(x+h, y + h*k1),
               iterate2([x+h, y+h/2*(k1+k2)],[x,y],[xo,yo],n));
/* MAXIMA --- HEUN's method --- */
HEUN(x,y, xo,yo, h,n) := block(
          k1 : f(x,y),
          k2 : f(x+2*h/3, y+2*h/3*k1),
           iterate2([x+h, y+h/4*(k1+3*k2)],[x,y],[xo,yo],n));
/* MAXIMA : --- MIDPOINT METHOD as RK2 method --- */
midpoint( x,y, xo,yo, h,n) := block(
              k1 : f(x, y),
              k2 : f(x, y + h/2*k1),
               iterate2([x+h, y+h*k2], [x,y], [xo,yo], n));
/* MAXIMA --- RUNGE-KUTTA order 3 --- */
RK3(x,y,xo,yo,h,n) := block(
               k1 : f(x,y),
               k2 : f(x+h/2, y + h/2*k1),
               k3 : f(x+h, y + 2*h*k2-h*k1),
                iterate2([x+h, y+h/6*(1*k1+4*k2+1*k3)],[x,y],[xo,yo],n));
```

```
/* MAXIMA : --- classic RUNGE-KUTTA method of order 4 --- */
RK4(x,y,xo,yo,h,n) := block(
                     k1 : f(x,y),
                     k2 : f(x+h/2, y + h/2*k1),
                     k3 : f(x+h/2, y + h/2*k2),
                     k4 : f(x+h, y + h*k3),
                     iterate2([x+h, y+h/6*(1*k1+2*k2+2*k3+1*k4)],
                              [x , y], [xo,yo], n) );
/* MAXIMA --- EULER method for systems of IVP --- */
EULERsys(t,x,y, to,xo,yo, h,n) :=
     iterate3([t+h, x+h*f(t,x,y), y+h*g(t,x,y)], [t,x,y], [to,xo,yo], n)$
/* MAXIMA --- RUNGE-KUTTA method RK4sys for systems of IVP --- */
RK4sys( x,y,z, xo,yo,zo, h,n):= block(
   k1 : h*f(x,y,z),
   11 : h*g(x,y,z),
   k2 : h*f(x+1/2*h, y + 1/2*k1, z + 1/2*l1),
    12 : h*g(x+1/2*h, y + 1/2*k1, z + 1/2*l1),
   k3 : h*f(x+1/2*h, y + 1/2*k2, z + 1/2*12),
    13 : h*g(x+1/2*h, y + 1/2*k2, z + 1/2*12),
                           k3, z + 13),
k3, z + 13),
   k4 : h*f(x+
                 h, y +
   14 : h*g(x+
                  h, y +
    iterate3([x+h, y + 1/6*(1*k1+2*k2+2*k3+1*k4),
                   z + 1/6*(1*11+2*12+2*13+1*14)],
             [x,y,z],[xo,yo,zo],n) )$
/* MAXIMA -- BRAEUNING's method for 2nd order IVP --- */
RK4ode2( x,y,yp, xo,yo,ypo, h, n):= block(
        k0 : 1/2*h^2* f(x,y,yp),
        k1 : 1/2*h^2* f(x+h/2, y + 1/2*h*yp + 1/4*k0, yp + k0/h),
       k1p : 1/2*h^2* f(x+h/2, y + 1/2*h*yp + 1/4*k0, yp + k1/h),
        k2 : 1/2*h^2* f(x+h, y + h*yp + k1p, yp + 2*k1p/h),
        k : 1/3*(k0+k1+k1p),
         1 : 1/6*(k0+2*k1+2*k1p+k2),
      iterate3([x+h, y+h*yp+k, yp+2*1/h],[x,y,yp],[xo,yo,ypo],n));
```

```
/* MAXIMA --- SHOOTING METHOD for BVP --- */
shoot(xo,a,b ,h,n, p,q) := block(
    F(w):= last(RK4sys(x,y,z, xo,a,w, h, n))[2] - b,
    W: find_root(F,w, p,q))$
```

```
/* MAXIMA --- FINITE DIFFERENCE METHOD (FDM) for BVP of 2nd order --- */
FDM(xo,xe,a,b,n):= block( kill(y),
    h : (xe-xo)/n,
    x(k) := xo + k*h,
    y : makelist (concat (y,i), i,0, n),
    yn : y[n+1],
    yp(k) := (y[k+2]-y[k])/(2*h),
    ypp(k):= (y[k]-2*y[k+1]+y[k+2])/h^2,
    Eqs: flatten([y0=a, makelist( BVP(i),i,1,n-1), yn=b]),
    Y : map(rhs, linsolve(Eqs, y)) )$
```

8 Bibliography

References

- [1] AMMARI & AL. (20??): Numerical Methods for Ordinary Differential Equations. url: https://people.math.ethz.ch/~grsam/SS19/NAII/resources/lecture1.pdf
- [2] ANDRECUT, M. (2000): Introductory Numerical Analysis. Lecture Notes. Parkland: Universal Publishers.
- [3] AYRES, F. (1952): Theory and Problems of Differential Equations. New York: McGraw-Hill (Schaum's Outline Series)
- [4] BARTH, E.J. (2023): The MaximaList (Blog). url: https://themaximalist.org
- [5] BAZETT, T. (2023): Introduction to Differential Equations. url: https://web.uvic.ca/~tbazett/diffyqs/diffyqs.html
- [6] BERRY, J.S. ET AL. (1993): Learning Mathematics through Derive. Chichester: Ellis Horwood.
- [7] BORSE, G.J. (1997): Numerical Methods with MATLAB. Boston: PWS Publishing.
- [8] BORSE, G.J. (1991): FORTRAN 77 and Numerical Methods for Engineers. Boston: PWS Publishing.
- [9] BRONSON, R. (1973): Modern Introductory Differential Equations. New York: McGraw-Hill. Schaum's Outline Series.
- BURDEN, R.L. & FAIRES, J.D. (²1993): Numerical Analysis. Boston: PWS Publishing.
- [11] BRAUN, M. (1975): Differential Equations and Their Applications. New York, Heidelberg: Springer.
- [12] BRÄUNING, G. (²1965): Gewöhnliche Differentialgleichungen. Leipzig: VEB Fachbuch Verlag.
- [13] DAWKINS, P. (2023): Pauls's Online Notes Differential Equations. url: https://tutorial.math.lamar.edu/Classes/DE/DE.aspx
- [14] DORNER, G.C. ET AL. (2000): Visual Mathematics, Illustrated by the TI-92 and the TI-89. France: Springer.
- [15] DOWLING, E.T. (²1980): Introduction to Mathematical Economics. New York: McGraw-Hill (Schaum's Outline Series)

- [16] FORST, W. & HOFFMANN, D. (2005): Gewöhnliche Differentialgleichungen. Theorie und Praxis - vertieft und visualisiert mit Maple. Berlin: Springer.
- [17] ETCHELLS, T.A. & BERRY, J.S. (1997): Learning Numerical Analysis through Derive. Lund: Studentlitteratur. Chartwell-Bratt.
- [18] FAIRES, J.D. & BURDEN, R.L. (1993): Numerical Methods. Boston: PWS Publishing.
- [19] GÜNTER, N.M. & KUSMIN, R.O. (⁵1966): Aufgabensammlung zur Höheren Mathematik I. Berlin: Deutscher Verlag der Wissenschaften.
- [20] HAIRER, E. & LUBICH, C. (?): Numerical solution of ordinary differential equations. url: https://na.uni-tuebingen.de/~lubich/pcam-ode.pdf
- [21] HELLEVIK, L.E. (2020): Numerical Methods for Engineers. url: https://folk.ntnu.no/leifh/teaching/tkt4140/._main000.html
- [22] JÄNICH, K. (1983): Analysis fur Physiker und Ingenieure. Berlin: Springer.
- [23] JORDAN-ENGELN, G. & REUTTER, F. (²1976): Formelsammlung zur Numerischen Mathematik mit Fortran IV-Programmen. Mannheim: Bibliographisches Institut.
- [24] KAMKE, E. (⁵1964): Differentialgleichungen I.
 Leipzig: Akademische Verlagsgesellschaft Geest & Portig.
- [25] KOEPF, W. (1996): Derive für den Mathematikunterricht. Braunschweig: Vieweg.
- [26] KOEPF, W. (1994): Höhere Analysis mit Derive. Braunschweig: Vieweg.
- [27] KRYSICKI, W. & WLODASKI, L. (1971): Höhere Mathematik in Aufgaben. Teil 2. Leipzig: BSB B. G. Teubner.
- [28] LEBL, J. (2022): Notes on DiffyQs. url: https://www.jirka.org/diffyqs/diffyqs.pdf
- [29] LOWE, B. & BERRY, J.S. (1998): Learning Differential Equations through Derive. Lund: Studentlitteratur.
- [30] MathSoft (1995): Exploring Numerical Recipes. Cambridge: MathSoft Inc. (MathCAD)
- [31] MARSDEN, J. & WEINSTEIN, A. (²1985): Calculus I. New York: Springer.
- [32] MARSDEN, J. & WEINSTEIN, A. (²1985): Calculus II. New York: Springer.
- [33] MARSDEN, J. & WEINSTEIN, A. (²1985): Calculus III. New York: Springer.
- [34] MINORSKI, W. P. (²1965): Aufgabensammlung der Höheren Mathematik. Leipzig: VEB Fachbuchverlag.

- [35] MOHR, R. (1998): Numerische Methoden in der Technik (MatLab). Braunschweig: Vieweg.
- [36] NAKAMURA, S. (1993): Applied Numerical Methods in C. Eaglewood Cliffs: Prentice-Hall.
- [37] OPFER, G. (2008): Numerische Mathematik für Anfänger. Wiesbaden: Vieweg+Teubner.
- [38] PRESS, W.H. & al. (1988): Numerical Recipes in C. Cambridge: Cambridge University Press.
- [39] QUARTERONI, A. et al. (2000): Numerical Mathematics. London, New York: Springer.
- [40] RICH, A. & STOUTEMYER, D. et al. (1988 ff): Derive User Manual. Honolulu: Soft Warehouse..
- [41] ROBERTS, L.F. (1995): Introduction to Ordinary Differential Equations. Cambridge: MathSoft Inc. (MathCAD)
- [42] ROMER, A. (1983): 50 BASIC-Programme. Mannheim: Bibliographisches Institut.
- [43] SCHONEFELD, S. (1994): Numerical Analysis via Derive. Urbana: MathWare.
- [44] SPIEGEL, M. R. (1963): Advanced Calculus. New York: McGraw-Hill.
- [45] STEEB, W.-H & LEWIEN, D. (1991): Algorithms and Computation with Reduce. Mannheim: Bibliographisches Institut.
- [46] STOER, J. & BULIRSCH, R.Z. (1973): Einführung in die Numerische Mathematik II. Berlin: Springer.
- [47] SÜLI, E. (2022): Numerical Solution of Ordinary Differential Equations. url: https://people.maths.ox.ac.uk/suli/nsodes.pdf
- [48] TIMBERLAKE, T.K. & MIXON, J.W. (2016): Classical Mechanics with Maxima. New York: Springer.
- [49] VENZ, G. (1978): Lösung von Differentialgleichungen mit programmierbaren Taschenrechnern. München, Wien: Oldenburg.
- [50] WERNER, W. (²1998): Mathematik lernen mit Maple. Band 2. Heidelberg: dpunkt.
- [51] WOLFRAM mathworld: Picards Existence Theorem. url: https://mathworld.wolfram.com/PicardsExistenceTheorem.html
- [52] WOOLLETT, E.L. (2023): Maxima by Example, Ch. 3: Ordinary Differential Equation Tools. url: https://home.csulb.edu/~woollett/mbe03.html