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Preface

In the 90ties of last century the CAS Derive was very popular in Austria and Germany
and was profusely used in Mathematics courses in college and university. I was particu-
larly impressed be the versatile and omnipresent Derive function iterate/s, which was
programmed by Albert Rich and David Stoutemyer. So I used a function iterate for
Maxima just to see, how useful it is for downsizing the programming bureaucracy w.r.t.
the use of loop and recurrence constructs.
It turned out that essential functions in the field of elementary Differential Equations
shrank to 1-5 liners when using iterate as control structure - which is in my opinion a
great benefit for the beginner in order to concentrate on the discussed methods and to
provide a unified treatment (no index juggling necessary).
In this booklet there are only sketches of the mathematic reasoning given, because there
is a vast set of specialized books and online informations available. For the mathematical
treatment of Differential Equations (DE) parallel with this script, I recommend the books
by Bronson [9], Bulirsch–Stoer [46], Burden-Faires [10], Lowe/Berry [29] and
on the internet Bazett [5], Dawkins [13], Hellevik [21], Lebl [28], Hairer/Lubich
[20], Süli [47] or Ammari & al. [1] – all cited in the bibliography.

The content of this script is limited to the treatment of some rudimentary analytical
solution methods for Ordinary Differential Equations (ODE), e.g. from direct solution
techniques to exact ODE’s. The numerical solution methods for initial value problems
(IVP) range from the classical Euler method via Heun and Midpoint method to Runge–
Kutta RK4 methods – all these methods are easily coded in Maxima using iterate and
friends. Systems of ODEs are numerically solved using RK variants, likewise ODEs of 2nd

order. Boundary value problems (BVP) are only approximately solved with two methods:
the shooting method and the Finite Difference Method (FDM).
Examples and exercises are borrowed from the above (quoted) sources, so the reader may
control own solutions therein.

The collection of the Maxima examples and exercise scripts in this booklet not only want
to help the reader to dive into the praxis of solving ordinary Differential equations and
observing phenomena, but also to become comfortable with the use of the CAS Maxima in
this field. Therefore, to program the necessary concepts as simply and directly as possible,
I limit myself to the use of short self-made or build-in functions.
I hope that this collection of Maxima programs and the corresponding selection of exam-
ples from diverse sources will encourage the beginner to go further into the theory.

To run a Maxima script of this booklet no installation is necessary, everything runs di-
rectly online: a click on a link like B Click here to Run. in this text is enough to invoke
Maximaon line. Such a link is at the same time a silent invitation to become active.
Of course, it is far better and more convenient to run Maxima in the wxMaxima variant
on the PC. If you own a Mac or Linux PC, there is the option to install the app Maxima

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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free of charge and run the scripts of this booklet by mark–copy–paste into the wxMaxima
window. There are also accompanying *.wxm scripts for each chapter for download on my
homepage https://lindnerdrwg.github.io.

The author studied Numerical Mathematics from his academic teacher Prof. Dr. Roland
Z. Bulirsch at the university of Cologne, Germany, in the 70ies of the last century.
There I heard for the first time of the so-called shooting method to solve BVP’s and I was
impressed by the idea to transform a BVP to an IVP in order to use RK methods. At
that time, we had to program in Fortran, coding our scripts on punch cards, which had to
be delivered to the computer center. This has now all changed for the better, this booklet
try to demonstrate this with Maxima for calculations and plots in the field of ODEs.

Sadly, Prof. Roland Bulirsch passed away in 2022.

Roland Z. Bulirsch, 1934–2022

User comments are very welcome.

Wolfgang Lindner
Leichlingen, Germany
June 2023
dr.w.g.Lindner@gmail.com

https://lindnerdrwg.github.io

We use the following abbreviations.

LEXICON shorthand meaning
ODE ordinary differential equation
IVP initial value problem

BVP boundary value problem
IC initial condition(s)

BC boundary condition(s)

https://lindnerdrwg.github.io
https://lindnerdrwg.github.io
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1 What is an Ordinary Differential Equation?

Differential equations make heavy use of (partial) differentiating and integrating functions.
We start with a definition what a (ordinary) differential equation is. Then we code a
procedure iterate, which we will use very often. A first use of iterate will be the
construction of the so called successive Picard-Lindelöf approximations, which establish
a constructive proof of the existence of solutions of ODE’s under special conditions.

1.1 Definition of ODE

Let U be subset of IR2.
Let f : U → IR be a function on U .
Then we call

y′ = f(x, y) (1.1)

an ordinary differential equation (short: ODE), i.e.
we look for an interval J ⊂ IR and a differentiable function y : J → IR with

(x, y(x)) ∈ U for all x ∈ J (1.2)

f(x, y(x)) = y′(x) for all x ∈ J (1.3)

• A given ODE’s should be transformed in the ”standard” form (1.1), because most facts
and methods relay on this representation.
• As a first preview on what follows have a look at the following two figures:

Figure 1:

Basic perception/mental image of an ODE and its solutions:
left: the direction field of ODE y′ = f(x, y) = y − x2.
right: the direction field of y′ = y − x2 including ...
...: the special solution y(x) with initial condition y(0) = 1.
...: the special solutions y(x) going through the points
(0, n), n = 2, 3, 4, 5, i.e. y(0) = n,
i.e. n is the initial value of y(x) at x = 0.
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Comment. The so called direction field gives a rough picture of an ordinary differential
equation y′ = f(x, y) in a region U of IR2.
1. The left figure shows the direction field of the ordinary differential equation (ODE)
y′ = f(x, y) := y−x2. At every point (x, y) of the grid we plot a tiny directed line segment
(’vector’) whose slope is as great as the value f(x, y) prescribe, e.g. at point (1, 2) the
slope is f(1, 2) = 2− 12 = 1.
2. The right figure shows the same direction field of the given ODE, but with 5 special
solution functions y(x) inscribed. The blue solution function y(x) goes across the point
(0, 1), which means that this solution fulfills the supplementary condition y(0) = 1.
We call this situation an initial value problem (IVP).

Example 1. (Plotting the direction field of an ODE)
Here is the code to reproduce the plot Fig.1.RHS using wxMaxima:

/* wxMaxima */

kill(functions,values,arrays)$

load(drawdf)$

wxdrawdf(y-x^2, [x,y], /* the given ODE y’=y-x^2 */

xaxis = true, yaxis = true, xlabel="x", ylabel="y",

[x, -4, 4], [y, -0.1, 5], /* chose interval J=[-4, +4] */

solns_at( [0,2],[0,3],[0,4],[0,5] ), /* the solution with y(0)=2 .. */

color=blue,

solns_at([0,1]) /* the solution with y(0)=1 painted in blue */

)$

If you use e.g. Maximaon line instead of wxMaxima, then you must use a bit other syntax
– the suffix wx.. has to be dropped.

LEXICON Maximaon line wxMaxima
direction field load(drawdf); load(draw);

drawdf(y − x2); wxdrawdf(y − x2);

Here is the above code prepared to copy & paste into the online frame of Maximaon line:

/* Maxima_online */

load(drawdf)$

drawdf(y-x^2, [x, -4,4], [y, -0.1,5],

solns_at( [0,2],[0,3]),

color=blue, soln_at(0,1))$

B Mark-Copy-Paste the magenta code lines and RUN it with Maximaon line.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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The Maximaon line output:

Remark. (A hint for the use of wxMaxima resp. Maximaon line)
If you see a link like

• B Mark & Copy & Paste code and �RUN it.

you will be linked to Maximaon line1to run, work or alter this (maybe a little adjusted)
code script. You have the focus in Maximaon line, if you click into the frame � and it
changed to blue �.

• Anyway: You should interpret such a link to become active and really run the blue code
lines from an input cell [ ] of wxMaxima or in the Maximaon line box �.

1Thanks to Mario Riotorto for his work on it.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Example 2. (Examples of ODE’s)
a. ODE: y′ = −y + t+ 1.
Here f(t, y) := −y + t+ 1.
An initial value problem would be y′ = −y + t+ 1 with y(t = 0) = 2.

b. ODE: y′ = y.
Here f(x, y) := y. An initial value problem would be y′ = y and y(1) = 0.

c. ODE: y′ = 1 + y2.
Here f(x, y) := 1 + y2. An initial value problem (IVP) would be y′ = 1 + y2 with y(3) = 2.

d. ODE: y′ = 2xy.
Here f(x, y) := 2 ∗ x ∗ y. An IVP would be y′ = 2xy with y(x = 4) = −2.

e. ODE: y′ = t/y.
Here f(t, y) := .... An IVP would be y′ = −t/y with y(0) = 2.

f. ODE: y′ = y2 sin 2x on U =]0, 6[×]0, 5[.
Here f(x, y) := .... An IVP would be y′ = f(x, y) = .. with y(1.5) = 2.

Exercise 1. Plot the direction fields of the ODE’s of example 2 and the corresponding
solution function of the IVP.

Exercise 2. (a geometric problem leading to an ODE)

Bräuning [12, p.45]

Determine those curves y = f(x), where the cut point of the tangent with the ordinate
axis from the origin of the coordinate system has the same distance as the touching point
of the tangent with the curve.

Hint: Determine a corresponding ODE.
Restrict your solution to positive values of x and y.

Verify: the ODE is y − xy′ =
√
x2 + y2.

Plot the direction field of the ODE and some corresponding solution functions y.
What do you observe?

Exercise 3. Review on IVP: B Hellevik: ivp.

https://folk.ntnu.no/leifh/teaching/tkt4140/._main003.html
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1.2 Existence-Uniqueness Theorem - Picard iteration

The Existence-Uniqueness Theorem for the ODE y′ = f(x, y) ∧ y(a) = b guaranties
the existence of a locally unique solution y under certain conditions on f , cf. e.g.
[47, p.1 ff], [1, p.20], [10, p.238, P7] or [12, p.149], B Hellevik: E and U. .

This solution y is constructed with the method of successive approximations after Picard-
Lindelöf with this recipe:
(1) start with the initial solution

y0(x) := b. (1.4)

(2) construct the new approximating solution function yn+1(x) through the following re-
cursion formula for n ∈ {0, 1, 2 . . . }

yn+1(x) := b+

x∫
a

f(x, yn(x))dx (1.5)

Then yn(x)
n→∞−→ y(x) := solution.

Remark. The RHS of (1.5) is only dependent of the variable x, because the process starts
with the constant function b via (1.4). Therefore the integral is direct calculable.

1.2.1 Picard by hand

We construct the solution of the IVP y′ = 2xy, y(0) = 1 along the recipe (1.4) and (1.5).
We have: f(x, y) := 2xy; a = 0; b = 1.

y0(x) := 1 (1.6)

y1(x) := 1 +

x∫
0

2x · y0(x)dx = 1 + x2
x

|
0

= 1 + x2 (1.7)

y2(x) := 1 +

x∫
0

2x · y1(x)dx = 1 +

x∫
0

(2x+ 2x3)dx (1.8)

= (x2 + x4/4)
x

|
0

= 1 + x2 +
x4

2

y3(x) := 1 +

x∫
0

2x · y2(x)dx = 1 +

x∫
0

(2x+ 2x3 + x5)dx (1.9)

= (x2 + x4/4 + x6/6)
x

|
0

= 1 + x2 +
x4

2
+
x6

6
. . .

yn(x) :=
x0

0!
+
x2

1!
+
x4

2!
+
x6

3!
+
x8

4!
+ · · ·+ x2n

n!
(1.10)

Please watch, how the result yk of a previous step is substituted into the term f(x,�) for
the next iterate yk+1. This is made visible by using different colors for the yk.

https://folk.ntnu.no/leifh/teaching/tkt4140/._main004.html
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Exercise 4. Verify (1.10) via induction.

Following (1.10) we conclude:

yn(x) :=
n∑
k=0

(x2)k

k!
(1.11)

y(x) :=
∞∑
k=0

(x2)k

k!
≡ exp(x2) (1.12)

We check with Maxima that y(x) := ex
2

is indeed the solution of IVP y′ = 2xy, y(0) = 1:

/* wxMaxima */

y(x):= exp(x^2);

y(0);

diff(y(x),x);

2*x*y(x);

B Mark-Copy-Paste the blue code lines and RUN it.

The wxMaxima output:

Comment. Eq. (%o3) = (%o3) verifies, that y = ex
2

is a solution of the ODE and
(%o2) fulfills the IVP y(0) = 1. With the method of successive approximation along lines
(1.6). . . (1.10) we have constructed the solution of the IVP y′ = 2xy, y(0) = 1 and therefore
established the existence and uniqueness of the solution function y.

We will now implement this method in Maxima.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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1.2.2 Picard by Maxima

/* MAXIMA --- PICARD iteration --- */

fpprintprec: 5$

ratprint: false$

kill(functions, values, arrays)$ /* kill arrays !*/

f(x,y):= 2*x*y;

[a,b]: [0,1]; /* (0) */

y[0](x) := b; /* (1) */

y[n](x) := b + integrate(f(t,y[n-1](t)),t,a,x); /* (n) */

y[3](x), expand; /* (3) */

makelist(y[n](x),n,0,4); /* (4) */

B Mark-Copy-Paste and RUN the code lines.

The wxMaxima output:

Comment. In (0) we set the IV’s to a := 0 and b := 1. Line (2) corresponds to (1.4) and
line (n) is the translation of (1.5). Because y[.] is an indexed variable (without creating a list
first), an undeclared array (also called ’hashed’ array) is created that grows dynamically
with its indices: so a recursive process is established which allows to call a arbitrary
function y[k](x) or a particular value y[9](1.2), e.g. see (3). In (4) we display the first
5 approximate solution functions. We see in (%o9) this list shows the results (1.6) to (1.9).
• Warning: you should always start the use of a hashed array with kill(arrays); in order
to have an empty array for a fresh use. Otherwise the old values in the array slots could
irritate the computation!

Let’s visualize the approximation process.

/* wxMaxima */

ratprint:false$

Pic: makelist([1,y[n](1)],n,0,4), numer; /* (5) */

wxdraw2d(xaxis = true,

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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/* user_preamble="set size ratio -1", */ /* (6) */

xrange = [0,2], yrange = [-0.1,4],

xlabel="x", ylabel="y",

color=cyan, explicit(y[0](x),x,0,2 ), /* (7) */

color=blue, explicit(y[1](x),x,0,2 ),

color=green, explicit(y[2](x),x,0,2 ),

color=yellow, explicit(y[3](x),x,0,2 ),

color=red, explicit(exp(x^2),x,0,2 ), /* (8) */

point_size=2, points_joined=false,

color=magenta, points( Pic ),

title="PICARD iteration")$

B Mark-Copy-Paste and RUN the code in wxMaxima.

The wxMaxima output:

| (Pic) [[1,1],[1,2],[1,2.5],[1,2.6667],[1,2.7083]]

Figure 2:

The plot shows the approximating functions y[0](x), y[1](x),
y[2](x), y[3](x), which tend to always better approach to the
exact solution y(x) = exp(x2).
The points list (5), which is (1, yn(1))n=0,1,2,3, tends to ap-
proach the limit value y(1) = e1 = e ≈ 2.71828. It is visual-
ized as magenta crosses +.

Comment. In (5) we pick a point on each approximating function at the same position
at x = 1 and collect them in the list Pic(ard). If you uncomment line (6) you get a an
equal scale on each axis. In (7) we plot the start function y0 as a constant line above the
interval [0, 2] in color cyan. (8) plots the exact solution function y.
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Exercises.

Exercise 5. Construct the solution y of the IVP y′ = x− y2, y(0) = −0.5 using Picard
iterates.
[Control: y6(x) = −1

2 + 1
4x+ 3

8x
2 + 5

48x
3 + . . . .

Exercise 6. Construct the solution y of the IVP y′ = x2 + y2, y(0) = 0 via successive
approximation. Plot its direction field and show the solutions, which fulfill the IVP’s
y(0) = −1, y(0) = 0 and y(0) = 1.

Exercise 7. Given the IVP dy/dx = x − y ∧ y = 1 at x = 0, use Picard’s method to
approximate y when x = 0.2. [Control: y5(0.2) ≈ 0.83746. - Exact solution: y = x− 1 + 2e−x.

Exercise 8. Calculate the solution y of y′ = y2 − xy, which has value y = 1 for x = 0.

[Control: y5(0.5) ≈ 1.6987. - Exact solution: y(x) = (1−
x∫
0

e−1/2·t
2
dt)−1 · e−1/2·x2 , cf. [24, p.308].

Exercise 9. Find the solution to the equation y′(t) = 1 + y(t)2 with initial condition
y(t0) = y0 = 0, t0 = 0. Plot the first 4 Picard iteration steps.
[Result: y(x) = tan(x)

url: B Wiki: Picard-Lindelöf.

Exercise 10. An ODE is given through x′ = sin(t)− x with IC x(0) = 1.
Do two steps of the Picard iteration.
See B: Wiki: Picard-Iteration

Exercise 11. Construct the Picard iterates for the IVP y′ = 2t(y + 1), y(0) = 0 and
show that they converge to the exact solution y(t) = et

2 − 1. Cf. [11, p.110].

Exercise 12. Construct the Picard iterates for the initial value problem in [1, p.20,
Example 2.7].

Exercise 13. Do example 2.3.2 at B Hellevik: Taylor’s method.

https://en.m.wikipedia.org/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem
:
https://de.m.wikipedia.org/wiki/Picard-Iteration
https://folk.ntnu.no/leifh/teaching/tkt4140/._main005.html
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2 Analytical Solution Methods

In this chapter we speak about some types of ODEs, which can be solved without a special
theory, but only with elementary knowledge of integration. We want to accompany these
analytical procedures with support by Maxima.
These ODE types are:

ODE: type solution method
I y′ = f(x) direct integration

II y′ = f(y) homogen ODE

III y′ = f(y) · g(x) separation of variables

IV y′ = f(x) · y + g(x) linear ODE

V y′ = f(x/y) variable transformation

VI hx + hy · y′ = 0 exact ODE

To use one of the corresponding solution procedures one has to decide, in which of these
shapes a given ODE falls.

2.1 . . . the case y′ = f(x) : direct integration of ODE

Figure 3:

The plot shows four of the infinity many solution functions
y(x) = F (x) = 1

3x
3 + c of the ODE y′ = x2 with initial

value y(0) = 1. The special solution function F + c with
y(0) = F (0) = 1 is plotted in red and has c = 1.

• The ODE type I is: y′ = f(x), i.e. the right-hand side of the ODE depends only on x.
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The theoretical solution method for an ODE of shape I: y′ = f(x) is by direct integration,
i.e. if we know the indefinite integral 2 F (x) for f(x) on an interval [a, b] ⊂ IR, then every
other solutions of y′ = f(x) is of the form y(x) = F (x) + c, c ∈ IR, see Fig. 3:

y(x) = F (x) :=

∫ x

a

f(t)dt+ c, c ∈ IR (2.1)

The solution method for the IVP y′ = f(x), y(yo) = xo is in 3 steps:

I1:
∫ x
xo
f(t)dt+ C = y(x)

I2: solve y(xo) = yo for C

I3: Solution: y(x) + C.

Example 3. The ODE y′ = x2, y(0) = 1 is of type I, becausef(x, y) = x2 = f(x only).

a. The solution function y(x) is constructed in 3 steps:
I1:
∫ x
xo
t2dt+ C = x3

3
+ C = y(x).

I2: y(xo = 0) = 03

3
+ C = 1 C = 1.

I3: Solution: y(x) = x3

3
+ 1.

b. We write the solution process as a user defined Maxima function odefx:

/* MAXIMA --- ODE type I --- */

odefx(u,x,xo,yo):= block(

I1: integrate(u,x,xo,x), /* (1) */

I2: I1+C, /* (2) */

I3: rhs( solve( at(I2,x=xo) = yo, C)[1]), /* (3) */

I4: I1+I3 )$ /* (4) */

The invoke arguments of odefx(u,x,xo,yo) are as follows:

1. u: the RHS of the ODE u = f(x), which depends only on x

2. x: the integrating variable

3. xo: the initial value xo on the x-axis

4. yo: the initial value yo on the y-axis

Let’s test our function odefx:

odefx(x^2, x,0,1); /* (5) */

odefx(x^2, x,1,1); /* (6) */

2(i.e. per definition F ′ = f)



2 ANALYTICAL SOLUTION METHODS 15

B Mark-Copy-Paste and RUN the code lines.

The Maxima output for the test cases (5) and (6) are:

Comment. In (1) we calculate the indefinite integral F =
∫
f and add the integration

constant C to it in order to build all solutions. In (3) we put xo into I2 and solve this
equation for C. With this C we pick the particular IVP solution I4.

c. We now solve the ODE y′ = x2, y(0) = 1 with the build-in Maxima function ode2:

/* Maxima -- IVP example with build-in function ode2*/

’diff(y,x) = x^2; /* the given ODE */

ode2(%,y,x); /* solve ODE */

ic1(%,x=0,y=1); /* solve ODE respecting the IVP y(0)=1 */

B Mark-Copy-Paste and RUN the code lines.

The Maxima output for the test cases (5) and (6) are:

Figure 4:
The direction field of the ODE y′ = x2 shows, that every
point with the same x-coordinate has the same slope: this
is visualized through the blue vertical lines, see [24, p.6].

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Exercises.

Solve the following ODEs by hand, then using our function odefx and Maxima’s ode2.
Check the plausibility of the solution by an slope plot.

Exercise 14. Do some of the exercises of [28, p.21-26].
You will find the solutions at B Bazett: Integral solutions.

Exercise 15. Solve x2 · y′′(x) = 3x4 − 1 given y = 0 when x = 1 and y′(1) = 2.
Cf. Lowe [29, p. 35].

Exercise 16. Solve y′(x) = 1
x
− sin(x).

Exercise 17. Solve
√

1− x2 · y′(x) = 1.

Exercise 18. (Lowe [29, p.38]) The height h of a ball thrown vertically upwards from
ground level satisfies the equation h′′(t) = −10.
The initial speed of the ball h′(t) is 20 m/s. .
a. Find the time to reach the highest point.
b. How high will the ball go?
c. What is the total time of the flight?
d. Find the spees with which the ball hits the ground.

Exercise 19. Do the problems of Case 1 of B Fan/Cifarelli: ODEs.

https://web.uvic.ca/~tbazett/diffyqs/integralsols_section.html
https://flexbooks.ck12.org/cbook/ck-12-calculus-concepts/section/8.11/primary/lesson/ordinary-differential-equations-odes-calc/
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2.2 . . . the case y′ = f(y)

• The ODE type II is: y′ = f(y), i.e. the right-hand side of the ODE depends only on y.

A rough theoretical derivation should motivate the Maxima code for this kind of ODE,
see [22, p.140]. We have:

y′ = f(y)
1)
 

y′

f(y)
= 1

2)
 (F (y))′

3)
=

1

f(y)
· y′ = 1 F (y) = x+ c

4)
 y = F−1(x+ c)

under some assumptions3.

Example 4. The ODE y′ = cos2(y), y(1) = 1 is of type II,
because f(x, y) = cos2(y) = f(y only).

a. y′ = cos2(y)
1)
 y′

cos2(y)
= 1 (tan(y)))′ = 1 tan(y) = x+ c y = arctan(x+ c)

for functions with values in [−π
2
,+π

2
]. Solution: y(x) = arctan(x+ c).

b. We write the theoretical solution process as a user defined Maxima function odefy,
which allows to follow a semi-automatic solution process and gives insight into the black-
box ode2(.):

/* MAXIMA --- ODE type II --- */

odefy(u,y,xo,yo):= block(

F: integrate(u,y),

/* print(F), */

Sol: solve(F=x+C,y)[1],

eq: at(Sol,[x=xo,y=yo]),

c: rhs(solve(eq,C)[1]),

I4: [Sol, c])$

The invoke arguments of odefy(u,y,xo,yo) are as follows:

1. u: the RHS of the ODE u = f(y), which depends only on y

2. y: the integrating variable

Let’s test our function odefy (watch the term u, which is a function in y !):

odefy( 1/cos(y)^2, y, 1,1);

B Mark-Copy-Paste and RUN the code lines.

The output is (watch the intermediate variables F,Sol,eq,c using print statements) ..

31) f(x) 6= 0 2) F (y) is indefinit integral of 1
f(y)

3) (F ◦ y)′ = F ′(y) · y′ = 1
f(y)y

′ 3) F (y) = x + c is

solvable for x. – We note  (’leads to’) instead of ⇔ (’is equivalent’) as a warning for not being ’fully’
mathematical precise. So you should always check your solution by a derivative and/or a direction field:
is the proposed solution plausible?

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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.. and allows to read off the result in I4 as y=atan(x+tan(1)-1).

c. We now solve the ODE y′ = cos2(y), y(0) = 1 by invoking the build-in function ode2:

/* Maxima --- ODE type II using ode2 --- */

ode2( ’diff(y,x) = cos(y)^2, y, x);

ic1(%,x=1,y=1);

solve(%,y);

B Mark-Copy-Paste and RUN the code lines.

The Maxima output is:

Please observe, that Maxima’s full-automatic solver ode2 also presents its solution not-
inverted: therefore we have to solve the ic1 result for y. We get the same result as our
semi-automatic solution with odefy.

Figure 5:
The direction field of the ODE y′ = 1/cos(y)2 shows, that
every point on the same parallel w.r.t. the x-axis has the
same slope: observe the blue horizontal lines, see [24, p.7].

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Exercises.

Solve the following ODEs by hand, then using our function odefy and Maxima’s ode2.
Check the plausibility of the solution by an slope plot.

Exercise 20. Solve the ODE y′ = ky, k > 0.

Exercise 21. Solve the ODE y′ = y2, y(0) = 1.

Exercise 22. Solve the ODE y′ =
√

1− y2.

Exercise 23. Solve the corresponding IVP y(1) = 2 for the exercises 20–22.

Exercise 24. Do exercises 1.1.5, 1.1.6, 1.1.7 froml B Bazett: Integrals as solutions.

Exercise 25. Do the problems of Case 2 of B Fan/Cifarelli: ODEs.

If you like: do some of the Review problems.

https://web.uvic.ca/~tbazett/diffyqs/integralsols_section.html
https://flexbooks.ck12.org/cbook/ck-12-calculus-concepts/section/8.11/primary/lesson/ordinary-differential-equations-odes-calc/
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2.3 . . . the case y′ = f(x) · g(y) : Separation of Variables

• The ODE type III is: y′ = f(x) · g(y), i.e. the right-hand side of the ODE depends on
x, y – but is a product of two functions, which each depend on one of both variables alone.

This method is a generalization of the two special cases before: setting f(x) := 1 we get
ODE shape I and setting g(y) := 1 we get ODE shape II.

A rough theoretical motivation is: write the given ODE in the old-fashioned ’differential
form’ as y′ ≡ dy

dx
= f(x) · g(y). Then it can be solved by the method of separation of the

variables: collect terms with y at LHS and terms with x on RHS.

y′ =
dy

dx
= f(x) · g(y)  

1

g(y)
dy = f(x) dx

 G(y) :=

∫ y

yo

1

g(y)
dy = (

∫ x

xo

f(x) dx) =: F (x)

 G(y) = F (x) + c

 y = .. hopefully solvable to y

Example 5. The ODE y′ + xy2 = 0, y(0) = 2 is of type III,
because y′ = f(x, y) = −xy2 = h(x) · g(y).

a. We argue: y′ = −xy2
1)
 y′

y2
= −x

2)
 (− 1

y
)′ = −x 1

y
= 1

2
x2 + C  y = 2

x2+C

with the remark 1): separate! 2): (− 1
y
)′ = (− 1

y(x)
)′

Chain rule
= (−y(x)−1)′ = y(x)−2 · y′(x).

b. We write the theoretical solution process as a user defined Maxima function odefxgy,
which allows to follow a semi-automatic ’pedagogical’ solution process :

/* MAXIMA --- ODE type III --- */

odefxgy(f,g, x,y, xo,yo):= block(

F: integrate(f,x,xo,x),

G: integrate(1/g,y,yo,y),

print("DGL:", ’diff(y,x) = f*g ),

print(".. initial condition:", y(xo) = yo),

print("1. step - identify f(x) and g(y): ", f, " , ", g),

print("2. step - calculate F(x)=", ’integrate(f,x,xo,x)= F),

print("3. step - calculate G(y)=", ’integrate(1/g,y,yo,y) = G),

print("4. step - set up Eq. F(x)=G(y):", F=G),

print("5. step - solve Eq. F(x)=G(y(x)) for y: ", Sol: solve(F=G,y)),

print("6. step - choose solution with ", y(xo)=yo),

print("solution: Sol ="),

Sol)$

The invoke arguments of odefxgy(f,g, x,y, xo,yo) should be self-explaining.
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Let’s test our function odefxgy for the example above y′ = f(x, y) = −xy2 = h(x) · g(y):

odefxgy(-x, y^2, x,y, 0,1);

/* f(x) g(y) */

B Mark-Copy-Paste and RUN the code lines.

The output of the dialog is ...

.. and allows to read off the result in (%o35) y= 2
x2+2

.

c. We now solve this IVP by invoking the build-in function ode2:

/* Maxima -- ODE type III by ode2 -- */

ode2( ’diff(y,x) = -x*y^2, y, x);

ic1(%,x=0,y=1);

solve(%,y);

B Mark-Copy-Paste and RUN the code lines.

The Maxima output is:

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Please observe, that Maxima’s full-automatic solver ode2 also needs help by inverting the
ic1 result for y. We get the same result as our semi-automatic solution with odefxgy.

Figure 6:
The direction field of the ODE y′ = xy2 shows a kind of
symmetry. But it also shows that this ODE has the function
y(x) ≡ 0 (blue line) as an – maybe overseen – solution.

d. If we prefer to have a compact function for solving separable ODE’s without commenting
hints we can do:

/* MAXIMA --- ODE type III : SEPARATION OF VARIABLES --- */

separable(f,g, x,y, xo,yo):=

solve( integrate(1/g,y,yo,y)=integrate(f,x,xo,x), y);

separable(-x,y^2, x,y, 0,1);

B Mark-Copy-Paste and RUN the code lines.

The Maxima output is:

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0


2 ANALYTICAL SOLUTION METHODS 23

Exercises.

Solve the following ODEs by hand, then using our functions odefxfy, separable and
Maxima’s ode2. Check the plausibility of the solution by an slope plot.

Exercise 26. Solve the ODE (1 + x2)xy dy
dx

= 1− y2, cf. [27, p.239].

Exercise 27. Solve the IVP sin2 x+ ( dy
dx

)2 = 1 with y(x0) = y0, cf. [27, p.229].

Exercise 28. Why is the ODE y′ = x− y2 not solvable by separation of the variables?

Exercise 29. Solve the IVP y′ = − y2

2x+1
, at x = 0 is y = 1, cf. [12, p.38].

Exercise 30. Solve the IVP y′ = x2 − x2y, at x = 1 is y = 5. Is y(x) ≡ 1 a solution?

Exercise 31. Solve the IVP xy′ = y ln y, y(1) = 2.

Exercise 32. Solve tϕ′ + ϕ2 − 1 = 0.

Exercise 33. Solve yy′ = x, y(1) = 1.

Exercise 34. A sky diver falls so that his speed changes according to dv
dt

= 10 − 0.3v.
Solve this differential equation given that v = 0 when t = 0. Plot the solution and state
the terminal speed of the sky diver. See [6, p.281].

Exercise 35. The population P of a colony of insects grows by dP
dt

= P
4

.
Find the time taken for the population to double in size, cf: [6, p.281].

Exercise 36. Do some of the exercises of [28, p.33 ff].
You will find the solutions at B Bazett: Separable equations.

Exercise 37. Do some of the examples and exercises of B Dawkins, P.: Separable Equations.

Exercise 38. Do exercises 1.1.5, 1.1.6, 1.1.7 froml B Bazett: Integrals as solutions.

Exercise 39. Do example 1.2 from [1, p.7].

Exercise 40. Do some examples and review problems of B Fan/Cifarelli: Separable ODEs.

https://web.uvic.ca/~tbazett/diffyqs/separable_section.html
https://tutorial.math.lamar.edu/Classes/DE/Separable.aspx
https://web.uvic.ca/~tbazett/diffyqs/integralsols_section.html
https://flexbooks.ck12.org/cbook/ck-12-calculus-concepts/section/8.13/primary/lesson/solving-separable-first-order-differential-equations-calc/
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2.4 . . . the case y′ = f(x) · y + g(x) : linear ODE

• The ODE type IV is: y′ = f(x) · y + g(x), i.e. the shape of the right-hand side of the
ODE is in analogy to a straight line ’y = ax + b’. The linear part is f(x) · y and the so
called inhomogeneity is g(x).

The solution method is called the variation of the constant and is a generalization of the
two special cases before: setting f(x) := 1 we get ODE shape I and setting g(y) := 1 we
get ODE shape II.

We first solve the linear part of the ODE and then the whole ODE.
1st solve linear part, ie. solve y′ = f(x) · y, y(a) = b. But this is case III which can be
solved by the method of separation of the variables and leads to an explicit solution:

y′ =
dy

dx
= f(x) · y  1

y
dy = f(x) dx 

∫ y

b

1

y
dy =

∫ x

a

f(t) dt

 ln(y)− ln(b) =

∫ x

a

f(t) dt

 y = b · exp(

∫ x

a

f(t) dt)

2st solve the given ODE, ie. solve y′ = f(x)y+g(x), y(a) = b. We make the ansatz (guess)
to substitute the constant b in y(x) = b ·

∫ x
a
f(t) dt through an suitable function φ(x) of x,

which fulfills the initial condition φ(a) = b and then assume the following function h be a
solution of the ode:

h(x) := φ(x) · exp(

∫ x

a

f(t) dt) (2.2)

This method is therefore called the variation of the constant. For the moment we also
compactify the 2nd factor of h to be F (x) := exp(

∫ x
a
f(t) dt), so we have:

y′
ODE
= f(x) · y + g(x)  h′(x) = f(x) · h(x) + g(x) (because h solves the ode)

(2.2)
 φ′(x) · F (x) + φ(x) · f(x) · F (x) = f(x) · φ(x) · F (x) + g(x)

:F (x)6=0
 φ′(x) · F (x) = g(x) φ′(x) =

g(x)

F (x)

 φ(x) = b+

∫ x

a

g(t)

F (t)
dt

So we arrive at the explicit solution formula y(x) of the linear ODE:

y(x) :
(2.2)
= (b+

∫ x

a

g(u)

exp(
∫ u
a
f(t) dt)

du) · exp(

∫ x

a

f(t) dt) (2.3)
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The formula (2.3) is easily transformed to Maxima:

/* MAXIMA --- ODE type IV : linear ODE and VARIATION OF CONSTANT --- */

linear1(f,g, x,y, xo,yo) :=

(yo+integrate(g/exp(integrate(f,x,xo,x)), x,xo,x))

* exp(integrate(f,x,xo,x));

Example 6. The ODE y′ + y = 1, y(0) = 1 is of type III,
because y′ = f(x, y) = −y + 1 with f = −y, g = 1, a = 0, b = 1, cf. [29, p.65].

a. To solve by hand, we put the ODE in another form: y′(x) + p(x)y(x) = q(x), i.e.
y′ + y = 1, p = 1 = q and choose M(x) := e

∫ x
0 p(x)dx = e

∫ x
0 1dx = ex as ’integrating factor’:

y′ + y = 1
•M(x)
 exy′ + exy = ex

prod.rule
 (yex)′ = ex  yex = ex + C

:ex
 y = 1 + Ce−x

Determine C: 1 = y(0) = 1 + Ce−0  1 = 1 + C  C = 0

b. In a. we solved the ODE in a slightly modified method, called the integrating factor
method alias the variation of the constant. We code their steps in the following Maxima
function VoC, which allows to follow the steps of the semi-automatic ’pedagogical’ solution
process :

/* Maxima --ODE type IV - INTEGRATING FACTOR METHOD */

VoC(p,q, x,y, xo,yo):= block(

M: exp(integrate(p,x)), /* integrating factor */

My: integrate(P*y,x),

print("Step 1: check correct shape y’+py=q : ", ’diff(y,x)+p*y=q),

print(" ... with initial condition:", y(xo) = yo),

print("Step 2 - choose integrating factor M(x) = exp(integral p) =", M),

print("Step 3 - multiply ODE by M*(y’+py=q), integrate : ",

M*y=integrate(M*q,x)),

print("Step 4 - divide through M :", y=expand(integrate(M*q,x)/M)+C/M),

c: at(expand(integrate(M*q,x)/M+C/M), x=xo),

print("Step 5 - calculate C for yo=y(xo) :", solve(yo=c,C) ));

The invoke arguments of VoC(p,q, x,y, xo,yo) should be self-explaining.
Let’s test our function VoC for the example above y′ + y = 1, y(0) = 1:

VoC(1, 1,x,y,0,1);

/* p q */

B Mark-Copy-Paste and RUN the code lines.

The output of the dialog is ...

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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.. and allows to read off the result in (%o28) y≡ 1.

c. We now solve this IVP by invoking the build-in function ode2:

/* Maxima -- ODE type IV -- */

ode2( ’diff(y,x) = -y+1, y, x);

ic1(%,x=0,y=1);

B Mark-Copy-Paste and RUN the code lines.

The Maxima output is:

c. We now solve this IVP by invoking our user-bulid function linear1:

linear1(-1,0,x,y,0,1);

B Mark-Copy-Paste and RUN the code lines.

The Maxima output is:
| (%o6) %exp(-x)

Figure 7:
The direction field of the ODE y′ = 1− y shows the special
solution y(x) = 1 and the solution with IVP y(0) = 2.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Exercises.

Solve the following ODEs by hand, then using our functions linear1, VoC and Max-
ima’s ode2. Check the plausibility of the solution by an slope plot.

Exercise 41. Solve the ODE y′ = x+ y.

Exercise 42. Solve the ODE y′ − y
x

= x−1
x

.

Exercise 43. Solve the IVP 4sψ′ − 2ψ = 3s2, ψ(1) = 0.

Exercise 44. Solve the IVP ż cos t+ z sin t = 1 z(0) = 1.

Exercise 45. A cylindrical vessel containing a liquid, rotates with the constant angular
velocity ω around its vertical axis. Which is the shape of the liquid surface after entering
the stationary state?

[Result: z = ω2

2g
r2 + z0 (paraboloid of revolution) cf. [12, p.248].

Exercise 46. Do some of the exercises of [28, p.40 ff].
You will find the solutions at url B Bazett: Linear equations and the integrating factor.

Exercise 47. Do some of the examples and exercises of
B Dawkins, P.: Linear Differential Equations.

Exercise 48. Do exercise 1.4 on p.9 of B Ammari: integrating factors.

https://web.uvic.ca/~tbazett/diffyqs/intfactor_section.html
https://tutorial.math.lamar.edu/Classes/DE/Linear.aspx
https://people.math.ethz.ch/~grsam/SS19/NAII/resources/lecture1.pdf
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2.5 . . . the case fx + fy · y′ = 0 : exact ODE

Figure 8:

Left: The exact ODE (x2 + y2) + 2 · y · (x + 1) · y′ = 0 has an
implicit solution f(x, y) = C, which is part of ..
Right: .. one of the contour lines of the contour plot of f(x, y),
i.e. y(x) is solution, if its graph runs on an ’isocline’ of same high.

• The ODE type V is: P (x, y) + Q(x, y) · y′(x) = 0.4 A function y(x) is solution of such
an ODE, if there exists a C1-function f(x, y) on a region in IR2 with fx = P, fy = Q and
f(x, y(x)) = const – because we then have d

dx
f(x, y(x)) = ∂

∂x
f(x, y) + ∂

∂y
f(x, y) · y′(x) =

P +Q · y′ = 0, cf. [22, p.148]. ODEs of this comfortable type V are called exact.

Definition. (exact ODE)
The ODE P (x, y) +Q(x, y) · y′(x) = 0 is called exact,
iff there is a C1-function f(x, y) with ∂f

∂x
≡ fx = P and ∂f

∂y
≡ fy = Q.

Fact. (Test for exactness )
IF we are given two C1-functions P (x, y) and Q(x, y) on a rectangle R ⊂ IR2,
THEN the ODE P (x, y) +Q(x, y) · y′(x) = 0 is exact iff Py = Qx.

A rough theoretical argument and a method how to find such an function f is as follows,
cf. [22, p.149]: first determine the indefinite integral F (x, y) of P by integrating along the
x-axis (i.e. Fx = P ), e.g.

F (x, y) :=

∫ x

xo

f(t, y)dt (2.4)

4Often denoted as P (x, y) · dx+Q(x, y) · dy = 0.
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Then choose an anonymous function A(y), which only depends on y. It follows:

f(x, y) := F (x, y) + A(y) ⇒ fx = Fx + Ax(y) = P + 0 = P

 fy = Fy + A′(y) = 0 +Q = Q

 A′(y) = Q− Fy

 A(y) =

∫
(Q− Fy)dy

 f(x, y) =

∫
f(x, y)dx+

∫
(Q− Fy)dy

and because of Qx − Fxy = Qx − Py = 0 the integrand (Q− Fy) only depends on y. �

Example 7. The ODE (x2 + y2) + 2 · y · (x+ 1) · y′ = 0 is of type V,
with P (x, y) = (x2 + y2) and Q(x, y) = 2 · y · (x+ 1).

a. The ODE is exact: Py = 2y = Qx, ok.

b. We follow now the theoretical solution process to construct the solution:

F (x, y) :=

∫
P (x, y)dx =

∫
(x2 + y2)dx =

x3

3
+ xy2

f(x, y) := F (x, y) + A(y) ⇒ fy = Fy + A′(y) = 0 +Q = Q

 A′(y) = Q− Fy = 2y

 A(y) :=

∫
(Q− Fy)dy = y2 + C

f(x, y) = F (x, y) + A(y) = xy2 +
x3

3
+ y2 + C.

Maxima code. Here is an implementation of a Maxima function exact(.), which con-
structs an implicit solution f(x, y) = C of an exact ODE P (x, y)+Q(x, y) ·y′(x) = 0 along
this theoretical method. It goes along the steps F → ...→ f .
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/* MAXIMA --- ODE type V: EXACT ODE --- */

exact(P,Q, x,y):=

if is( diff(P,y) = diff(Q,x)) /* (1) */

then

block( [A,B,C,D],

F: integrate(P,x),

B: F + funmake(A, [y]), /* (2) */

C: diff(B,y) = Q,

D: rhs((solve(C,A(y))[1])), /* (3) */

E: integrate(D,y),

f: F+E )

else ("ODE is not exact.")$

Comment: In (1) we check, if the ODE is indeed exact. It it is, we work through the steps.
In (2) we construct the helper function A using Maximas funmake5 concept. In (3) we
solve the equation C for A and pick their right-hand side. This RHS is integrated along y
and gives the solution function f(x, y).

The invoke arguments of exact(P,Q, x,y) should be self-explaining.

Example 8. Let’s test our function exact for the ODE (x2 + y2) + 2 · y · (x+ 1) · y′ = 0:
a.

P: x^2+y^2;

Q: 2*y*(x+1);

exact(P,Q, x,y);

solve(f=1, y); /* (4) */

wxplot2d (sqrt(3/(x+1)-x^3/(x+1))/sqrt(3), [x, -2, 2], [y, -1, 5])$

In (4) we solve the implicit solution f(x, y(x)) = 1 for an explicit solution y(x) = ...
The output of this dialog is6

5=make an anonymous function named A dependent only on y.
6Using Maximaon line the last line of the code snippet reads

draw2d( explicit( sqrt(3/(x+1)-x*x*x/(x+1))/sqrt(3), x,-2,2));
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Comment: Left: The implicit solution f(x, y) = xy2 + y2 + x3/3 of the exact ODE (x2 + y2) +

2 · y · (x + 1) · y′ = 0 is displayed in (%o50). In (%o51 RHS) the explicit solution for f = 1 is

displayed. Right: The graph of y is plotted and corresponds to the y > 0 part of Fig.8 LHS.

B Mark-Copy-Paste and RUN the code lines.

b. We now solve this ODE by invoking the build-in function ode2:

/* Maxima -- ODE type V EXACT ODE -- */

(x^2+y^2)+2*y*(x+1)*’diff(y,x)=0;

ode2(%,y,x);

solve(%,y);

The Maxima output is:

Please observe, that Maxima’s full-automatic solver ode2 also needs help by calculat-
ing the explicit solution y. We get the same result as our semi-automatic solution with
exact(.).

• Looking back, we see that an explicit solution y(x) of an exact ode is always part of an
niveau line of the implicit solution f(x, y):

wxdraw3d( user_preamble="set size ratio -1",

xaxis=true, yaxis=true,

explicit( x*y^2+y^2+x^3/3, x,-5,5, y,-5,5),

contour_levels = 10,

/* contour_levels = {0,1,2,3,4,5}, */

contour = both ) $

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Exercises.

Solve the following ODEs by hand, using our functions exact and Maxima’s ode2.
Check the plausibility of the solution by an slope plot.

Exercise 49. Solve the ODE 2xy dx+ x2 dy = 0. Cf. [29, p.89].

Exercise 50. Solve the ODE y′ = −3x2+4xy
2x2+2y

.

Exercise 51. Solve (xey + cos(y))y′ = −ey. Cf. [16, p.61].

Here are some exercises from Krysicki [27, p.299 ff]:

Exercise 52. Solve the ODE 2x− y + (4y − x) dy
dx

= 0.

Exercise 53. Solve the ODE ex(1 + ey) = −ey(1 + ex)y′.

Exercise 54. Solve the ODE (x
y
− 2y)y′ = 2x− ln y.

Exercise 55. Do some of the examples and exercises of [28, p.63 ff].
You will find the solutions at B Bazett: Exact equations.

Exercise 56. Do some of the examples of B Dawkins: Exact Equations.

Exercise 57. Read §1.3.2 and do examples 1.12 – 1.14 on p.11 of B Ammari: Exact equations.

Exercise 58. Read about isoclines and do some of the problems of B Fan/Cifarelli:

Isoclines.

https://web.uvic.ca/~tbazett/diffyqs/exact_section.html
https://tutorial.math.lamar.edu/Classes/DE/Exact.aspx
https://people.math.ethz.ch/~grsam/SS19/NAII/resources/lecture1.pdf
https://flexbooks.ck12.org/cbook/ck-12-calculus-concepts/section/8.12/primary/lesson/ode%3A-solutions-from-slope-fields-and-isoclines-calc/
https://flexbooks.ck12.org/cbook/ck-12-calculus-concepts/section/8.12/primary/lesson/ode%3A-solutions-from-slope-fields-and-isoclines-calc/


2 ANALYTICAL SOLUTION METHODS 33

2.6 . . . the case y′ = f(yx) : substitutions

Figure 9:

Sometimes the introduction of new coordinates may transform a
given ODE in an equivalent, but better hand-able form. Often one
transforms (’substitutes’) the dependent variable y into a new one
u, then solves the transformed ODE and transforms this u-solution
back to get a solution y of the original ODE: y(x)→ u(x)→ y(x).

• The ODE type VI is: y′ = f( y
x
), i.e. the right-hand side of an ODE of this type depends

only on the quotient y
x
. Such an ODE is called a homogenous ode and is solved after the

substitution u := y
x

by the method of separation of variables.

Definition. (homogenous ODE)
The ODE y′(x) = f(x, y) is called homogenous7, iff f(t1x, t1y) = f(x, y) for all t ∈ IR.

A rough theoretical motivation of the solution method is:

LEXICON Transformation Back-Transformation

u(x) := y(x)
x

y(x) = x · u(x)

It follows for the back-transformed y(x) of a function u(x)

y(x) = x · u(x)  y′ = u+ x · u′ ( y′′ = 2u′ + x · u′′ . . . ) (2.5)

y′(x) = f(y/x) = u(x) + x · u′(x) = f(u(x))

 u′(x) =
f(u)− u

x
=
du

dx

 
f(u)− u

du
=

x

dx
(2.6)

 now solve this ODE via separation of the variables

 and solve the original ODE via back-substitution.

7of grade 1
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Example 9. Solve the IVP y′ = y+x
x
, y(0) = 2.

a. The ODE is of type VI, because y′ = y+x
x

= y
x

+ 1.
b. We argue:

y′ =
y + x

x

(2.5)
 u+ x

du

dx
=
xu+ x

x

 x
du

dx
= 1

separarte var’s
 

dx

x
= du

 u = ln |x|+ C
back-subst
 

y

x
= ln |x|+ C

 y(x) = x ln |x|+ x · C

Maxima code. Here is a small script to run this solution method in Maxima.
It goes along the steps (2.5) to (2.6).

/* MAXIMA --- ODE type VI : HOMOGENOUS ODE --- */

kill(values,arrays)$

f(x,y) := (y+x)/x; /* (1) */

eq1: u+x*du/dx = subst(u*x,y,f(x,y)); /* (2) */

solve(eq1,du); /* (3) */

SEPARABLE(g,h, x,y) := integrate(g,x)=integrate(1/h,y)$

eq2: SEPARABLE(1/x, 1, x,u) ; /* (4) */

eq3: subst(y/x, u, eq2); /* (5) */

solve(eq3,y); /* (6) */

Comment: In (1) we write down the RHL of the given ODE. (2) translates equation (2.5)
into Maxima language and substitutes u ∗ x for y in the RHS f(x, y) of the ODE. This
equation (eq1) is rearranged in (3) to give du = ... Now this new ODE in variables x, u is
solved via the user-defined function SEPARABLE and the solution u is saved in (eq2). In
(4), we now back-substitute y/x for u in the u-solution (eq2) and resolve this for y. ok.

B Mark-Copy-Paste and RUN the code lines.

The output of the dialog is ...

.. and displays the solution in (%o67) to be y
Maxima

= x · log(x) + C
Math
= x · ln(x) + C.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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c. We solve this ODE by invoking the build-in function ode2:

’diff(y,x) = (y+x)/x ;

ode2(%,y,x);

method;

B Mark-Copy-Paste and RUN the code lines.

The Maxima output is:

Please observe, that Maxima’s full-automatic solver ode2 interprets this ODE as a linear
one and therefore uses another solution method. Please do this as an exercise.

Exercises.
In the exercises we point also to other substitutions.

Exercise 59. Solve the ODE x2y′ = y2 + xy, y(1) = 1.
Choose the substitution u = y/x. Cf. [28, p.46].

Exercise 60. Solve the ODE y′ = (x− y + 1)2.
Choose the substitution u = x− y + 1. Cf. [28, p.49].

Exercise 61. Do some of the exercises of [28, p.46 ff].
You will find the solutions at B Bazett: Substitutions.

Exercise 62. Do some of the examples and exercises of B Dawkins: Substitutions.

Exercise 63. Solve the IVP y′ = sin( y
x+1

) + y
x+1

, where for x0 = 1 we have y0 = π/2.
a. First use Maximas ode2 to solve the IVP.
Result by Mathematica, cf. [16, p.51]: y(x) = 2(1 + x) arctan((1 + x)/2 · tan(π/8)).

b. Transform the IVP by means of the substitution u(x) := y(x)−y0
x−x0 in a separable ode.

c. Transform the IVP by means of the substitution v(x) := tan(u(x)/2) in a separable ode.
Compare with b.
PS: look for the Maxima function isolate(expr,x). Maybe it is of some help ..

Exercise 64. (Bernoulli equation) Study the type y′ + f(x) · y + h(x) · yα = 0, α 6= 1.
a. Transform the ODE by means of the substitution u := y1−α in a separable ODE.
b. Solve the corresponding IVP in general for y(a) = b.
c. Solve the IVP y′ + y

1+x
+ (1 + x)y4 = 0, y(0) = 1. Cf. [26, p.91].

Exercise 65. Read §1.2.2 and do example 1.3 on p.8 of B Ammari: Change of variables.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
https://web.uvic.ca/~tbazett/diffyqs/substitution_section.html
https://tutorial.math.lamar.edu/Classes/DE/Substitutions.aspx
https://people.math.ethz.ch/~grsam/SS19/NAII/resources/lecture1.pdf
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3 Intermezzo: iterate

As prototype example for an iteration process we chose the well-known Heron algorithm
to approximately calculate the square root of a reell number, see B wiki: Heron method.

We first study this process by a hand calculation to get a feeling for the procedure and
then introduce the corresponding Maxima function iterate to fully automate it.

3.1 iterate by hand

Let’s calculate approximately
√

2 starting with x = 3, i.e.
√

2 ≈ 3. Watch the process:

Step variable recurrence term
n x f(x) = 0.5 · (x+ 2/x)
1 3
2 1.8333 f(3) = 0.5 ∗ (3 + 2/3) ≈ 1.8333
3 1.4621 f(1.8333) = 0.5 ∗ (1.8333 + 2/1.8333) ≈ 1.4621
4 1.415 f(1.4621) = 0.5 ∗ (1.4621 + 2/1.4621) ≈ 1.415
5 1.4142 f(1.415) = 0.5 ∗ (1.415 + 2/1.415) ≈ 1.4142

So we have the following recurrence (sequence) process, which after 5 iteration steps gives√
2 ≈ 1.4142:

3
f
 1.8333

f
 1.4621

f
 1.415

f
 1.4142

f
 . . .

Or a little bit abstracted:

x1
f
 x2

f
 x3

f
 x4

f
 . . .

f
 xn

f
 xn+1 = f(xn)

Let’s visualize this approximation process.

Figure 10:

Left: Recurrence: The result f(x) for its ’old’ input x is
substituted in f again and therefore recurs as new input x,
i.e. in sequence language: f(xn) = xn+1.
Right: Visualization: the starting red rectangle with length
x = 2 and width y = 1 is transformed in 3 steps to a square
� with equal sides

√
2 ≈ 1.4.

• Following the pattern of the Picard iterates we may code the Heron algorithm using
a hashed array:

https://de.wikipedia.org/wiki/Heron-Verfahren
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/* Maxima */

fpprintprec:5$ ratprint:false$ kill(functions, values, arrays)$

f(x):= 0.5*(x+2/x); /* recurrence formula */

y[0](x) := 3; /* start value */

y[n](x) := f(y[n-1](x)); /* recursion: y(n-1) --f--> y(n) */

y[5](x); /* calculated value */

B Mark-Copy-Paste and RUN the code lines.

The wxMaxima output:

| (%o1) 1.4142

3.2 iterate by iterate

We now abstract the recurrence pattern from Fig.10 x0
u
 xnew

u
 xnewnew . . . to a

Maxima function iterate(u,x,x0,n)8, which automates this iterated substitution process.
We implement two versions, a 1-dimensional version and a 2-dimensional version. Both
are heavily used as a working horse for recurrences in the following chapters - despite its
innocent looking code.

3.2.1 the one-dimensional function iterate

/* MAXIMA --- ITERATE --- */

iterate(u,x,x0,n) := block([numer:true],

cons(x0, makelist(x0: subst(x0,x,u), i,1,n)))$

/* (1) (2) (3) (4) */

The invoke arguments of iterate(u,x,x0,n)9are as follows:

1. u: the recurrence formula u(x), which depends on the variable x

2. x: the changing recurrence variable

3. x0: the initial value of x

4. n: the number of repeated substitutions

Comment. We elaborate on the code of iterate. (2) makes a list of n pieces of updated
x0 values, where each x0 is actualized in (3) by means of subst by inserting the old x0 for
x in the term u(x). The iteration process itself is done by the build-in Maxima-function
makelist and repeats because of (4) n times. At the beginning of the iteration process
the makelist-list is empty and cons fills this empty start list with the initial value x0.

8This function mimics the omnipresent function iterate of CAS Derive, which was implemented by
Albert Rich and David Stoutemyer. In this way we may connect Maxima to the Derive literature.

9Originally I used the definition in §3.2.3.A. I owe this more compact and Maxima-like 1-liner to a
private communication with Richard Fateman.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Example 10. Let’s test our function on the Heron algorithm to calculate
√

2:

fpprintprec: 5$ /* (4) */

iterate( 0.5*(x+2/x), x,3, 4); /* (5) */

Here iterate(..) produces the first 5 iterations (i.e. repeating 4 times) of the recurrence
relation xn+1 = 0.5 · (xn + 2

xn
) starting with the given value xo = 3 for n=1.

B Mark-Copy-Paste and RUN the code lines.

The Maxima output reproduce in (%o3) the results in §3.1:

Exercise 66. Let x > 0. Take the Heron iteration xn+1 = 0.5 · (xn + 2
xn

).

a. Verify: x = 0.5 · (x+ 2
x
)⇔ · · · ⇔ x2 − 2 = 0.

b. Calculate iterate( x*x - 2, x,3, 4); – What do you observe? Consequence?

Exercise 67. Write a function power(x,n):= iterate(...) to compute the n-th power of
a number x.

Exercise 68. Write a function factorial(n):= iterate(.) to compute n! of a number n.

3.2.2 the two-dimensional function iterate2

/* MAXIMA --- ITERATE2 --- */

iterate2(u,x,x0,n) := block([numer:true],

cons(x0, makelist(x0:subst([x[1]=x0[1],x[2]=x0[2]],u), i,1,n)))$

Comment. Function iterate2 is very similar to iterate. But the variable x0 is now a
list of 2 elements (’points’) and subst awaits therefore a list of defining equations10 in the
updating process.

Example 11. Let’s test our function iterate2 on the Heron algorithm to calculate
√

2.

fpprintprec: 5$

Sqrt2 : iterate2([n+1, 0.5*(x+2/x)], [n,x], [1,3],4); /* (6) */

transpose( Sqrt2 ); /* (7) */

The Maxima output displays in (Sqrt2) the results of §3.2.1, supplemented by the counter
in the first slot:

10I thank Michel Talon for pointing me to this syntax difference.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Code line (7) allows to give the output of the list Sqrt2 in a rough table shape by
transposing the matrix Sqrt2:

Code line (7) also allows to give the output of the original list Sqrt2 as a graphical point
list:

/* wxMaxima */

wxdraw2d(xaxis = true,

user_preamble="set size ratio -1", /* axis equal scaled */

xrange = [0,5], yrange = [-0.1,2],

xlabel ="x",ylabel ="y",

point_size=2, points_joined=false,

color = magenta,

points( Sqrt2 ),

title="HERON iteration for Sqrt2");

B Mark-Copy-Paste and RUN the code lines.

Exercise 69. Write a function fib(n):= iterate2(..., [0,1], n) to compute the n-th
Fibonocci number of an integer n.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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3.2.3 ∗Variants of iterate

In 3.2.1 we coded the user-defined function iterate in a very short and clear version,
which was proposed by R. Fateman11.

A. Here is the originally used version of iterate:

/* MAXIMA --- ITERATE --- */

iterate1(u,x,xo,n) := block( [l:[xo], numer:true, val:xo], /* (1) */

for i thru n do

(val: subst(val,x,u), l: cons(val,l)), /* (2) */

reverse(l)); /* (3) */

Comment. We elaborate on the code of iterate. (1) prepares two local variables inside
the block structure: The list l is filled with the starting value xo of the iteration process
and will collect all following outputs xi, the variable val gets the initial value xo. The
for loop repeats the process (2) n times. In (2) variable val is actualized via subst by
inserting the old val for x in the term u(x). Afterwards this updated val is pushed in
front of the current list l via cons. Because the newest value is now in front of the list,
we invert it in (3) using reverse to see the latest value of x at the end of the list.

a. Test this function on the Heron algorithm to calculate
√

2.
b. Discuss pros and cons of both versions.

B. (Fateman) Another technique using more ’functional’ style programming use just
f , the name of a function of one argument – instead of providing both u = f(x), and x
separately. This shortens the calling sequence:

iterate1a(f,y0,n):= cons(y0, makelist(y0: apply(f,[y0]), i,1,n));

iterate1a( lambda([x], 0.5*(x+2/x)), 3, 4);

We may also use recursion technique, see rec:E or rec:D

iterate1b(f,y0,n) := if n=0 then [y0]

else cons(y0, map(f, iterate1b(f,y0,n-1)))$

/* Test: */

f(z) := 0.5*(z+2/z);

iterate1b(f, 3,4);

For the functions iterate1a/1b, the first argument must be a function, not an expression..
c. Look on Maxima’s online help and read about apply and cons.
Now think about the code lines of the functions iterate1a/1b.

Remark. In our function iterate we set the option numer:true.
This is because we mainly use numerical methods to solve IVP’s in the following chapters.

d. Check, what happens, if you set the option numer:false (or cancel the line numer:true)
in your test of the Heron algorithm to calculate

√
2.

11in a communication on the Maxima discussion list, see Fateman: Introductory DE.

https://en.wikipedia.org/wiki/Recursion
https://de.wikipedia.org/wiki/Rekursion
https://sourceforge.net/p/maxima/mailman/message/37860338/
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3.3 First Applications of iterate

To convince us of the power of iterate/2 we demonstrate its use for the approximation of
the root of a function with the help of the so called Newton-Raphson method and the
Secant method. We also introduce an alternative for the Picard iterates: the Taylor
method for the approximate solution of an ODE.

3.3.1 simplified Newton-Raphson method

Figure 11:

Red: The graph of f(x) = x2 − 2. Where is the root of f?
Blue: The tangent on Graph(f) at point P = (1,−1).
Graphically the root ξ of f(x) = 0 is located where the graph of f crosses
the x-axis, i.e. ξ ≈ 1.4.
Idea of Newton-Raphson method: If we know - e.g. by looking at the
graph of f on [a, b] - that a root ξ of f exists between a and b, then we
take the intersection x1 of the tangent of f going through point (a, f(a))
with the x-axis as the initial guess for ξ ≈ x1.
Green: The sequence of approximate solutions towards the root ξ using
the simplified Newton method for x2 − 2 = 0 tending to

√
2 ≈ 1.41.

• How to get a recurrence formula for this idea?

The equation of the tangent line at point (x0, f(x0)) is y = f(x0)+f ′(x0)(x−x0). Crossing
the x-axis means y = 0, so we get 0 = f(x0) + f ′(x0)(x− x0) and solving for x and setting
c := f ′(x0), we get using Maxima

solve(0 = f(x_0) + c*(x-x_0), x), expand;
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for the next guess x1 := x0 − f(x0)/c. So we arrive at the recurrence formula

xn+1 = xn −
f(xn)

c
(3.1)

with c := f ′(x0). We implement this formula using iterate:12

/* MAXIMA --- NEWTON-RAPHSON iteration -- */

/* include our function iterate(..) here */

newton1(u,x,a,n) := block([c: float(at(diff(u,x),x=a))], /* (1) */

iterate( x-u/c, x,a, n) ); /* (2) */

Comment. In (1) we translate c := f ′(x0) into Maxima language. (2) takes the recurrence
as RHS of (3.1) with an arbitrary term u instead of f(x). Updating xn  xn+1 is done
automatically by iterates.

Example 12. (3) and (4) demonstrate two invocations of newton1.

newton1( x^2-2 ,x,1, 9); /* (3) */

f(x):= x^2-cos(x);

newton1(f(x),x,1,5); /* (4) */

B Mark-Copy-Paste and RUN the code lines.

Output:

Exercise 70. The recurrence formula (3.1) is called the simplified Newton-Raphson
method, because it uses the same constant slope c := f ′(x0) of the first tangent at the
touching point unaltered in every step of the iteration. If the slope f ′(x) is actualized in
each step, the recurrence formula is changed to the original Newton-Raphson method

xn+1 = xn −
f(xn)

f ′(xn)
(3.2)

Then we get the Maxima function

newton(u,x,a,n) := iterate( x - u/diff(u,x), x,a, n);

a. Run newton(x*x-2,x,1,5) and newton(x*x-cos(x)),x,1,5) using floating point pre-
cision fpprintprec:5. Compare the results with (3) and (4).
b. Look at B wiki: Newton method. and watch the animation of the changing tangents.

12Please observe: using iterate it is not necessary to use indices as in (3.1) – the RHS is sufficient!

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
https://de.wikipedia.org/wiki/Newtonverfahren
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Exercise 71. Reproduce Fig.11 with this code:

/* wxMaxima */

f(x):= x*x-2; a: 1; b: 2;

m: at(diff(f(x),x),x=a);

X: makelist(0,i,1,6);

Y: newton1(f(x),x,3,4); /* you must run newton1 before its use ! */

XY: makelist([Y[i],X[i]], i,1,5);

wxdraw2d(xaxis = true,

point_size = 2, color = green, points(XY),

point_size = 2, point_type = filled_circle,

color =magenta, points([[a,f(a)]]),

color =red, explicit( f(x), x,0.5,2.5),

color =blue, explicit( m*(x-a)+f(a), x,0.5,2.5),

title="simplified NEWTON-RAPHSON method")$

Think about every line of the code and its purpose.

3.3.2 simplified Secant method

Figure 12:

Red: The graph of f(x) = x2 − 2. Where is the root of f?
Graphically the root ξ of f(x) = 0 is located where the graph
of f crosses the x-axis, i.e. at x ≈ 1.4.
Idea of Secant method: If we know - eg by looking at the graph
of f on [a, b] - that a zero ξ of f exists between a and b, then we
take the intersection x1 of the secant (blue line) of f through
the two points (a, f(a)) and (b, f(b)) as a first approximate
value for ξ ≈ x1.
Green: The sequence of approximate solutions for the root.
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• How to get a recurrence formula for this idea?

If we consider the tangent in §3.3.1 approximately replaced by the secant, we should replace
the constant slope c := f ′(a) in the recurrence formula (3.1) with the constant slope

c := f(b)−f(a)
b−a of the secant. This gives us the new simplified recurrence formula

xn+1 = xn −
f(xn)

c
= xn − C · f(xn) (3.3)

with C := b−a
f(b)−f(a) . We implement this formula using iterate:

/* MAXIMA --- SECANT METHOD --- */

/* include function iterate(..) here */

secant1(u,x, a,b, n) := block(

[C: (a-b)/(subst(a,x,u)-subst(b,x,u))], /* (1) */

iterate( x - C*u, x,a,n)) ; /* (2) */

Comment. In (1) we translate u(a) into Maxima language as subst(a,x,u).
(2) takes the recurrence as RHS of (3.3) with an arbitrary term u instead of f(x).

Example 13. Let’s do the two tests from above:

secant1(x^2-2,x, 1,2, 5);

Output:

f(x):= x^2-cos(x);

secant1(f(x),x, 1,2, 5), numer;

Output:

B Mark-Copy-Paste and RUN the code lines.

Exercise 72. (sign change test) In Fig.12 the function values of f at points (a, f(a)) and
(b, f(b)) have different signs, so we can argue that (our continuous) function f must cross
the x-axis and therefore must have a root ξ between a and b.
Here is function signChange, that checks, if there is a sign change on the interval [a, b]:

signChange(a,b) := if f(a)*f(b) < 0 then true else false;

Test function signChange by running
f(x):= x*x-2;

signChange(-2,2);

signChange(0,2);

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Exercise 73. (the general secant method) The recurrence formula (3.3) is called the
simplified Secant method, because it uses the same constant slope C of the first secant
unaltered in every step of the iteration. If the slope C is actualized in each step, we get
the original Secant method. We will derive it in this exercise. We follow [17, p.39, p.56 ff].

a. Verify, that the straight line (secant) through the points (a, f(a)) and (b, f(b)) is given
by

y =
f(b)− f(a)

b− a
· x+

b · f(b)− a · f(a)

b− a
(3.4)

b. The straight line a. crosses the x-axis at y = 0, so we have 0 = f(b)−f(a)
b−a ·x+ b·f(b)−a·f(a)

b−a .

Use Maxima to show: x = a·f(b)−b·f(a)
b−a .

c. Implement Maxima function iterate3(u,x,xo,n) := block( [l:[[xo[1],xo[2],xo[3]]],

...), which operates on lists of 3 elements.
d. Then define for a global defined user function f(x) :

iterate3(u,x,xo,n) := block( [l:[[xo[1],xo[2],xo[3]]], ... ); /* by you */

slope(x,y):= (x*f(y)-y*f(x))/(f(y)-f(x));

secants(a,b,n) := iterate3([x,y,slope(y,z)],[x,y,z],[a,b,slope(a,b)],n) ;

d. Test your functions with

f(x):= x^2-2;

transpose(secants(0,2, 5));

The output should be:

e. Functions slope and secants work for a global defined function f . Alter both functions
to work on an universal local function u a la slope(u,x,y) resp. secants(u,a,b,n), so
that a call secants(x*x-2, 0,2, 5) is possible.

Remark. The theme of determine the roots of a function is part of general Numerical
Analysis/Methods. For our purpose to solve boundary value problems (BVP) of an ODE
our function secant1 will be stable enough to serve as a possible helper function for the
Shooting method.

Exercise 74. Reproduce Fig.12 with this code:

/* wxMaxima */

f(x):= x^2-2;

a:1; b:2;



3 INTERMEZZO: ITERATE 46

m: (f(a)-f(b))/(a-b), numer;

X: makelist(0,i,1,5)$

Y: secant1(f(x),x, 1,2, 5)$

XY: makelist([Y[i],X[i]], i,1,5);

wxdraw2d(xaxis = true,

point_size=2,

color=green, points(XY),

point_size = 2,

point_type = filled_circle,

color=magenta, points([[a,f(a)],[b,f(b)]]),

color=red, explicit(f(x),x,0.5,2.5),

color=blue, explicit(m*(x-a)+f(a),x,0.5,2.5),

title="simplified Secant method")$

Think about every line of the code and its purpose.

3.4 Implict differentation and the Taylor method for ODE’s

To show the usefulness of the function iterate, we have shown some examples that are
not directly related to ODE’s. We now return to dealing with the solution of an ODE. For
this we implement the Taylor method as an alternative to the Picard iteration. We
start by implementing a helper function idiff, which shows another application of the
Swiss army knife iterate.
We need two requisites: the 2-dimensional Chain rule and the Taylor expansion.

3.4.1 implicit differentiation.

Let’s remember the advanced calculus course. Quoting Marsden [33, p.780] we have

Theorem (2-dimensional Chain Rule; implicit differentiation)
IF f(x, y) (e.g. the RHS of an ODE) has continuous partial derivatives and the utility

U(x) := f(g(x), h(x)) is a function of x alone with g(x) and h(x) differentiable,

THEN with fx := ∂f
∂x

U ′(x) = fx(g(x), h(x)) · g′(x) + fy(g(x), h(x)) · h′(x) (3.5)

i.e. to get U ′(x) you have to multiply the partial derivatives of f(x, y) w.r.t each variable x and

y with the derivatives of g and h and add the products.

• You may prefer the other notation of (3.5): ∂U
∂x

= ∂f
∂x
· dg
dx

+ ∂f
∂y
· dh
dx

.
• Because of the dependence of U on two interior intermediate functions g aand h this
differentiation process is called implicit differentiation with respect to x.

Example 14. Consider the ODE y′ = f(x, y) := xy, i.e. more precise: y′(x) = f(x, y(x)) ≡
f(g(x), h(x)) with g(x) := x and h(x) := y(x).
Calculate the first three derivatives of U(x) := f(x, y(x)).
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Solution. U depends only on x. We want to use equation (3.5).

We have g′(x) = 1 and h′(x) = y′(x)
ODE
= xy. Therefore

y′′(x) = U ′(x) = fx(g(x), h(x)) · g′(x) + fy(g(x), h(x)) · h′(x)

= (xy)x · x′ + (xy)y · y′(x) = y · 1 + x · y′(x)
y′=xy

= y + x · xy
= y(x) + x2 · y(x)

Again U ′ depends only on x. So we have a new function U2(x) := U ′(x) = y(x) + x2 · y(x)
and we can repeat the implicit differentiation via the chain rule (3.5). Therefore

y′′′(x) = U ′2(x) = U ′′(x) =
∂

∂x
(y + x2y) · x′ + ∂

∂y
(y + x2y) · y′

y′=xy
= (2xy) · 1 + (1 + x2) · xy = 2xy + xy + x3y

= 3xy + x2 · y
=: U3(x)

We see an emerging pattern for the sequence of new functions Un:

U ′n(x) =
∂

∂x
Un−1 · x′ +

∂

∂y
Un−1 · f(x, y) (3.6)

Exercise 75. Determine y′′′′(x) for the ODE y′ = xy.

3.4.2 idiff.

Exercise 75 shows that it becomes annoying and uncomfortable to iterate the implicit
differentiation of f(x, y) to get more derivatives of y′(x). So let our function iterate do
this work for us by defining a function idiff (’implicit’ diff)13. We use the recursion (3.6)
for the recurrence term in idiff, cf. [17, p.206 ff]:

/* MAXIMA --- IMPLICIT DIFFERENTATION --- */

idiff(f,x,y,m):=block(

IMP1: iterate(’diff(u,x) + f*’diff(u,y), u,f,m-1), /*(1)*/

factor(ev(IMP1, diff)) )$ /*(2)*/

The invoke arguments of idiff(f,x,y,m) are as follows:

1. f: the function f(x, y) ( i.e. the right-hand side of an ODE y′ = f(x, y)) ...

2. x,y : ... depending on the variables x and y.

3. m: the number of repeated substitutions of new functions u according to (3.6).

13In 1999 Dan Stanger wrote an implicit differentiation function in Maxima. The files are in
share/contrib/impdiff.mac and makeOrders.mac. In contrast to our idiff it is a very professional code.
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Comment. In (1) the recurrence term diff(u,x,1)+f*diff(u,y,1) is ∂u
∂x
· 1 + ∂u

∂y
· f(x, y),

i.e. the translation of (3.6) to Maxima. The iteration variable here is u, i.e. the each
newly created function u in the process (3.6)! That is why the initial value for u in the
process is the function f(x, y). In (1) the build-in function diff is not evaluated because
of the quote ’; therefore we have explicitly to ev(aluate) the diff function in the IMP1

term in (2).14

Example 15. Check example 14 and exercise 75 with idiff.

Solution.

/* Maxima */

iterate(u,x,x0,n) := block([numer:true],

cons(x0, makelist(x0:subst(x0,x,u), i,1,n)));

idiff(f,x,y,m):=( IMP1: iterate(’diff(u,x) + f*’diff(u,y), u, f, m-1),

factor(ev(IMP1, diff)))$

expand( idiff(x*y,x,y,4) );

B Click to RUN the code.

The output displays all implicit derivatives starting with f until y′′′, i.e. the list [y, y′, y′′, y′′′]:

In case you only want to look at the result of exercise 75, do

3.4.3 Taylor method for ODEs.

Let y′ = f(x, y), y(x0) = x0 be an ODE. If we assume the solution y(x) to be an analytic
function, we may approximate its values near x by a Taylor polynomial of degree m, i.e.:

y(x+ h) ≈ y(x) +
y′(x)

1!
· h+

y′′(x)

2!
· h2 +

y′′′(x)

3!
· h3 + · · ·+ +

y(m)(x)

m!
· hm (3.7)

Since we want to get a recurrence formula for yk+1 ≈ y(xk+1) = y(xk + h), we define

yk+1 := yk +
y′(xk)

1!
· h+

y′′(xk)

2!
· h2 +

y′′′(xk)

3!
· h3 + · · ·+ +

ym(xk)

m!
· hm (3.8)

In (3.8) we need the derivatives y′(xk), y
′′(xk), y

′′′(xk), ... But these derivatives are in-
terpreted and therefore determined as implicit derivatives of f(x, y), which we can easily
calculate via our self-defined function idiff: so equation (3.8) gives the recurrence term

14I thank Michel Talon who friendly helped in coding (2).

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0


3 INTERMEZZO: ITERATE 49

of the ’implicit’ Taylor method of oder m. Please observe: In difference to the ’normal’
Taylor expansion we have to use idiff instead of diff.
We may also look at equation (3.8) as a scalar product of the two lists (ok: vectors)

yk+1 = [y, y′, y′′, y′′′, ..] • [h,
h2

2
,
h3

6
,
h4

24
, ...] (3.9)

This motivates the function iTaylor, cf. [17, p.208]:

/* MAXIMA --- IMPLICIT TAYLOR METHOD of order m --- */

/* include our functions iterate(u,x,xo,n) and idiff(f,x,y,m) here */

iTaylor(f,x,y, h, m) := y + idiff(f,x,y,m).makelist(h^r/r!, r,1,m);

Example 16. We test iTaylor on the IVP y′ = xy with y(0) = 1.

makelist(h^r/r!, r,1,4);

iTaylor(x*y, x,y, h,3);

iTaylor(x*y, x,y, 1/5, 3),expand;

The output displays all Taylor method order 3 terms with its implicit derivatives

For the IVP the command at(%, [x=0, y=1]),float; gives (%o12) 1.02.

Exercise 76. Look at the following Maxima script:

iterate2(u,x,x0,n) := block([numer:true],

cons(x0, makelist(x0:subst([x[1]=x0[1],x[2]=x0[2]],u), i,1,n)))$

fpprintprec: 5$

iterate2([x+0.2, iTaylor(x*y, x,y, 0.2, 3)], [x,y], [0,1], 5); /*(1)*/

B Click to RUN the code.

The output of (1) is
| (%o7) [[0,1],[0.2,1.02],[0.4,1.0828],[0.6,1.1964],[0.8,1.3757],[1.0,1.6463]].

Explain: what does command (1) do?

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Exercise 77. a. Use a Taylor method of order 2 to approximate the solution of the IVP
y′ = 3x2

2y
with y(0) = 1 for 0 ≤ x ≤ 2 using 4 steps of length 0.5, see [43, p.237]. – Code:

fpprintprec:5; ratprint : false

iterate2([x+0.5, iTaylor(3*x*x/(2*y),x,y, 0.5,2)], [x,y], [0,1], 4);

Result: (%o8) [[0,1],[0.5,1],[1.0,1.3574],[1.5,2.0738],[2.0,2.9991]]

b. Verify: the exact solution of the IVP is y(x) =
√

1 + x2.
c. Calculate the ’global absolute error’, i.e the summed distances of all y-approximate
values from their corresponding exact values of the solution function y(x). [Result: 0.0606

d. Plot the exact solution y and the points of the approximate solution values yk to visualize
the global absolute error.
e. Do part a. by hand ..

3.4.4 iTaylorsol (Taylor solution method for ODE)

Example 16 shows a Taylor method of order 3 to approximate the solution of the IVP
y′ = xy with y(0) = 1 for 0 ≤ x ≤ 1 using 5 steps of length 0.2. We will now abstract this
procedure to a function iTaylorsol, which will iterate the Taylor recurrence relation for
given data to establish a full automatic Taylor solution method of a prescribed order15:

/* MAXIMA --- TAYLOR SOLUTION METHOD of ODE y’=f(x,y) --- */

/* include functions iterate2(u,x,xo,n), idiff(f,x,y,m)

and iTaylor(f,x,y,h,m) here */

iTaylorsol(f,x,y, xo,yo, h, m, n) :=

iterate2([x+h, iTaylor(f,x,y, h, m)], [x,y], [xo,yo], n);

The set of invoke arguments of iTaylorsol(f, x,y, xo,yo, h, m, n) is as follows:

1. f: the right-hand side of the ODE y′ = f(x, y))

2. x,y: the names for the variables x and y of the function f

3. xo,yo: the IVP initial values for x and y, i.e. y(xo) = yo

4. h: the positive constant step size

5. m: the order of the method, i.e. the highest exponent of the Taylor expansion

6. n: the number of iterations, i.e. the number of iterated invocations of iTaylor

Example 17. Let’s check iTaylorsol for the IVP { y′=xy
y′(0)=1

:

iTaylorsol(x*y, x,y, 0,1, 0.2, 3, 5) ;

Maxima output:
| (%o8) [[0,1],[0.2,1.02],[0.4,1.0828],[0.6,1.1964],[0.8,1.3757],[1.0,1.6463]]

15cf. [17, p.208 ff]
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Exercises.

Exercise 78. Someone wrote this piece of Maxima code.:

Taylor3(x,y, xo,yo, h,n):=

iterate2([x+h, y+h*x*y + h^2/2*(x^2*y+y) + h^3/6*(x^3*y+3*x*y)],

[x,y],[xo,yo],n)$

Taylor3(x,y, 0,1, 0.2, 5);

B Click to RUN the code.

a. What does Taylor3 do? What looks a corresponding call to iTaylorsol like?
b. Write Taylor2 and Taylor4.
c. Discuss pros and cons of Taylor3 w.r.t. iTaylorsol.

Exercise 79. Use a Taylor method of order 3 to solve the IVP y′ = x− y2, y(0) = −0.5 .
Compare with exercise 4.

Exercise 80. Construct the solution y of the IVP y′ = x2 + y2, y(0) = 0 via a Taylor
method of order 2. Compare with exercise 5.

Exercise 81. Given the IVP dy/dx = x−y, y = 1 at x = 0, use a Taylor method of order
4 to approximate y when x = 0.2, cf. [3, p. 189].
[Control: y5(0.2) ≈ 0.83746. - Exact solution: y = x− 1 + 2e−x.

Exercise 82. Calculate the solution y of the ODE y′ = y2−xy, which has value y = 1 for
x = 0, via a Taylor method of order 3, cf. [24, p.79, p.308]. [Control: y5(0.5) ≈ 1.6987.

Exercise 83. Find the approximate solution to the equation y′(t) = 1 + y(t)2 with initial
condition y(t0) = y0 = 0, t0 = 0 via a Taylor method of order 4. Compare with exercise 8.
[Result: y(x) = tan(x)

Exercise 84. An ODE is given through x′ = sin(t)− x with IC x(0) = 1.
Do a Taylor method of order 3 to approximate the solution x. Compare with exercise 9.

Exercise 85. Find an approximate solution to the initial value problem
y′ = 2t(y + 1), y(0) = 0 using a Taylor method.
Compare with the exact solution y(t) = et

2 − 1, cf. [11, p.110].

Exercise 86. Discuss: what are the similarities and differences between iTaylor(.) and
iTaylorsol(.).

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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4 Numerical Solution Methods for IVP

We discussed several methods of approximating solutions to an initial value problem (IVP).
We may think of the solution y(x) to an IVP as describing a physical system that changes
in time, for example the displacement of a swinging pendulum from its rest position. The
initial conditions y(xo) = a and y′(xo) = b correspond to specifying the displacement and
the velocity of the Pendulum at time t = xo. We set the Pendulum in motion and watch
it for some interval of time xo to xe by means of the ODE. – Read B Ammari: Examples.

Figure 13:

Bräuning [12, p.11] motivates the dealing with differential equations through
their use in the natural sciences and presents examples like:
Left:(pendulum) ”A small body of mass m is attached to point A with a thread
of length `. Let’s deflect the body out of its resting position, keeping the
thread taut and then leaving the body to itself, it will oscillate around this
resting position. We describe this swing of a pendulum by means of this ODE:
−m`ϕ̈−mg sinϕ = 0.”
Right: (swinging spring) ”An elastic spring is attached to a suspension point
A, to which a mesh m is attached at the other end, which is located in a liquid
for damping. c is the spring constant. A coordinate system is directed in its
x-direction downward so, that its origin is the rest position of the center of
gravity. If the mass is deflected from its rest position in the x-direction and
then released, it performs vertical oscillations around the rest position.
The associated differential equation for describing this movement is
−mẍ− kẋ− cx = 0, where k ∈ IR a constant w.r.t damping.”

We now study numerical (’approximative’) solution methods for ODE’s and make exten-
sively use of our user-defined functions iterate/2/3, which allows to program compact
code for methods like EULER, HEUN or RK4 in 2-4 lines, to focus on the underlying recur-
rence formulas and relieve of programming technical bureaucracy. Therefore this chapter
can profit from some ideas of the books [17, p.175 ff], [29, p.101 ff] and [43, p.228 ff].
Error analysis for the methods are left to the literature, e.g. [29], [1], [47], [20].

https://people.math.ethz.ch/~grsam/SS19/NAII/resources/lecture1.pdf
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4.1 RK1 alias the Euler Method

We start by looking at the idea of the Euler method for approximately solving ODE’s.

Figure 14:

Red: y(x) = exp(x
2

2 ) is the exact solution of ODE y′ = x · y, y(0) = 1.
Blue: We try to follow the graph of y approximately by a polygon.
Idea of Euler method: If we are at a point (x3, Y3) on the approximating
polygon near the exact point (x3, y3) on the solution, then we follow the
tangent at (x3, y3) with slope y′(x3) = f(x3, y3) = x3 · y3 a bit - but
starting at (x3, Y3) on the polygon. This way we arrive at the next
approximation point (x4, Y4) ≈ (x4, y4) ∈ graph(y) .
This process is then repeated starting at (x4, Y 4).

• How to get a recurrence formula for this idea? I.e. how to calculate Y4? Yn?

We start with the observation, that the slope of the tangent at the point (x3, y3) on the
graph of the solution y(x) is the same as the slope of the approximating polygon line
between x3 and x4:

y′(x3) = f(x3, y3) ≈ f(x3, Y3) =
Y4 − y3
x4 − x3

=
Y4 − y3
h

(4.1)

 f(x3, Y3) ≈ (Y4 − y3)/h
 y3 + f(x3, Y3) · h ≈ Y4.

y3≈Y3 Y4 = Y3 + h ∗ f(x3, Y3) (4.2)
by analogy
 Yn+1 = Yn + h ∗ f(xn, Yn) (4.3)

Formula (4.3) is called the Euler recurrence formula.
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Remark.
1. In equation (4.3) we denote the approximative values on the polygon with uppercase
letters Y.. and the exact values of the solution function y(x) with lowercase letters x.., y..
in order to distinguish between them.

2. For more information about the EULER method and derivations of (4.3) see e.g. B
Wiki: EULER method - Derivation or B Cheever: EULER method, [47, p.4], [20, p.1], [1, p.44].
3. To organize the steps of the calculation, program flow charts were used in the past,
especially when using programmable pocket calculators, cf. Bräuning [12, p.145]:

flow chart

4. The Euler method is an algorithm with only one evaluation of the function f(., .) in
(4.3). We will see that the other numeric algorithms need more f -evaluations.

Example 18. We calculate the data for Fig.14 by studying the ODE y′ = f(x, y) =
x · y, y(0) = 1. We know: the exact solution ye of this ODE is ye(x) = exp(x

2

2
), because

the derivative of ye is again ye with a factor x in front, i.e the equation y′e = x ·ye is fulfilled
and verified by Maxima:

ye: exp(x^2/2); /* exact solution ye */

yp: diff(ye, x); /* their slope ye’ */

B Click to RUN the code.

First we do a semi-automatically calculation by hand and then a fully automatic iteration.

1. (Euler method by hand) We use formula (4.3) with f(x, y) := x · y and a step-size
h := x4 − x3 = 0.2. We do 5 steps from x0 = 0 until x5 = 1.

https://en.m.wikipedia.org/wiki/Euler_method
https://en.m.wikipedia.org/wiki/Euler_method
https://lpsa.swarthmore.edu/NumInt/NumIntFirst.html
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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If we have e.g. x3 = 0.6 = 3 · h and y3 = 1.1232, it follows y4 = y3 + h · f(x3, y3) =
1.1232 + 0.2 · 0.6 · 1.1232 = 1.257984.
To make such steps semi-automatic, we first define and invoke a helper function E(x, y),
starting with x = 0 and y = 1, catch the corresponding result by eye and use it as input for
the next call E(0.2, 1) and so on. So we step through the points of the polygon in Fig.13:

E(x,y) := [x + 0.2, y +0.2* x*y];

/* xn + h Yn+ h*f(xn,Yn) */

ratprint:false$

fpprintprec:5$

E(0.0, 1);

E(0.2, 1);

E(0.4, 1.04);

E(0.6, 1.1232);

E(0.8, 1.257984);

B Click to RUN the code.

We may now reproduce the plot of Fig.13:

XY: [E(0,1),E(0.2,1),E(0.4,1.04),E(0.6,1.1232),E(0.8,1.257984)];

wxdraw2d(xaxis = true,

point_size=2, points_joined=true,

xlabel="xi", ylabel="Yi",

points(XY),

color=red,

explicit(exp(x^2/2),x,0,1), /* exact solution ye */

title="EULER polygon")$

B Click to RUN the code.

2. (Euler method by iterate) We use formula (4.3) with f(x, y) := x ·y and step through
the points of the polygon in Fig.13 automatically via iterate2 (because we construct
points with 2 coordinates), where the helper function E(x, y) is now incorporated as the
recurrence term [x+ h, y + h ∗ f(x, y)]:16

f(x,y):= x*y;

xo: 0;

yo: 1;

h: 0.2;

16♥ Don’t forget to call iterate2 beforehand !

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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n: 5; /* recurrence__term vars. initial steps */

iterate2( [x+h, y+h*f(x,y)], [x,y], [xo,yo], n );

B Click to RUN the code. The results are the same as above.

4.1.1 The Euler Method for IVP

We now abstract the whole approximation process by constructing an Maxima function
EULER to fully-automate the calculation process. We check the correctness by repeating
the handish calculation in 1. in (1).

/* MAXIMA : --- EULER method --- */

EULER(x,y, xo,yo, h, n) := iterate2([x+h, y+h*f(x,y)],[x,y],[xo,yo],n);

/* Test ODE y’= xy with y(0)=1 */

fpprintprec: 5$

f(x,y):=x*y;

EULER( x,y, 0, 1, 0.2, 5); /* (1) */

B Click to RUN the code. The results are the same as above. ♥ Don’t forget to call iterate2 !

• The invoke arguments of EULER(x,y, xo,yo, h, n) are as follows:

1. f : the RHS of the ODE y ′(x) = f(x, y(x))) given global before the call

2. x,y : the variables used in the iteration (coordinates) i.e. by f

3. xo,yo : the initial values with y(xo) = yo

4. h : the step size of the EULER method

5. n : the number of repeated iterations

Comment. We elaborate on the code of EULER. The recurrence formula [x+h, y+h∗f(x, y)]
in EULER updates permanently both the x value and the y value of [x, y], starting with
[x, y] := [xo, yo]. To the x value of [x, y] is added the stepsize h at each step. The
corresponding y slot of [x, y] is replaced by y + h ∗ f(x, y). This updating procedure runs
n times.

Remark. If we want to emphasize that only 1 function evaluation k1 is required in each
step of the iteration process, we may write our function EULER as follows and then call this
variant the Runge–Kutta method of 1st kind, denoted RK1:

/* MAXIMA : --- EULER method denoted as RK1 --- */

RK1(x,y, xo,yo, h, n) := block(

k1: f(x,y),

iterate2([x+h, y+h*k1],[x,y],[xo,yo],n));

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Exercises.

Exercise 87. Use Euler’s method with step size h = 0.1 to find an approximate solution
of dy

dx
= x− y2, y(0) = −0.5, see [12, p.145]. [Intermediate result: y3 = −0.5520]

Exercise 88. (the local error of the EULER method)
Study the following code snippet:

fpprintprec:5$

second(z):= z[2];

ye(x):= exp(x^2/2);

f(x,y):=x*y;

Pe: EULER( x,y, 0,1, 0.2, 5); /* Euler method points */

L1: map(second,Pe);

L2: makelist(ye(x),x,0,1,0.2);

abs(L2-L1);

localError: lmax(abs(L2-L1));

globalError: sum(abs(L2-L1)[i],i,1,length(L1));

B Click to RUN the code.

a. Explain each code line in your own words.
b. Write a Maxima function localError(.). – See e.g. [47, p.7], [20, p.3].
c. Write a Maxima function truncation error truncError(.), which relates the global
error to the mesh count n, i.e. the number of steps. See e.g. [47, p.7].

Exercise 89. a. Use Euler’s method to approximate the solution of y′ = 3t2

2y
, y(0) = 1 on

the interval 0 ≤ t ≤ 2 using n = 2, 4, 8 steps, see [43, p.230].
b. Find the local error between your approximations and the exact solution y =

√
1 + t3.

Exercise 90. a. Use Euler’s method to approximate the solution of the IVP
y′ = y2 sin(2x), y(0.5) = 1 on the interval 0.5 ≤ x ≤ 3.5 using n = 6, 12, 24, 48 steps,
b. Find the local error between your approximations and the exact solution y = 2

cos(2x)+2−cos(1) .

Exercise 91. a. Use Euler’s method with step size h = 0.1 to find the solution of the IVP
dy
dx

= yx, y(0) = 1 at the points with x = 0.1, 0.2, 0.3, ...1.0. Cf. [17, p.179].

b. Use Euler’s method with step size h = 0.01 to find the solution of dy
dx

= yx, y(0) = 1 at
the points with x = 0.01, 0.02, 0.03, ...1.0.
c. Plot analogous figures to Fig.14 for a. and b. What do you observe?

Exercise 92. Do the examples in B Hellevik: Euler’s method. and the example in B 2.6.4.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
https://folk.ntnu.no/leifh/teaching/tkt4140/._main008.html
https://folk.ntnu.no/leifh/teaching/tkt4140/._main008.html
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4.1.2 Modified Euler method alias ’RK2e of order 2’

[12, p.146]

Idea: we want to change the EULER procedure a bit to achieve a noticeable im-
provement with the same increment as before. We again calculate the slope in x1, y1,
but start drawing the corresponding line element not at x1, y1 – we start the new line
element at x0, y0 with the double argument length ending at point x2, y2. Here the
process begins again ...

• Here is the modified Euler recurrence formula, see [17, p.186], [10, p.258], [1, p.47] :

Yn+1 = Yn +
h

2
· (f(xn, Yn) + f(xn+1, Yn + h · f(xn, Yn))) (4.4)

• A derivation of the formula (4.4) is given at [17, p.185ff] or at B Bazett: Integral solutions.

a. The following ’modified’ Euler method17 solves example 18 semi-automatic:

fpprintprec:5$

f(x,y) := x*y;

k1 : f(x,y);

k2 : f(x+0.2, y + 0.2*k1);

iterate2([x+0.2, y + 0.2*(k1+k2)/2],[x,y],[0,1],5);

B Click to RUN the code.

b. Here is the Maxima function modiEULER, which abstracts the above method.

/* MAXIMA : --- modified EULER method --- */

modiEULER(x,y, xo,yo, h,n):= block(

k1 : f(x,y),

k2 : f(x+h, y + h*k1),

iterate2([x+h, y+h/2*(k1+k2)],[x,y],[xo,yo],n) );

/* Test using ODE y’= xy with y(0)=1 */

f(x,y) := x*y;

modiEULER( x,y, 0,1, 0.2, 5);

17sometimes also called the Runge-Kutta method of order 2

https://web.uvic.ca/~tbazett/diffyqs/integralsols_section.html
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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B Click to RUN the code.

Verify: recurrence (4.4) can be written as y+h/2*(k1+k2) using k1 and k2.
Solve exercises 85..89 using modiEULER.

c. Calculate the local/global/trunc errors of the modified EULER method for the ODE of
Exercise 86. Compare with the errors of the simple EULER method.

d. Here is the equivalent code of the Runge-Kutta method of order 2, which is a 1-1
translation of the recurrence formula (4.4) to Maxima:

RK2e( x,y, xo,yo, h,n) :=

iterate2([x+h, y+h/2*( f(x,y) + f(x+h,y+h*f(x,y)) )],

[x, y], [xo,yo], n) ;

f(x,y) := x*y;

RK2e( x,y, 0,1, 0.2, 5);

B Click to RUN the code.

Discuss pros and cons of modiEULER vs. RK2e!

e. Plot analogous figures to Fig.14 for a. or c. What do you observe?

f. Plot a figure analog to Fig.14, which shows simultaneous the exact solution, the EULER

method approximation and the RK2e approximation for a step size of h = 0.1 for the ODE
of exercise 87.a. What do you observe?

Exercise 93. Solve y′(x) = 1
x
− sin(x) and

√
1− x2 · y′(x) = 1 approximately.

Exercise 94. Look at this code:

f(x,y):= sqrt(x)+sqrt(y);

modiEULER( x,y, 1,0.5, 0.05, 20);

wxdraw2d(xaxis = true,

point_size=2,

points_joined=true,

xlabel="x",ylabel="y",

points( modiEULER(f, x,y,1,0.5,0.05,20) ),

color=red,

explicit( ? ,x,0,1), /* (?) */

title="modified EULER polygon")$

a. What is the discussed IVP?
b. Find the exact solution ye of the ODE.
c. Complete code line (?) with the term of ye and plot the scene.
d. What about the trunc error of the method in this example?

Exercise 95. Do some of the examples/exercises in B Wiki: EULER method - Derivation.

or in B Cheever: EULER method. or B Bazett: EULER method. or B Fan: numerical methods.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
https://en.m.wikipedia.org/wiki/Euler_method
https://lpsa.swarthmore.edu/NumInt/NumIntFirst.html
https://web.uvic.ca/~tbazett/diffyqs/numer_section.html
https://flexbooks.ck12.org/cbook/ck-12-calculus-concepts/section/8.14/primary/lesson/numerical-methods-for-solving-odes-calc/
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4.2 RK2h alias Heun’s Method

We start by looking at the idea of the Heun method for approximately solving ODE’s.

Figure 15:

The modified EULER recurrence was written as Yn+1 = Yn+ h
2 (k1+k2).

Idea: maybe we get a better approximation, if we weight the average of
k1 and k2 towards k2 in the ratio of 3:1 instead of 1:1, see Fig.14. A is
the approximative value Y E

n+1 for yn+1 using Euler’s method. B and
it’s approximative value Y H

n+1 (red dot) for yn+1 using Heun’s method
is closer to yn+1 (blue dot), cf. [17, p.198].

• Here is the Heun recurrence formula, also known as Ralston’s method:

Yn+1 = Yn +
h

4
·
[
f(xn, Yn) + 3 · f(xn +

2

3
h, Yn +

2

3
h · f(xn, Yn))

]
(4.5)

• A derivation of the formula (4.5) is in [10, p.258] or at B Wiki: HEUN’s method.

• A Maxima implementation of the Heun recurrence formula is:

/* MAXIMA --- HEUN’s method --- */

HEUN( x,y, xo,yo, h,n) := block(

k1 : f(x,y),

k2 : f( x+2*h/3, y+2*h/3*k1 ),

iterate2([x+h, y+h/4*(k1+3*k2)],[x,y],[xo,yo],n) );

/* Test with ODE y’= xy with y(0)=1 */

f(x,y):= x*y;

HEUN( x,y, 0,1, 0.2, 5);

B Click to RUN the code.

https://en.wikipedia.org/wiki/Heun%27s_method
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Exercise 96. Verify: the explicit recurrence formula (4.5) for the Heun algorithm can be
written as y+h/4*(1*k1+3*k2) using the values of k1 and k2.

Exercises.

Exercise 97. Use HEUN’s method with step size h = 0.1 to find an approximate solution
of dy

dx
= x− y2, y(0) = −0.5, see [12, p.145]. [Intermediate result: y3 = −0.5520]

Exercise 98. (the global error of the Heun method)
Study the following code snippet:

fpprintprec:5$

k(z):= z[2];

ye(x):=exp(x^2/2);

f(x,y):= x*y;

P : HEUN(x,y, 0,1, 0.2, 5);

L1: map(k,P);

L2: makelist(ye(x),x,0,1,0.2);

abs(L2-L1);

globalErrorHEUN: sum(abs(L2-L1)[i],i,1,length(L1));

B Click to RUN the code.

Explain each code line in your own words.
What is the corresponding truncation error?

Exercise 99. Use the Heun method to solve the initial-value problem

dy

dt
= tan(y) + 1, y0 = 1, t ∈ [1, 1.1]

with step size h = 0.025. Control your results by looking at B wiki: Runge-Kutta>Use.

Exercise 100. Investigate the ’critical’ IVP example in fig.1. of B Hairer/Lubich: p.2.
Use EULER and modiEULER and HEUN.

Exercise 101. Do some of the examples and exercises of w.r.t. the Heun (’improved’
Euler) method in B Fan: Numerical Methods.

If you like: do some of the Review problems.

Exercise 102. Review B Hellevik: Heun’s method.

and solve the examples there at B : Newton’s equation., B : Falling sphere.

Maybe study B : Generic second order Runge-Kutta method.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
https://en.wikipedia.org/wiki/Runge-Kutta
https://na.uni-tuebingen.de/~lubich/pcam-ode.pdf
https://flexbooks.ck12.org/cbook/ck-12-calculus-concepts/section/8.14/primary/lesson/numerical-methods-for-solving-odes-calc/
https://folk.ntnu.no/leifh/teaching/tkt4140/.._main015.html
https://folk.ntnu.no/leifh/teaching/tkt4140/._main016.html
https://folk.ntnu.no/leifh/teaching/tkt4140/._main017.html
https://folk.ntnu.no/leifh/teaching/tkt4140/._main018.html
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4.3 RK2m alias the Midpoint Method

We start by looking at the idea of the Midpoint method (’half step method’) for approxi-
mately solving ODE’s.

Figure 16:

For the ODE y′ = f(x, y), y(x0) = y0 one calculates y′0 = f(x0, y0)
and walks in this direction to point (x 1

2
, y 1

2
) := (x0 + 1

2h, y0 + 1
2hy

′
0).

For this point the new slope y′1
2

(dashed) is calculated with f(x, y) and

one goes again - starting at P0 in this direction along a straight line
to P1(x1, y1) := (x0 + h, y0 + hy′1

2

). – Repeat this process starting at

P1(x1, y1) instead of P0(x0, y0), cf. Kamke [24, p.90].

• Here is the Midpoint recurrence formula:

Yn+1 = Yn + h · f
(
xn +

h

2
, Yn +

h

2
· f(xn, Yn))

)
(4.6)

• A derivation of the formula (4.6) is in [10, p.257] or at B Wiki: Midpoint method.

• A Maxima implementation of the Midpoint recurrence formula is:

/* MAXIMA : --- MIDPOINT METHOD --- */

midpoint(x,y, xo,yo, h,n) :=

iterate2([x+h, y+h*f( x+h/2, y+h/2*f(x,y) ) ],[x,y],[xo,yo],n);

/* Test with ODE y’= xy with y(0)=1 */

f(x,y):=x*y;

midpoint( x,y, 0,1, 0.2, 5);

B Click to RUN the code.

https://en.wikipedia.org/wiki/Midpoint_method
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0


4 NUMERICAL SOLUTION METHODS FOR IVP 63

Exercises.

Exercise 103. Use the Midpoint method with step size h = 0.1 to find an approximate
solution of dy

dx
= x− y2, y(0) = −0.5, see [12, p.145]. [Intermediate result: y3 = −0.5520]

Exercise 104. (the global error of the Midpoint method)
Study the following code snippet:

fpprintprec:5$

k(z):= z[2];

ye(x):=exp(x^2/2);

f(x,y):=x*y;

P : midpoint(x,y, 0,1, 0.2, 5);

L1: map(k,P);

L2: makelist(ye(x),x,0,1,0.2);

abs(L2-L1);

globalErrorMidpoint: sum(abs(L2-L1)[i],i,1,length(L1));

B Click to RUN the code.

Compare this error with that of the EULER and HEUN methods.

Exercise 105. A Runge–Kutta (RK) like formulation of the midpoint method using
slope constants to structure the calculation is

/* MAXIMA : --- MIDPOINT METHOD as RK2 method --- */

midpoint1( x,y, xo,yo, h,n) := block(

k1 : f(x ,y),

k2 : f(x, y + h/2*k1),

iterate2([x+h, y+h*k2], [x,y], [xo,yo], n));

/* Test with ODE y’= xy with y(0)=1 */

f(x,y):=x*y;

midpoint1(x,y, 0,1, 0.2, 5);

A small variant is the following: (compare the 3 variants! Global errors?)

/* MAXIMA --- Midpoint method variant--- */

midpoint2(x,y, xo,yo, h,n) :=

iterate2([x+h,

y+1/2*h*( f(x,y)+f(x+h,y+h)) ], [x,y], [xo,yo], n);

f(x,y):=x*y;

midpoint2( x,y, 0,1, 0.2, 5);

a. Do some of the examples
exercises in B Fan: Numerical Methods. with the Midpoint method.

b. If you like: do also some of the Review problems.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
https://flexbooks.ck12.org/cbook/ck-12-calculus-concepts/section/8.14/primary/lesson/numerical-methods-for-solving-odes-calc/
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4.4 RK4 alias the classic Runge-Kutta method

We start by looking at the idea of the classic Runge–Kutta method of order 4 for
approximately solving ODE’s, cf. B wiki: Runge-Kutta, flow chart by [12, p.170].

Figure 17:

A Runge–Kutta step for the ODE y′ = f(t, y) starting at (t0, y0).
Red: Use four different slopes at different points near the solution.
Green: New (green) slope as weighted mean of the 4 red slopes.
This process is then repeated, now starting at (t1, y

R
1 ), a R(unge)-point.

The classic Runge–Kutta method (RK4) gets the slope at 4 points and calculates the
slope for the next step by an ’appropriate weighted’ average of these 4 slopes k1, k2, k3, k4:
Runge-Kutta use a weigthed average in a ratio of k1 : k2 : k3 : k4 = 1 : 2 : 2 : 1.

4.4.1 the Runge–Kutta RK4 recurrence

Yn+1 = Yn +
1

6
· [1 · f(xn, Yn) (4.7)

+ 2 · f(xn +
h

2
, Yn +

1

2
· f(xn, Yn))

+ 1 · f(xn +
h

2
, Yn +

h

2
· f(xn +

h

2
, Yn +

h

2
· f(xn, Yn)))

+ 1 · f(xn +
h

2
, Yn +

h

2
· f(xn +

h

2
, Yn +

h

2
· f(xn +

h

2
, Yn +

h

2
· f(xn, Yn)))]

https://en.wikipedia.org/wiki/Runge-Kutta
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• (4.7) displays the explicit Runge–Kutta recurrence formula for the above idea.

• A derivation of the formula (4.7) is in B wiki: Runge-Kutta > Derivation or in [24, p.92-93].
Formula (4.7) is incomprehensible in the presented explicit form, not memorizable and
shadows the simple structure of the Runge–Kutta method.
So forget about it and let’s program it structured and shortened using the four slopes
k1, .., k4: Then this classic method becomes a captivating simplicity and focus on the nice
property that the successive calculation of the slopes ki only need the previous value ki−1,
see [35, p.98] and [17, p.201] or B Süli: p.13–19 or BHellevik: RK 4th.

• The classic Runge–Kutta method (RK4) in Maxima using the 4 slopes k1, k2, k3, k4:

/* MAXIMA : --- classic RUNGE-KUTTA method of order 4 --- */

RK4(x,y,xo,yo,h,n):= block(

k1 : f(x,y),

k2 : f(x+h/2, y + h/2*k1),

k3 : f(x+h/2, y + h/2*k2),

k4 : f(x+h , y + h*k3),

iterate2([x+h, y+h/6*(1*k1+2*k2+2*k3+1*k4)],

[x , y], [xo,yo], n) );

/* Test ODE: y’= xy with y(0)=1 */

f(x,y):= x*y;

RK4( x,y, 0,1, 0.2, 10);

B Click to RUN the code.

4.4.2 the build-in rk(.) method

RK4 is build-in in Maxima as function

rk( f(x,y), y, yo, [x, xo,b, h])

ODE var init domain

cf. https://maxima.sourceforge.io/docs/manual/maxima_112.html#index-rk

B ”The independent variable y is specified with domain, which must be a list of four elements

as, for instance: [x, 0, 8, 0.1] – the first element of the list identifies the independent variable x,

the second and third elements are the initial x0 and final values b for that variable, and the last

element sets the increments h that should be used within that interval.

Example: To solve numerically the differential equation dy
dx

= x − y2 with initial value
y(x = 0) = 1, in the interval of x from 0 to 8 and with increments of 0.1 for x, use:

results: rk(x-y^2, y,1, [x, 0,8, 0.1])$

wxdraw2d(xaxis = true, points_joined=true, xlabel="xi", ylabel="Yi",

points(results), title="rk(.) plot")$ /* wL */

https://en.wikipedia.org/wiki/Runge-Kutta
https://people.maths.ox.ac.uk/suli/nsodes.pdf
https://folk.ntnu.no/leifh/teaching/tkt4140/._main019.html
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Exercises.

Exercise 106. Solve the test ODE: y′ = xy with y(0) = 1 using the build-in method rk().

Exercise 107. a. Use RK4 function with step size h = 0.1 to find an approximate solution
of ODE dy

dx
= x− y2, y(0) = −0.5, see [12, p.145]. [Intermediate result: y3 = −0.5520]

b. Solve a. with the built-in function rk, see the remark above.
c. Calculate the global error for the methods in a. and b. Compare.

Exercise 108. Solve y′(x) = 2 · (x − 1
5
)(y + 1

2
), y(1

5
) = 1

2
approximately using RK4 only

for the first RK-step, i.e. for h = 1, cf. [35, p.98].

– Calculate the the four slopes k1, .., k4 at the x-positions seen in the figure.
– Calculate now ’by hand’ the ’green’ slope k as weighted mean of the red slopes ki.
– Check the result for plausibility.
– Plot the whole scene of the figure.
– Redo this exercise using built-in function rk.

Exercise 109. Look at B wiki: Runge-Kutta and the ODE y′ = sin(t)2 · y:

https://en.wikipedia.org/wiki/Runge-Kutta
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a. Solve the ODE y′ = sin(t)2 · y approximately with RK4/rk on the domain of the figure.
b. Determine the exact solution ye(x) (red in the figure).
c. The figure also shows the methods HEUN (green), modified EULER (cyan) and EULER
(magenta). Use these methods to solve the given ODE.

Exercise 110. Look at B wiki NL: Runge-Kutta and the ODE dx
dt

= −t
x

.
a. Solve the ODE dx

dt
= −t

x
approximately with RK4/rk on the domain t ∈ [0, 1] with

x(0) = 1 and h = 0.1.
b. Determine the exact solution y(x).

Exercise 111. (RK3) This is RK3 method formulated in Maxima language:

/* MAXIMA --- RUNGE-KUTTA order 3 --- */

RK3(x,y,xo,yo,h,n) := block(

k1 : f(x,y),

k2 : f(x+h/2, y + h/2*k1),

k3 : f(x+h, y + 2*h*k2-h*k1),

iterate2([x+h, y+h/6*(1*k1+4*k2+1*k3)],[x,y],[xo,yo],n));

/* Test ODE: y’= xy with y(0)=1 */

f(x,y):= x*y;

RK3(x,y, 0,1, 0.2, 5);

B Click to RUN the code.

a. Do exercise 105 using method RK3. Compare. Truncation error(s)?
b. Do exercise 107 using RK3 and reproduce the plot incl. method RK3.

Exercise 112. Solve the OVP dy
dx

= 2y−x
x

, cf. [42, p.26]
a. ... approximately with RK4/rk/RK3 on the domain x ∈ [0, 2] with the IV y(0) = 0.5
using h = 0.2.
b. ... exact with solution y(x) =? [Result: y(x) = x2 + x

Exercise 113. Solve the OVP y′ = y − t2 + 1, cf. [18, p.260], ...
a. approximately with RK4/rk on the domain t ∈ [1, 3] with y(1) = 2 and h = 0.1.
b. Determine the exact solution y(t). [Result: =y(t) = (t+ 1)2 − 1

2
et

c. Compare the methods EULER (with h=0.025), Midpoint (h=0.05), RK4/rk (h=0.1)
on the mesh points 0.1, 0.2, 0.3, 0.4, 0.5 working on this ODE, where each of the techniques
requires 20 evaluations. Make an EXCEL like table with Maxima.
d. Calculate the absolute errors for the methods in c. Compare.

Exercise 114. Read B Cheever: Runge-Kutta Method and do the example with our RK4.

Exercise 115. Read B wiki: Runge-Kutta>Use and do the example with our RK4.

Exercise 116. Read BHellevik: Falling sphere using RK4. and do the example with our RK4.

Exercise 117. Read B ESE: Runge-Kutta and do the example ODE y′ = x2 and the exercise
with our RK4.

https://nl.wikipedia.org/wiki/Runge-Kuttamethode
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
https://lpsa.swarthmore.edu/NumInt/NumIntFourth.html
https://en.m.wikipedia.org/wiki/Runge-Kutta_methods
https://folk.ntnu.no/leifh/teaching/tkt4140/._main020.html
https://primer-computational-mathematics.github.io/book/c_mathematics/numerical_methods/5_Runge_Kutta_method.html
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Exercise 118. Do the examples and problems in B Fan: Numerical Methods. w.r.t. the RK
method. If you like: do some of the Review problems.

Exercise 119. Re-do the four examples in BHellevik: EXERCISES.

Exercise 120. * Study BHellevik: Basic notions on numerical methods for IVPs. and adapt
these notations for ’our’ error handling. Look also at B ..: On errors.

Exercise 121. ** Study BHellevik: Absolute stability of numerical methods Euler, Heun, RK.

Exercise 122. Do some Further Reading, e.g.
B stackexchange: Lehmann: On history

B scholarPedia: Butcher: Runge-Kutta

B scholarPedia: Shampine & Thompson: IVPs

B Hairer/Lubich

♥

Let’s sum up our numerical solution methods for IVPs:

METHOD Math Maxima
IVP y′ = f(x, y), y(xo) = yo f(x,y):= ...;

Euler EULER(x,y, xo,yo, h, n); or RK1(..)
modified Euler modiEULER(x,y, xo,yo, h,n); RK2e(..)

Heun HEUN(x,y, xo,yo, h, n); RK2h(..)

Midpoint midpoint(x,y, xo,yo, h,n)); RK2(..)

classic 4th Runge–Kutta RK4(x,y,xo,yo,h,n)

where
x,y the variables used in the iteration by f

xo,yo the initial values with y(xo) = yo
h the step size used in the method
n the number of repeated iterations

♥

https://flexbooks.ck12.org/cbook/ck-12-calculus-concepts/section/8.14/primary/lesson/numerical-methods-for-solving-odes-calc/
https://folk.ntnu.no/leifh/teaching/tkt4140/._main027.html
https://folk.ntnu.no/leifh/teaching/tkt4140/._main022.html
https://folk.ntnu.no/leifh/teaching/tkt4140/._main039.html
https://folk.ntnu.no/leifh/teaching/tkt4140/._main025.html
https://math.stackexchange.com/questions/2527302/whats-the-motivation-for-runge-kutta-methods
http://www.scholarpedia.org/article/Runge-Kutta_methods
http://www.scholarpedia.org/article/Initial_value_problems
https://na.uni-tuebingen.de/~lubich/pcam-ode.pdf
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5 Systems of IVP’s

A physical process is often not described by a single differential equation, but by a system
of two or more differential equations which are related to one another, i.e. are coupled.
Such a system of two simultaneously working and coupled 1st-order ODEs has the form

ODEsys :

{
x′ = f(t, x, y), x(to) = xo
y′ = g(t, x, y), y(to) = yo

}
(5.1)

For a system of two ODEs, two initial conditions are now required. We seek for two solution
functions x(t) und y(t) that fulfills both equations f and g and both initial conditions.
Moreover, a 2nd-order differential equation of the form y′′ = f(x, y, y′) can be replaced by
two coupled 1st-order differential equations. It is therefore sufficient to know a solution
method for two coupled 1st-order differential equations.

Figure 18:

Bräuning [12, p.11] motivates the dealing with systems of ordinary differen-
tial equations through their use in the natural sciences like:
Left:(circuit) ”An electrical circuit contains a generator with the time-
dependent voltage E(t), a spool with the inductance L an ohmic resistor R1
as well as in series the parallel connection of a second ohmic resistor R 2 and
1 capacitor with the capacity C. If we want a differential equation for the
time of the voltage uC on the capacitor, the result is system of 2 first-order
differential equations: L di

dt + R1i + uC = E(t) & i = CduC
dt + uC

R2
.”

Right: (coupled springs) ”When examining the plane movement of a double
pendulum, one is led to a complicated 4th order differential equation system,
where the highest derivatives therein are ϕ̈ and ψ̈. ...”

In this chapter we first study systems of two ODEs and corresponding Maxima solution
methods. Then we deal with 2nd-order differential equations of the form y′′ = f(x, y, y′)
and specialized numerical solution methods.
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5.1 Solving IVP systems

Example 19. (solving an IVP system of 2 equations in Maxima)
Solve numerically the system

dx

dt
= 4− x2 − 4y2 &

dy

dt
= y2 − x2 + 1

for t between 0 and 4, and with values of -1.25 and 0.75 for x and y at t = 0.
Cf. https://maxima.sourceforge.io/docs/manual/maxima_112.html#index-rk

Solution: We have the system
{
x′=f(t,x,y)=4−x2−4y2, x(0)=−1.25
y′=g(t,x,y)=y2−x2+1 , y(0)=0.75

}
.

To get the solutions x(t) and y(t), we call the build-in Maxima function rk(.):

/* MAXIMA -- ODE system of 2 coupled equations */

sol: rk([4-x^2-4*y^2, y^2-x^2+1], [x, y], [-1.25, 0.75], [t, 0,4, 0.02])$

/* eq1 eq2 vars x0 y0 region h */

wxplot2d([discrete, makelist([p[1], p[2]], p, sol)],

[xlabel, "t"], [ylabel, "x"])$

wxplot2d([discrete, makelist([p[1], p[3]], p, sol)],

[xlabel, "t"], [ylabel, "y"])$

wxplot2d([discrete, makelist([p[2], p[3]], p, sol)],

[xlabel, "x"], [ylabel, "y"])$

The plots show the solutions for variables x and y as a function of t and the plot (xt, yt).
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5.1.1 iterate3

In order to program our own numerical solution methods for systems of ODEs using
iterate, we need a version iterate3, which deals with 3 recurrent entries.

/* MAXIMA --- iterate3 for triples --- */

iterate3(u,x,x0,n) := block([numer:true],

cons(x0,makelist(x0: subst([x[1]=x0[1],x[2]=x0[2],x[3]=x0[3]],u) ,i,1,n)));

We show two examples of a simple approximative solutions of ODE pairs using iterates3.

Example 20. (a simple Euler method for a system of 2 coupled ODEs, cf. [9, p.258])

Solve the system
{
x′=f(t,x,y)=y, ,x(0)=4
y′=g(t,x,y)=−ty−x−6t2, y(0)=0

}
.

/* Do not forget to invoke iterate3 before .. */

fpprintprec: 5$

f(t,x,y) := y; /* the system (f,g) */

g(t,x,y) := -t*y-x-6*t^2;

a:0; b:4; c:0; /* ICs */

h: 1/8; /* chose step size */

n: 16; /* chose number of iterations */

iterate3([t+h, x+h*f(t,x,y), /* updating the ODE system */

y+h*g(t,x,y)], [t,x,y], [a,b,c], n);

B Click to RUN the code.

The display shows in the last triple entry, that for t = 2.0 we get x(2) ≈ −3.6598 and
y(2) ≈ −8.1691.

Example 21. Solve the system
{
y′=f(x,y,z)=2x−3z, y(0)=1
z′=g(x,y,z)=y−2z, z(0)=0

}
.

This system has the exact solution (yx, zx) = (cosh(x) + 2 sinh(x), sinh(x)).

fpprintprec:5$

h: 0.1;

f(x,y,z) := 2*y-3*z;

g(x,y,z) := y-2*z;

iterate3([x+h, f(x,y,z)*h + y, g(x,y,z)*h + z], [x,y,z], [0,1,0], 10);

/* test: */

y5: cosh(1.0)+2*sinh(1.0);

z5: sinh(1.0);

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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B Click to RUN the code.

♥ We now transfer our knowledge about solution methods for a single ordinary dif-
ferential equation in Maxima in rapid succession to systems of 2 coupled IVPs. We
demonstrate the respective procedure with a typical example directly after the imple-
mentation.

5.1.2 Euler’s method for systems of IVPs

We interpret the EULER method for a single ODE now for a system of 2 IVP’s, cf.
Bronson [9, p.258], BHellevik: Systems., B: Free fall. We have:

/* MAXIMA --- EULER method for systems of IVP --- */

EULERsys(t,x,y, to,xo,yo, h,n) :=

iterate3([t+h, x+h*f(t,x,y), y+h*g(t,x,y)], [t,x,y], [to,xo,yo], n)$

/* Test: */

f(t,x,y) := y;

g(t,x,y) := x+t;

EULERsys(t,x,y, 0,0,1, 0.2, 5);

B Click to RUN the code.

5.1.3 Picard–Lindelöf method of successive approximation for systems

Bräuning [12, p.160] formulate the Picard–Lindelöf method for a system of 2 IVP’s,
which I quote here:

fpprintprec:5$ ratprint:false$ kill(arrays)$

f(x,y,z) := z; /* =y’ */

g(x,y,z) := y + x; /* =z’ */

[a,b] : [0,0]; /* y(a) = b */

[c,d] : [0,1]; /* z(c) = d = y’(c) */

y[0](x) := b;

y[n](x) := b + integrate( f(t, y[n-1](t), z[n-1](t)), t,a,x);

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
https://folk.ntnu.no/leifh/teaching/tkt4140/._main010.html
https://folk.ntnu.no/leifh/teaching/tkt4140/._main011.html
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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z[0](x) := d;

z[n](x) := d + integrate( g(t, y[n](t), z[n-1](t)), t,c,x);

y[5](x), expand;

y[5](1), numer;

z[5](1), numer;

B Click to RUN the code.

5.1.4 RK4sys alias Runge–Kutta method for Systems of IVP’s

We define the analogon of RK4 for a system of IVP’s, cf. Bronson [9, p.258] or Bräuning[12,
p.258].

/* MAXIMA --- RUNGE-KUTTA method RK4sys for systems of IVP --- */

RK4sys( x,y,z, xo,yo,zo, h,n):= block(

k1 : h*f(x,y,z),

l1 : h*g(x,y,z),

k2 : h*f(x+1/2*h, y + 1/2*k1, z + 1/2*l1),

l2 : h*g(x+1/2*h, y + 1/2*k1, z + 1/2*l1),

k3 : h*f(x+1/2*h, y + 1/2*k2, z + 1/2*l2),

l3 : h*g(x+1/2*h, y + 1/2*k2, z + 1/2*l2),

k4 : h*f(x+ h, y + k3, z + l3),

l4 : h*g(x+ h, y + k3, z + l3),

iterate3([x+h, y + 1/6*(1*k1+2*k2+2*k3+1*k4),

z + 1/6*(1*l1+2*l2+2*l3+1*l4)],

[x,y,z],[xo,yo,zo],n) )$

/* Test: ODE system {f=z, g=y+x} with y(0)=0 & z(0)=1. Wanted: y=? & z=? */

fpprintprec:5$

f(x,y,z) := z;

g(x,y,z) := y+x;

RK4sys(x,y,z, 0,0,1, 0.2, 5);

B Click to RUN the code.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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5.2 IVP of 2nd Order

One can replace a second-order differential equation y′′ = f(x, y, y′) by two cou-
pled first-order differential equations and then use the methods in 5.1 for systems
of differential equations to solve such an equation: we make the simple substitution
y′ = z, and the second-order differential equation y′′ = f(x, y, y′) transforms into the
two 1st order ODEs y′ = z & z′ = f(x, y, y′). Ergo, it is in principe sufficient to
know a solution method for two coupled 1st-order differential equations to solve a a
2nd-order ODE.

We demonstarte this in the next example.

Example 22. (one 2nd order ODE  two 1st order ODEs, cf. Bronson, [9, p.258])
a. Reduce the IVP y′′ − y = x; y(0)=0

y′(0)=1
of order 2 to a system of two 1st order IVP’s.

b. Find y(1) using Euler’s method EULERsys for systems with h = 0.1.
c. Find y(1) using RK4sys method for systems with h = 0.1.
d. Find y(1) using Picard–Lindelöf method with a ’good’ index i for (y[i](1), z[i](1)).
e. Find y(1) using rk(.) for systems with h = 0.1.

Solution:

a. Defining z := y′, we have z(0) = y′(0) = 1 and z′ = y′′.
The given ODE is therefore y′′ = y + x = z′. To sum up:

TRANSFORMATION one 2nd order ODE two 1st order ODEs
y′′ = f(x, y, y′) y′ := z ∧ z′ = f(x, y, y′)

y(xo) = a y(xo) = a
y′(xo) = b z(xo) = b

here
y′′ = f(x, y, y′) = y + x y′ := z ∧ z′ = f(x, y, y′) = y + x

y(0) = 0 y(0) = 0
y′(0) = 1 z(0) = 1

We obtain the 1st order ODE system {y′ = z, z′ = y + x, y(0) = 0, z(0) = 1}, which we
have used in the tests 5.1.2 to 5.1.4 before.
We now calculate the particular solution point y(1) of the solution function y(x) using
numeric methods from 5.1

b. Euler’s method

f(x,y,z) := z;

g(x,y,z) := y+x;

EULERsys(x,y,z, 0,0,1, 0.1, 10);

B Click to RUN the code.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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c. RK4sys method

fpprintprec:5$

f(t,x,y):=y;

g(t,x,y):=x+t;

RK4sys(t,x,y, 0,0,1, 0.1, 10);

B Click to RUN the code.

d. Picard–Lindelöf method

fpprintprec:5$ ratprint:false$ kill(arrays)$ /* because of y[n] */

f(x,y,z):= z;

g(x,y,z):= y+x;

[a,b] : [0,0]; /* x0=a, b=y0=y(x0) */

[c,d] : [0,1]; /* x0=c, d=y’(x0)=z(x0) */

y[0](x) := b;

y[n](x) := b + integrate( f(t, y[n-1](t), z[n-1](t)), t,a,x);

z[0](x) := d;

z[n](x) := d + integrate( g(t, y[n](t), z[n-1](t)), t,c,x);

y[9](x), expand;

y[9](1), numer;

B Click to RUN the code.

e. rk(.) build-in for systems

fpprintprec:5$

sol: rk([y, x+t], [x, y], [0, 1], [t, 0, 1, 0.2])$

wxplot2d([discrete, makelist([p[1], p[2]], p, sol)],

[xlabel, "t"], [ylabel, "x"])$

wxplot2d([discrete, makelist([p[1], p[3]], p, sol)],

[xlabel, "t"], [ylabel, "y"])$

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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B Click to RUN the code.

We check on the left graph of x(t), that x(t = 1) ≈ 1.3 and on the right graph of y(t), that
y(t = 1) ≈ 2.1, which looks OK.

♥

We now present two specialized functions called RK4ode2 and RK4romer, which allows
to give up the transformation 2ndorderODE  1storderSystem and direct use the
given 2nd order ODE y′′ = f(x, y, y′) as input for these methods.

5.2.1 Braeuning’s method for 2nd order IVP

Braeuning [12, p.181 ff] discuss the following variant of RK4sys and give recurrence for-
mulas and an example. We translate this algorithm to Maxima, yp (’y prime’) is y′.

/* MAXIMA -- BRAEUNING’s method for 2nd order IVP --- */

RK4ode2( x,y,yp, xo,yo,ypo, h, n):= block(

k0 : 1/2*h^2* f(x,y,yp),

k1 : 1/2*h^2* f(x+h/2, y + 1/2*h*yp + 1/4*k0, yp + k0/h),

k1p : 1/2*h^2* f(x+h/2, y + 1/2*h*yp + 1/4*k0, yp + k1/h),

k2 : 1/2*h^2* f(x+h, y + h*yp + k1p, yp + 2*k1p/h),

k : 1/3*(k0+ k1+ k1p ),

l : 1/6*(k0+2*k1+2*k1p+k2),

iterate3([x+h, y+h*yp+k, yp+2*l/h],[x,y,yp],[xo,yo,ypo],n) );

/* Test 2nd order IVP y’’=x+y+y’ with y(0)=1 and y’(0)=1 */

f(x,y,yp):=x+y+yp;

RK4ode2(x,y,yp, 0,1,1, 0.1, 10);

B Click to RUN the code.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Remark. If the IVP of 2nd order does not depend on y′ (yp), there are more simplifications
possible. Example: y′′ = − sin(y), y(0) = 0, y′(0) = 2. Solve this 2nd order IVP.

Exercise 123. (Bräuning, [12, p.27]) We let a ball roll on a fall line of a parabolic
cylinder, where the dimensions can be taken from the picture. We measure x and y in
centimeters, so the path of the ball has the equation y = 1

90
x2. We use the value g = 981

[c/s2] for the gravitational acceleration.

LEXICON: German English
Rollweg path of contact point

Then one gets – for physical reasons18 – the differential equation of the motion

ẍ = − x

2025 + x2
· (31532 + ẋ2)

Calculate the motion x(t) of the ball for x(0) = 30 cm and x′(0) = 0 cm.
What is the approximative value of x(20)?

5.2.2 Romer’s method for 2nd order IVP

Romer [42, p.28 ff] discuss the following variant of RK4sys, which we translate to Maxima.

/* MAXIMA --- ROMER’s method for 2nd order ODE --- */

RK4romer( x,y,yp, xo,yo,ypo, h, n):= block(

k1 : h* f(x,y,yp),

k2 : h* f(x+h/2, y + 1/2*h*yp + h/8*k1, yp + k1/2),

k3 : h* f(x+h/2, y + 1/2*h*yp + h/8*k1, yp + k2/2),

k4 : h* f(x+h, y + h*yp + h/2*k3, yp + k3),

iterate3([x+h, y+h*(yp+1/6*(k1+k2+k3)), yp+1/6*(k1+2*k2+2*k3+k4)],

[x,y,yp],[xo,yo,ypo],n) );

/* Test: 2nd order ODE y’’=x+y+y’ with y(0)=1 and y’(0)=1; wanted: y(1)=? */

fpprintprec:5$

f(x,y,yp):=x+y+yp;

RK4romer(x,y,yp, 0,1,1, 0.1, 10);

B Click to RUN the code.

18The interested reader can get the derivation (in German) of the ODE on request from the author.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Example 23. (a classic problem, Romer [42, p.30 ff])
A perfectly flexible rope of length ` and mass m glide smoothly over a table edge.

We have the initial conditions: x(t = 0) = 0.1 [m], ẋ(t) = 0, g = 9.81 [m/s−2], ` = 1 [m].

a. Determine the ropes position x(t = 0.5) [sec].

b. At which moment t the rope leave completely the table?

c. The exact solution is x(t) = xo
2
· (e−
√
g/`·t + e

√
g/`·t).

Compare with the approximate solution.

Solution:

ad a. : We have Mẍ = M
`
· x · g  ẍ = g

`
· x

fpprintprec:5$

g: 9.81$ L: 1$

f(x,y,yp) := g/L*y; /* = y’’ */

/* x0 y0 yp0 h n */

RK4romer(x,y,yp, 0, 0.1, 0, 0.05, 20);

B Click to RUN the code.

The returned values coincide with the tabulated values of the Basic program by Romer.
The ropes position at t = 0.5 [sec] is ca. x = 0.25 [m].

ad b. : left as exercise.

ad c. : left as exercise.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Exercises.

Exercise 124. Reduction of Higher order Equations B Hellevik: ivp.

Exercise 125. Solve the IVP system y′ − 2y = −3z; z′ = y − 2z, y(0)=0
y′(0)=1

.
Use different numerical solving methods.

Exercise 126. Solve y′′ + 5
x
y′ = −y of 2nd order with the initial conditions y(0)=0

y′(1)=0
.

Exercise 127. Solve y′′ + 6y′ + 8y = 4x + 3e−x given y(0)=0
y′(0)=4

to find y(1) correct to six

decimal places, cf. [29, p.284]. [Result: y(1) = 0.598451 to 6D.

Determine the exact analytical solution ye(x) and compare with the approximative solution.

Exercise 128. Solve the system of 1st order IVPs dx
dt
− x− 5y = 18t; dy

dt
+ 2x+ y = 9,

given x(0) = 4, y(0) = −1, cf. [29, p.287].

Exercise 129. Solve the system {dx
dt
− 2x− 3y = 3 cos t; dy

dt
+ x+ 2y = sin t},

given x(0) = −1, y(0) = 1, cf. [29, p.287].

Exercise 130. Express the equation x2y′′ + 7xy′ − 7y = 14 ln x+ 2 as a pair of simulta-
neous 1st order equations. Given x(0) = −1, y(0) = 1, find y(2) correct to six decimal
places, cf. [29, p.287]. Determine the exact analytical solution ye(x) and compare with the
approximative solution. [Result: y(2) ≈ 5.617612 to 6D.

Exercise 131. (swinging door, cf. [29, p.328])

Lowe/Berry present many solved applications of second order and simultaneous
first order differential equations on about 60 pages. There is also a modeling approach
to differential equations. We quote here a sample:

A swinging door has a damping device so that the mathematical model for the angular
displacement θ(t) is

Iθ̈ = −aθ − bθ̇

where I, a and b are constants. Consider a system for which I = 1.5 kg s2 m−1, a = 6kg
m−1, b = 7.5 kg s m−1 and for which the initial conditions are Θ(0) = π/3 and Θ̇(0) = 0.

a. Formulate and solve an initial value problem that models this system.

b. Draw a graph of the displacement Θ with time.

c. What does your model predict as t becomes large?

https://folk.ntnu.no/leifh/teaching/tkt4140/._main006.html
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Exercise 132. In fig.13Left we got the ODE of the pendulum through the equation

−m`ϕ̈−mg sinϕ = 0
We measure the length of the pendulum so, that g

`
= 1. For small deviations of ϕ we may

use the first 2 terms of the Taylor series of sinϕ ≈ ϕ− ϕ3

6
and arrive at the simplified ODE

ϕ̈ = −g
`
(ϕ− 1

6
ϕ3) (‡)

a. Solve eq. ‡ for the IC ϕ(0) = 0, ϕ̇(0) = 2 with the methods
– successive approximation
– RK4sys, RK4ode2, RK4romer and rkMaxima.
and compare the methods. Plot the solutions.

b. Solve the original not simplified 2nd-order ODE: ϕ̈ = − sinϕ with ϕ(0) = 0 and ϕ̇(0) = 2.
(use: h = 0.2)

c. Solve the linearized and therefore simplified eq.‡: ϕ̈ = −ϕ with ϕ(0) = 0 and ϕ̇(0) = 2.

Exercise 133. (rolling pendulum, cf. Bräuning, [12, p.27])

A circular cylinder with mass m and radius r, whose center of gravity S is a small distance
s(0 < s < r) from the central axis, lies on a horizontal plane. The cylinder is deflected
from its rest position by an angle ϕ and then left to its own movement. It oscillates back
and forth (neglecting damping, closed physical system). – The physical investigation of
the oscillation process of this roll pendulum leads to a second-order differential equation:

[
Θs

m
+ (r2 + s2 − 2rs cosϕ)]ϕ̈+ (rϕ̇2 + g)s sinϕ = 0 (†)

where Θs is the moment of inertia.

a. Using special values for m,Θs, r, s we get the specialized ODE:

(8− 2 cosϕ)ϕ̈+ (ϕ̇2 + 2) sinϕ = 0 (††)
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Solve (††) for the IC ϕ(0) = π
2
, ϕ̇(0) = 0, i.e. the pendulum is deflected just far enough,

that its center of gravity is at the height of the central axis and then left to its own motion.
[Result: we get for small values e.g. ϕ(0.5) ≈ 1.5395 and ϕ̇(0.5) ≈ −1.2564.

b. Verify, that the corresponding system of simultaneous IVP’s for ‡ is

y′ = z

z′ = − z2 + 2

8− 2 cos y
· sin y

y(0) =
π

2
, z(0) = 0

Use h = 0.2 and calculate the motion over the time interval −0.2 ≤ x ≤ 2.
[Control: (x, Y, Z) |2.0≈ (2.0, 1.0530,−0.5314)

c. Redo this exercise using built-in function rk.

Exercise 134. (swinging spring, cf. Bräuning, [12, p.21 ff])

Look again at fig.13right: .

The physical investigation of the oscillation process of this spring leads to a second-order
differential equation:

−mẍ− kẋ− cx = 0

where k ∈ IR a constant w.r.t damping. Using the shortcuts k
m

=: 2d and c
m

=: ω2
0, we

arrive at the 2nd order IVP
ẍ+ 2dẋ+ ω2

0 · x = 0

Discuss the motion of the swinging spring for d := 1/2 and ω2
0 := 1.

Chose different IC’s. Interpret your choice.
Use different methods and also the built-in function rk.

Remark.
1. Woollett discuss in his publication Maxima by Example: Ch. 3, Ordinary Differen-
tial Equation Tools, see p.24 ff in §3.4.4 in great detail the linear oscillator with damping
and in §3.4.6 on p.30 ff. the motion of a driven damped planar pendulum. He make pri-
marily use of build-in analytic tools like desolve etc. I will recommend the study of his
work especially for the physicist.

2. Timberlake [48, p.97 ff] discuss the damped harmonic oscillator and the pendulum
on p.115 ff. He also make use of analytical methods like Maxima’s desolve.

https://home.csulb.edu/~woollett/mbe3ode1.pdf
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6 Boundary Value Problems - Numerical Methods

We presented several methods of approximating solutions to an initial value problem (IVP).
Now we study approximative solutions to a boundary value problem (BVP). Such a problem
consists of a differential equation together with two boundary conditions imposed at each
end of the interval of definition.
We devote to methods of approximating the solution to a 2nd order boundary value problem
of the form

y′′ = f(x, y, y′) with y(xo) = a, y(xe) = b (6.1)

The solution y(x) to a BVP (6.1) may describe a physical situation, such as the height
of a construction at different points and supported by posts at x = xo and x = xe. The
boundary conditions (BC) y(xo) = a and y(xe) = b give the height of the construction
at each post at the boundary. We are only interested in the solution between the posts,
because there is no construction outside this interval:

6.1 Shooting Method

The theoretical idea of the shooting method of approximating the solution y of a second
order boundary value problem of the form y′′ = f(x, y, y′) with boundary conditions (BC)
y(xo) = a, y(xe) = b is:

1: transform the 2nd order BVP into one system of two 1st order IVP’s with initial
conditions (IC) using a unknown w by

ODE BVP IVP
differential eq. y′′ = f(x, y, y′) y′ = z ∧ z′ = f(x, y, z)

BC: y(xo) = a, y(xe) = b

IC: y(xo) = a, z(x0) = w =?

with w so, that y(xe)
!

= b

2: define helper function F (w) := (approx. solution to IVP at x = xe) - b
3: solve F (w) = 0, i.e. search for w∗ with F (w∗) = 0.
4: put w∗ back in IVP to solve the BVP.
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Let’s look at the idea in a figure, modified from B Heckbert: bvp:

Figure 19:

Idea: a projectile is shooted from start position (0, 0) at the target
• (5, 40) with different slopes wk. The winning slope w and its
corresponding trajectory is sandwiched between three trial shoots
• − •. The BVP y′′ = f(x, y, y′) with BC y(xo) = a, y(xe) = b is
approximately solved with RK4 and a bisection of the trials wk.

We now follow the shooting method in an example, see [43, p.403].

6.1.1 Solve BVP y′′ = y + sin(x+ y′), y(0) = 1.2, y(3) = 2.4 by shooting.

We follow the 4-step plan of the shooting method. We use Maxima.
1: transform 2nd order BVP  system of two 1st order IVP’s
2: define function F (w) := (approx. solution to IVP at x = xe) - b
3: solve F (w) = 0
4: put w back in IVP (solves original BVP).

Solution:

ad 1: transform the 2nd order BVP into two 1st order IVP’s:

Translate BVP IVP
differential eq. y′′ = y + sin(x+ y′) y′ = z ∧ z′ = y + sin(x+ y′)

BC1: y(0) = 1.2
BC2: y(3) = 2.4
IC1: y(0) = 1.2

IC2: z(w) = 2.4 with w so, that y(3)
!

= 2.4 !

https://www.cs.cmu.edu/~ph/859B/www/notes/ode/bvp.html
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We fire two shots with guess w = 1 and w = −1:

fpprintprec:5$

ratprint:false$

f(x,y,z):=z;

g(x,y,z):=y+sin(x+z);

RK4sys(x,y,z, 0,1.2, 1, 3/16, 16);

B Click to RUN the code.

last(RK4sys(x,y,z, 0,1.2, -1, 3/16, 16))[2];

B Click to RUN the code.

ad 2: define helper function F (w) := (approx. solution to IVP at x = xe) - b

fpprintprec:5$

ratprint:false$

f(x,y,z):=z;

g(x,y,z):=y+sin(x+z);

F(w):= last(RK4sys(x,y,z, 0,1.2,w, 3/16, 16))[2] - 2.4;

B Click to RUN the code.

There is no output - don’t be disappointed: Maxima has only learned and accepted this
definition.

ad 3: solve F (w) = 0, i.e. search for w∗ with F (w∗) = 0.
• First: Let’s do the built-in function find root the search for us:

find_root(F,w,-1,0);

B Click to RUN the code.

Result: the optimal slope for the best shot is w∗ = −0.9369.

• Second: Let’s write a homemade bisection search method, named bisec, and use it for
searching the root w, cf. [48, p.222]:

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0


6 BOUNDARY VALUE PROBLEMS - NUMERICAL METHODS 85

bisec(F,xL,xR, tol,n) := block(

if (F(xL)*F(xR) > 0) then

print("Sign does not change within interval.")

else for i:1 while ((i<100) and (abs(xR-xL)>tol)) do

(xM:(xL+xR)/2,

if (F(xM)*F(xR) > 0)

then xR:xM

else xL:xM, n:n+1 , print(n, float(xM)) ,

xM ))$

bisec(F, xL:-1, xR:0, tol:0.00001, n:0);

B Click to RUN the code.

ad 4: put w∗ back in IVP to solve the BVP.

RK4sys(x,y,z, 0,1.2, -0.9369, 3/16, 16);

B Click to RUN the code.

Alternatively we may also use our specialized function RK4romer for this 2nd order IVP:

f(x,y,yp):=y+sin(x+yp);

RK4romer(x,y,yp, 0,1.2,-0.9369, 3/16, 16)

B Click to RUN the code.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Result: in both cases the RKsys functions produce the correct BC [3.0,2.4].
We check the plausibility of the solution by a plot of the situation:

f(x,y,yp):=y+sin(x+yp);

wxdraw2d(xaxis = true,

point_size=2,

points_joined=true,

points([0,0]),

xlabel="x",ylabel="y",

color=red,

points( RK4romer(x,y,yp, 0,1.2,-0.93689, 3/16, 16+1) ),

color=blue,

points( RK4romer(x,y,yp, 0,1.2, -0.8, 3/16, 16+1) ),

color=magenta,

points( RK4romer(x,y,yp, 0,1.2, -1, 3/16, 16+1) ),

title="shooting at y(3)=2.4")$

B Click to RUN the code.

Exercise 135. a. What is the (approximate) value of y(0.75)?
b. What is the (approximate) value of y′(0.8)?
c. Verify the results of a. and b. with your ruler on the figure.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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6.1.2 Example: solving a BVP via shooting

Solve the BVP y′′ = y
1+x2

+ y′

10
with BC: y(0) = 1, y(2) = 3. cf. [43, p.398].

Solution.
This time we do the solution in one step: search for w using F and find root.
Therefore we use the equivalent system (f, g) of 2 IVPs ≡ 1 BVP.

/* MAXIMA --- SHOOTING METHOD for BVP --- */

fpprintprec:5$

ratprint:false$

f(x,y,z) := z; /* = y’ */

g(x,y,z) := y/(1+x^2)+z/10;

F(w):= last( RK4sys(x,y,z, 0,1,w, 1/8, 16))[2] - 3;

find_root(F,w,0,1);

B Click to RUN the code.

We get w = 0.58068. Check:

f(x,y,yp):=y/(1+x^2)+yp/10;

RK4romer(x,y,yp, 0,1, 0.058068, 0.1, 20);

B Click to RUN the code.

Result: we see in the last slot y(2) = 3 and y′(2) = 1.8473 for the given BVP. Ok.
Let us plot the approximate solution y(x):

f(x,y,yp):=y/(1+x^2)+yp/10;

wxdraw2d(xaxis = true,

point_size=2,

points_joined=true,

points([0,0]),

xlabel="x",ylabel="y",

points( RK4romer(x,y,yp, 0,1, 0.058068, 0.1, 20) ),

color=red,

title="shooting at y(2)=3")$

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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B Click to RUN the code.

Exercise 136. a. What is the (approximate) value of y(0.75)?
b. What is the (approximate) value of y′(1)?
c. Verify the results of a. and b. with your ruler on the figure.

Exercises.

Exercise 137. Heckbert B bvp gives the following procedural Python code for the secant
method to determine roots of a function. Write a Maxima function secant and use it in
examples 6.1.1 and 6.1.2 instead of find root and bisec.

%% PYTHON code -- rocket = y

function x = secant(x1,x2,tol)

% secant method for one-dimensional root finding

global ye;

y1 = rocket(x1)-ye;

y2 = rocket(x2)-ye;

while abs(x2-x1)>tol

disp(sprintf(’(%g,%g) (%g,%g)’, x1, y1, x2, y2));

x3 = x2-y2*(x2-x1)/(y2-y1);

y3 = rocket(x3)-ye;

x1 = x2;

y1 = y2;

x2 = x3;

y2 = y3;

end

x = x2;

return;

BFor each of the following BVP, use RK4sys with n = 8 steps in conjunction with
find root or bisec to approximate the solution function y(x) and answer the re-
quired questions. Check for plausibility wit RK4romer and do a plot of the scene.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
https://www.cs.cmu.edu/~ph/859B/www/notes/ode/bvp.html
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Exercise 138. Solve the BVP: y′′ = 2y3 with BC: y(1) = 1/4, y(3) = 1/6, cf. [43, p.403].
a. What is the (approximate) value of y(1.5)?
b. What is the (approximate) value of y′(1.25)?
c. The exact solution to the BVP is ye(x) = 1

x+3
on the interval 1 ≤ x ≤ 3.

How do your approximate values in a. and b. compare with the exact values?
d. Plot the approximate solution function y and the exact solution ye and check the results
on the graph.

Exercise 139. Solve y′′ = y2 + y′ + 2
x3
− 3− x2 with y(1) = 2, y(2) = 5

2
, cf. [43, p.403].

a. What is the (approximate) value of y(1.75)?
b. What is the (approximate) value of y′(1.75)?
c. The exact solution to the BVP is ye(x) = x+ 1

x
on the interval 1 ≤ x ≤ 2.

How do your approximate values in a. and b. compare with the exact values?
d. Plot the approximate solution function y and the exact solution ye and check the results
on the graph.

Exercise 140. (Bulirsch–Stoer, [46, p.156], §7.3.1) Solve the BVP y′′(x) = 3
2
y2 with

y(0) = 4, y(1) = 1 approximately using RK4sys or RK4romer.
The graph of F (w) := ... − 1 has two roots, the first one is w1 = −8 and has the exact
solution y(x) = 4

1−x2 .
Do a survey analog to exercise 138. Cf. B wiki: Example: Standard boundary value problem.

Exercise 141. (Bulirsch–Stoer, [46, p.167], §7.3.4) Solve the

BVP :


y′′ = λ · sinh(λy) (λ ∈ IR)

y(0) = 0

y(0) = 0

This BVP makes problems. Try to get the solution 4.5750 · 10−2 for λ = 5.

Exercise 142. (Burden–Faires, [10, p.582]) a. Solve the

BVP :


y′′ = − 2

x
y′ + 2

x2
y + sin(lnx)

x2

y(1) = 1

y(2) = −2 on the interval 1 ≤ x ≤ 2.

b. Do also example 1 B Barannyk

Exercise 143. (Borse, [7, p.459]) Solve the

BVP :


(y − 1)2y′′ + 2(y − 1)(y′)2 = 0

y(0) = 2

y(1) = 3

by the shooting method and compare with the exact solution ye(x) = 1 + (7x+ 1)1/3.

https://en.m.wikipedia.org/wiki/Shooting_method
https://www.webpages.uidaho.edu/~barannyk/Teaching/shooting_linear.pdf
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Exercise 144. (Borse, [7, p.459]) Solve the BVP y′′ + y = 2e−x, y(0) = 0, y(π
2
) = 0

approximately using the shooting method and compare with the exact solution ye(x) =
−e−π/2 sin(x)− cos(x) + e−x.

Exercise 145. (Venz, [49, p.49]) The physical theory of a sagly rope leads to the differ-
ential equation S · y′′ = −q(x), where S is the traction in [N] and q the load per unit of
length [N/m]. On the rope lie a snow load of variable size:

We approximate the load by the function q = q0 · sin(π
2
· x
xb

).
Then the differential equation is

y′′ =
q0
S
· sin(

π

2
· x
xb

)

Calculate the rope’s sag function y(x), where we have xa = 0 m, y(xa) = 0 m and xb = 1
m, y(xb) = 1 m and q0

S
= 6 [1/m]. Use a step size of h = 0.125 m.

Exercise 146. (Bräuning, [12, p.27]) We let a ball roll on a fall line of a parabolic
cylinder, where the dimensions can be taken from the picture. We measure x and y in
centimeters, so the path has the equation y = 1

90
x2. We use the value g = 981 [cm/s2] for

the gravitational acceleration.

LEXICON: German English
Rollweg path of contact point

Then one gets – for physical reasons19 – the differential equation of the motion
..
x= − x

2025 + x2
· (31532+

.
x)

19The interested reader can get the derivation (in German) of the ODE on request from the author.
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Calculate the motion x(t) of the ball for x(0) = 30 cm and x′(0) = 0 cm.
Use a shooting method with a step size of h = 0.05.

Exercise 147. Do the examples from B Grothmann: Shooting ..

>Documentation>Examples>All Examples>Shooting method for boundary Problems

and at ...>Singular Boundary Value Problem.

Exercise 148. Do the examples from B iron: bvp 1, i.e. solve the BVP y′′ = − (y′)2

y
with

BC y(0) = 1, y(1) = 2.

Exercise 149. Do the B Heckbert: rocket problem. using our Shooting method.

Exercise 150. Do the BVP’s in B Niemeyer: Shooting method. using our Shooting method.

Exercise 151. Do the BVP’s B Dorine: Shooting method. on the deflection of a supported
beam with a constant distributed load.

Exercise 152. Do the 3 BVP’s B Arefin et al.: Shooting methods. in: Analysis of Reliable
Solutions to the Boundary Value Problems by Using Shooting Method

Exercise 153. Do the BVP examples on Shooting byB Uni Muenster, DE: Shooting methods.

Exercise 154. Do the BVP’s B Berkeley Python Numerical Methods: Shooting methods.

Exercise 155. Have a look at the BVP examples in B Verschelde 2022: Shooting.

Exercise 156. Look at the BVP’s B Hellevik: NM 4 Engineers: Shooting methods. and do a
few of the examples as you like
a. B : Couette-Poiseuille flow.

b. B : Simply supported beam.

c. B : boundary value problems with nonlinear ODEs.

d. B : Large deflection of a cantilever.

e. B : Stokes first problem.

Here are more infos and examples:

Exercise 157. B Kumar: Shooting methods.

Exercise 158. B Vesely: Shooting methods.

Exercise 159. B Pardyjak: Shooting methods.

Exercise 160. B Numerical Methods for Engineers: Shooting methods.

http://euler.rene-grothmann.de
https://www.mathstat.dal.ca/~iron/math3210/bvp.pdf
https://www.cs.cmu.edu/~ph/859B/www/notes/ode/bvp.html
https://kyleniemeyer.github.io/ME373-book/content/bvps/shooting-method.html
https://www.section.io/engineering-education/implementing-shooting-method-in-matlab/
https://www.hindawi.com/journals/mpe/2022/2895023/
https://www.uni-muenster.de/Physik.TP/archive/fileadmin/lehre/NumMethoden/WS1011/script1011BVP.pdf
https://pythonnumericalmethods.berkeley.edu/notebooks/chapter23.02-The-Shooting-Method.html
http://homepages.math.uic.edu/~jan/mcs471/shooting.pdf
https://folk.ntnu.no/leifh/teaching/tkt4140/._main028.html
https://folk.ntnu.no/leifh/teaching/tkt4140/._main029.html
https://folk.ntnu.no/leifh/teaching/tkt4140/._main030.html
https://folk.ntnu.no/leifh/teaching/tkt4140/._main032.html
https://folk.ntnu.no/leifh/teaching/tkt4140/._main033.html
https://folk.ntnu.no/leifh/teaching/tkt4140/._main038.html
https://www.earthinversion.com/techniques/solving-boundary-value-problems-using-the-shooting-method/?utm_content=cmp-true
https://homepage.univie.ac.at/franz.vesely/cp_tut/nol2h/new/c4od_s3bv.html
https://my.mech.utah.edu/~pardyjak/me6700/Lect15_BoundEigenvalueProblemsCh27.pdf
https://personales.unican.es/gila/class_ODEs4.pdf


6 BOUNDARY VALUE PROBLEMS - NUMERICAL METHODS 92

6.2 Finite Difference Method

Figure 20:

Idea: The approximative values yk of the solution y to the BVP y′′ =
f(x, y, y′) of 2nd order are calculated by replacing the derivatives y′′ and
y′ by so-called central difference approximations. The 4-point ’stencil’

xk−1
yk
xk xk+1 traverse from the first BC1: x0 = 0, y0 = 0 on the left

to the second BC2: xn = 5, yn = 40 on the right in steps of length h,
producing a new equation in each step.

The theoretical idea of the Finite Difference Method (FDM) of approximating the solution
y of a second order boundary value problem of the form y′′ = f(x, y, y′) with boundary
conditions BC: y(xo)=a

y(xe)=b
is:

1: replace the first and second derivatives y′, y′′ in the BVP equation y′′ = f(x, y, y′) by ap-
proximating values (’central differences’) at each point of the constructed grid (x0, x1, x2, ..., xe),
where xk := x0 + k · h and h := x0−xe

n
for a user chosen n ∈ IN, i.e.:

BVP: equation substitute by for k = 1, 2, , ..., n− 1

y′′ = f(x, y, y′) yk : approximate value of the BVP solution at xk

y′(xk) ≈ ypk := yk+1−yk−1

2h

y′′(xk) ≈ yppk := yk+1−2·yk+yk+1

h2

2: write down the corresponding BVPk equation for each interior point (stencil) (xk, yk)
3: include the BC equations y0 := a, yn := b to get now a linear system of n+ 1 equations
for the n+ 1 unknowns y0, y1, ..., yn
4: solve this tridiagonal system of linear equations using i.e. rref or linsolve or ... .
STOP.
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We now follow the Finite Difference Method (FDM) in an example, see [43, p.407].
We do one step after the other in this procedure to semi-automate the solution process.

6.2.1 Solve BVP y′′ + 0.2y′ + 4y = 3x+ 1, y(0) = 0.1, y(1) = 0.7 for n = 4.

We fix n = 4.
We follow the 4-step plan of the FDM. We use Maxima.
1: replace the first and second derivatives in the BVP equation by their approximations
2: write down the corresponding BVPk equations
3: include the BC equations
4: solve this tridiagonal system.

Solution:

ad 1: we define the set of unknowns yk and the substitutions20 for y′, y′′ in Maxima:

kill(y)$ fpprintprec:5$ ratprint:false$

y : makelist (concat (y,i), i,0, 4); /* (0) */

yp(k,h) := (y[k+2]-y[k])/(2*h); /* (1) */

ypp(k,h) := (y[k]-2*y[k+1]+y[k+2])/h^2;

x(k) := xo+k*h;

FDM(k,h) := ypp(k,h) + 0.2*yp(k,h) + 4*y[k+1] = 3*x(k)-1; /* (2) */

/* y’’ + 0.2 y’ + 4 y = 3x-1 */

B Click to RUN the code.

Herein FDM(k,h) represents the corresponding BVPk equation y′′ + 0.2y′ + 4y = 3x + 1
(see 2:) and yp and ypp the derivatives (see 1:).

ad 2: write down the corresponding BVPk=1,2,3 equations, named eq[i] in Maxima :

n:4$ xo:0$ xe:1$

h: (xe-xo)/n;

eq[1]: FDM(1,h), expand, numer;

eq[2]: FDM(2,h), expand, numer;

eq[3]: FDM(3,h), expand, numer;

B Click to RUN the code.

20yp means yprime i.e. y′ and ypp ≡ y′′.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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ad 3: include the BC equations y0=y(0) = 0.1, y4 =y(1) = 0.7 into the eq. list M :

M: flatten([y0=0.1, makelist(eq[i], i,1,3), y4=0.7]);

Comment: Maxima’s makelist returns a list of the equations eqk in the form [[..], [..], ..],
therefore we use the Maxima function flatten(.) to kill the interior brackets [..] and to
get a comma separated list of the BVPk equations:

B Click to RUN the code.

ad 4: solve this tridiagonal system.
We use a homemade routine named rref21 to solve the system.

rref(a):=block([p,q,k], [p,q]:matrix_size(a), a:echelon(a), k:min(p,q),

for i thru min(p,q) do (if a[i,i]=0 then (k:i-1, return())),

for i:k thru 2 step -1 do

(for j from i-1 thru 1 step -1 do a: rowop(a,j,i,a[j,i])),

a)$

Am: augcoefmatrix(M, [y0,y1,y2,y3,y4]); /* (1) */

rref(Am), numer; /* (2) */

Y: -col(rref(Am), 6), numer; /* (3) */

B Click to RUN the code.

21rref i.e. Row Reduced Echelon Form; this script is found at B stackoverflow: rref

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
https://stackoverflow.com/questions/30693793/how-to-find-the-reduced-row-echelon-form-of-a-matrix-in-maxima
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Comment: Looking at the augmented coefficient matrix (Am) of our system of the equa-
tions eqk in (1), we observe the tridiagonal shape of the system. The Maxima function
augcoefmatrix returns the augmented coefficient matrix for the variables x0, .., xn of the
system of linear equations eq0, .., eq4. This is the coefficient matrix of the system with a
column adjoined for the constant terms on the RHS in each equation.
Warning: Am produces wrong signs on the RHS of the system m! Therefore the same is
true for the result of rref in (2) and we have to invert the signs to get the correct solution
vector Y in (3) resp. in (%o26).

4: plot the result.
The complicated exact solution ye(x) of the BVP is given in [43, p.409]:

ye(x):= exp(-x/10)*( 31/80*cos(sqrt(399)*x/10)

+ 0.464502*sin(sqrt(399)*x/10)) + 3*x/4 - 23/80;

X: makelist(x(k), k,0,4);

Y: flatten (makelist (makelist (Y[i], i, 5)));

XY: makelist([ X[i],Y[i]] ,i,1,n+1);

wxdraw2d(xaxis = true,

point_size=2,

points_joined=true,

xlabel="X(i)",ylabel="Y(i)",

points(XY),

color=red,

explicit(ye(x),x,0,1), /* Vegleich mit exakter L~A¶sung */

title="FDM approximating polygon solution")$

B Click to RUN the code.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Exercise 161. Repeat example 6.2.1 for n = 8.

Exercise 162. Solve 6.2.1 using linsolve or solve instead of rref.

Exercise 163. Solve 6.2.1 using invert for the matrix inverse instead of rref.
You may use Cm:coefmatrix(m,[y0,y1,y2,y3,y4]); and then do Cmm1.(-col(Am,6));

Exercise 164. (augcoefmatrix)

Using Maxima’s augcoefmatrix allows to go from the system of linear equations eqk directly

and comfortable to the matrix of coefficients and also to append the RHS’s as a column vector.

This allows very compact and short code lines to formulate the FDM.

• Schonefeld [43, p.409] has to construct the ’augcoefmatrix’ ’by hand’ - complicated.
• The same is true for the Python code for the FDM by Heckbert at B BVP: FDM.

% PYTHON code for finite differences method to solve fireworks problem

function findif(n)

..

h = te/n;

A(1,1) = 1;

b(1) = 0; % y0 = 0

for i = 2:n

A(i, i-1:i+1) = [1 -2 1];

b(i) = ...;

end

A(n+1,n+1) = 1;

b(n+1) = ye;

...

a. Try to explicitly construct a Maxima function augcoefmatrix1 along the Python code
lines of Heckbert.
b. Solve 6.2.1 using your homemade Maxima function augcoefmatrix1.

Exercise 165. Redo the FDM fireworks example by Heckbert at B BVP: FDM. using our
4-step-procedure to solve an BVP.

https://www.cs.cmu.edu/~ph/859B/www/notes/ode/bvp.html
https://www.cs.cmu.edu/~ph/859B/www/notes/ode/bvp.html


6 BOUNDARY VALUE PROBLEMS - NUMERICAL METHODS 97

6.2.2 the general procedure FDM for BVP y′′ = f(x, y, y′), BC : y(xo)=a
y(xe)=b

.

/* MAXIMA --- FINITE DIFFERENCE METHOD (FDM) for BVP of 2nd order --- */

FDM(xo,xe,a,b,n):= block( kill(y),

h : (xe-xo)/n,

x(k) := xo + k*h,

y : makelist (concat (y,i), i,0, n), /* (1) */

yn : y[n+1],

yp(k) := (y[k+2]-y[k])/(2*h),

ypp(k):= (y[k]-2*y[k+1]+y[k+2])/h^2,

Eqs: flatten([y0=a, makelist( BVP(i),i,1,n-1), yn=b]), /* (2) */

Y : map(rhs, linsolve(Eqs, y)) /* (3) */

)$

/* Test BVP: y’’+0.2y’+4y=3x+1 BC: y(0)=0.1=a, y(1)= 0.7=b */

fpprintprec:5$ ratprint:false$

BVP(k) := ypp(k) + 0.2*yp(k) + 4*y[k+1] = 3*x(k)-1; /* (4) */

FDM(xo:0, xe:1, a:0.1, b:0.7, n:8), numer; /* (5) */

The arguments of FDM(xo,xn, a,b,n) are as follows:

1. xo: the left corner of the interval xo ≤ x ≤ xe of interest

2. xe: the right corner

3. a: the left BC, i.e y(xo) = a

4. b: the right BC, i.e y(xe) = b

5. n: the number of sub-intervals of equal length h

6. BVP(k): the BVP equation in a standard form with lexicon y
y[k]

y′

yp(k)
y′′

ypp[k]
, see (4).

Has to be defined before the call to FDM.

B Click to RUN the code.

Comment: In (1) ff. we define the apparatus for the approximation, i.e. the yi variables
and the discretized derivatives ypi ≡ y′, yppi ≡ y′′. (2) constructs the flattend list of
all discretized BVP equations, including the BC’s, put at the first and last position. (3)
solves the system Eqs of equations using Maxima’s build-in routine linsolve, picks all
RHS values via map(rhs,..) and saves all approximate results for the solution function y
in the container variable Y.

http://maxima.cesga.es/index.php?c=nqxtw25ed62tu5x2eicib&n=0
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Exercises.

Exercise 166. The test run (4) solves exercise 161.
Run the test for n = 16 and do a plot a la 6.2.1.4:.
Solve exercise 138 using our FDM function.

Exercise 167. Use the finite difference method with n = 4, n = 8 and n = 16 to
approximate the solution to the BVP: t2y′′ = −4xy′− 2y with y(1) = 12 and y(3) = 2 and
compare with the exact solution ye = 3

x
+ 9

x2
, cf. [43, p.417].

Exercise 168. Solve exercise 139 using our FDM function.

Exercise 169. Use the finite difference method to
a. approximate the solution to the BVP: y′′ + y

9
= 5 sin(x

2
) with y(0) = 0 and y(π) = 0

with h = π
10

and compare with the exact solution ye = 24
√

3 sin(x/3)− 36 sin(x/2),
b. solve the BVP again with h = π

20
and compare the the absolute errors of the two

calculations. Cf. [7, p.458].

Exercise 170. Do the example from B iron: bvp 3, i.e.

solve the BVP y′′ = − (y′)2

y
with BC y(0) = 1, y(1) = 2.

Exercise 171. Do the difficult example from B iron: bvp 4, i.e.
solve the BVP y′′ − y + y2 = 0 with BC y′(0) = 0, y → 0 as x→ inf, y > 0.

Exercise 172. Do the B Heckbert rocket problem. using our function FDM(.).

Exercise 173. Solve the Bessel IVP y′′ + y′

x
+ y = 0, y(0) = 1, y′(0) = 0 approximately

using our FDM function, cf. [12, p.197].
Compare with the exact solution, the Bessel function J0(x).

Exercise 174. Do the B wiki: Standard boundary value problem. using our FDM(.) function.

Exercise 175. Do the BVP’s examples 4.2.3, 4.2.5 and 4.2.6 of B Niemeyer: FDM.

Exercise 176. Do the 2 BVP’s B Berkeley Python Numerical Methods: FDM.

Exercise 177. Do the BVP’s examples B Uni Muenster, DE: FDM methods. in §3.2.

Exercise 178. Do the example in B Vesely: Relaxation Method.

Exercise 179. Study B Hellevik: NM 4 Engineers: FDM. and B : Differences.

Exercise 180. Do some of the exercises 140 ff using our FDM(.) function.

Intro DE – ♥ – the END

https://www.mathstat.dal.ca/~iron/math3210/bvp.pdf
https://www.mathstat.dal.ca/~iron/math3210/bvp.pdf
https://www.cs.cmu.edu/~ph/859B/www/notes/ode/bvp.html
https://en.m.wikipedia.org/wiki/Shooting_method
https://kyleniemeyer.github.io/ME373-book/content/bvps/finite-difference.html
https://pythonnumericalmethods.berkeley.edu/notebooks/chapter23.03-Finite-Difference-Method.html
https://www.uni-muenster.de/Physik.TP/archive/fileadmin/lehre/NumMethoden/WS1011/script1011BVP.pdf
https://homepage.univie.ac.at/franz.vesely/cp_tut/nol2h/new/c4od_s3bv.html
https://folk.ntnu.no/leifh/teaching/tkt4140/._main038.html
https://folk.ntnu.no/leifh/teaching/tkt4140/._main007.html
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7 Appendix: Collection of Source Code

This is a collection of relevant definitions from the booklet.

/*===== Dr. W.G. Lindner, Leichlingen, Germany, 2023 =====*/

/* PICARD approximation */

fpprintprec: 5$

ratprint: false$

kill(functions, values, arrays)$

f(x,y):= 2*x*y;

[a,b]: [0,1];

y[0](x) := b;

y[n](x) := b + integrate(f(t,y[n-1](t)),t,a,x);

/* Maxima --ODE type I */

odefx(u,x,xo,yo):= block(

I1: integrate(u,x,xo,x),

I2: I1+C,

I3: rhs( solve( at(I2,x=xo) = yo, C)[1]),

I4: I1+I3 )$

/* Maxima --ODE type II */

odefy(u,y,xo,yo):= block(

F: integrate(u,y),

Sol: solve(F=x+C,y)[1],

eq: at(Sol,[x=xo,y=yo]),

c: rhs(solve(eq,C)[1]),

I4: [Sol, c])$

/* Maxima --ODE type III */

odefxgy(f,g, x,y, xo,yo):= block(

F: integrate(f,x,xo,x),

G: integrate(1/g,y,yo,y),

print("DGL:", ’diff(y,x) = f*g ),

print(".. initial condition:", y(xo) = yo),

print("1. step - identify f(x) and g(y): ", f, " , ", g),

print("2. step - calculate F(x)=", ’integrate(f,x,xo,x)= F),

print("3. step - calculate G(y)=", ’integrate(1/g,y,yo,y) = G),

print("4. step - set up Eq. F(x)=G(y):", F=G),
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print("5. step - solve Eq. F(x)=G(y(x)) for y: ", Sol: solve(F=G,y)),

print("6. step - choose solution with ", y(xo)=yo),

print("solution: Sol ="),

Sol)$

/* Maxima -- ODE type III : SEPARATION OF VARIABLES */

separable(f,g,x,y,xo,yo):=

solve( integrate(1/g,y,yo,y)=integrate(f,x,xo,x), y);

/* Maxima --ODE type VI : HOMOGENOUS ODE */

kill(values,arrays)$

f(x,y) := (y+x)/x;

eq1: u+x*du/dx = subst(u*x,y,f(x,y));

solve(eq1,du);

SEPARABLE(g,h, x,y) := integrate(g,x)=integrate(1/h,y)$

eq2: SEPARABLE(1/x, 1, x,u) ;

eq3: subst(y/x, u, eq2);

solve(eq3,y);

/* Maxima --ODE type IV - INTEGRATING FACTOR METHOD */

VoC(p,q, x,y, xo,yo):= block(

M: exp(integrate(p,x)), /* integrating factor */

My: integrate(P*y,x),

print("Step 1: check correct shape y’+py=q : ", ’diff(y,x)+p*y=q),

print(" ... with initial condition:", y(xo) = yo),

print("Step 2 - choose integrating factor M(x) = exp(integral p) =", M),

print("Step 3 - multiply ODE by M*(y’+py=q), integrate : ",

M*y=integrate(M*q,x)),

print("Step 4 - divide through M :", y=expand(integrate(M*q,x)/M)+C/M),

c: at(expand(integrate(M*q,x)/M+C/M), x=xo),

print("Step 5 - calculate C for yo=y(xo) :", solve(yo=c,C) ));

/* Maxima -- ODE type IV : linear ODE and VARIATION OF CONSTANT */

linear1(f,g, x,y, xo,yo) :=

(yo+integrate(g/exp(integrate(f,x,xo,x)), x,xo,x))

* exp(integrate(f,x,xo,x));
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/* Maxima --ODE type V: EXACT ODE */

exact(P,Q, x,y):=

if is( diff(P,y) = diff(Q,x))

then

block( [A,B,C,D],

F: integrate(P,x),

B: F + funmake(A, [y]),

C: diff(B,y) = Q,

D: rhs((solve(C,A(y))[1])),

E: integrate(D,y),

f: F+E )

else ("ODE is not exact.")$

/* MAXIMA --- ITERATE --- */

iterate(u,x,x0,n) := block([numer:true],

cons(x0, makelist(x0:subst(x0,x,u), i,1,n)))$

/* MAXIMA --- iterate2 for pairs/points --- */

iterate2(u,x,x0,n) := block([numer:true],

cons(x0, makelist(x0:subst([x[1]=x0[1],x[2]=x0[2]],u), i,1,n)))$

/* MAXIMA --- iterate3 for triples --- */

iterate3(u,x,x0,n) := block([numer:true],

cons(x0, makelist(x0:subst([x[1]=x0[1],x[2]=x0[2],x[3]=x0[3]],u),i,1,n)))$

/* Maxima -- SECANT METHOD */

/* include function iterate(..) here */

secant1(u,x, a,b, n) := block(

[C: (a-b)/(subst(a,x,u)-subst(b,x,u))],

iterate( x - C*u, x,a,n)) ;

/* Maxima -- NEWTON-RAPHSON iteration */

/* include our function iterate(..) here */

newton1(u,x,a,n) := block([c: float(at(diff(u,x),x=a))],

iterate( x-u/c, x,a, n) );

/* Maxima -- IMPLICIT DIFFERENTATION */

idiff(f,x,y,m):=block(

IMP1: iterate(’diff(u,x) + f*’diff(u,y), u,f,m-1),

factor(ev(IMP1, diff)) )$
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/* Maxima -- IMPLICIT TAYLOR METHOD of order m */

/* include our functions iterate(u,x,xo,n) and idiff(f,x,y,m) here */

iTaylor(f,x,y, h, m) := y + idiff(f,x,y,m).makelist(h^r/r!, r,1,m);

/* Maxima -- TAYLOR SOLUTION METHOD of ODE y’=f(x,y) */

/* include functions iterate2(u,x,xo,n), idiff(f,x,y,m)

and iTaylor(f,x,y,h,m) here */

iTaylorsol(f,x,y, xo,yo, h, m, n) :=

iterate2([x+h, iTaylor(f,x,y, h, m)], [x,y], [xo,yo], n);

/* MAXIMA : --- EULER method ---* /

EULER(x,y, xo,yo, h, n) := iterate2([x+h, y+h*f(x,y)],[x,y],[xo,yo],n);

/* MAXIMA : --- modified EULER method --- */

modiEULER(x,y, xo,yo, h,n):= block(

k1 : f(x,y),

k2 : f(x+h, y + h*k1),

iterate2([x+h, y+h/2*(k1+k2)],[x,y],[xo,yo],n) );

/* MAXIMA --- HEUN’s method --- */

HEUN( x,y, xo,yo, h,n) := block(

k1 : f(x,y),

k2 : f( x+2*h/3, y+2*h/3*k1 ),

iterate2([x+h, y+h/4*(k1+3*k2)],[x,y],[xo,yo],n) );

/* MAXIMA : --- MIDPOINT METHOD as RK2 method --- */

midpoint( x,y, xo,yo, h,n) := block(

k1 : f(x ,y),

k2 : f(x, y + h/2*k1),

iterate2([x+h, y+h*k2], [x,y], [xo,yo], n));

/* MAXIMA --- RUNGE-KUTTA order 3 --- */

RK3(x,y,xo,yo,h,n) := block(

k1 : f(x,y),

k2 : f(x+h/2, y + h/2*k1),

k3 : f(x+h, y + 2*h*k2-h*k1),

iterate2([x+h, y+h/6*(1*k1+4*k2+1*k3)],[x,y],[xo,yo],n));
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/* MAXIMA : --- classic RUNGE-KUTTA method of order 4 --- */

RK4(x,y,xo,yo,h,n):= block(

k1 : f(x,y),

k2 : f(x+h/2, y + h/2*k1),

k3 : f(x+h/2, y + h/2*k2),

k4 : f(x+h , y + h*k3),

iterate2([x+h, y+h/6*(1*k1+2*k2+2*k3+1*k4)],

[x , y], [xo,yo], n) );

/* MAXIMA --- EULER method for systems of IVP --- */

EULERsys(t,x,y, to,xo,yo, h,n) :=

iterate3([t+h, x+h*f(t,x,y), y+h*g(t,x,y)], [t,x,y], [to,xo,yo], n)$

/* MAXIMA --- RUNGE-KUTTA method RK4sys for systems of IVP --- */

RK4sys( x,y,z, xo,yo,zo, h,n):= block(

k1 : h*f(x,y,z),

l1 : h*g(x,y,z),

k2 : h*f(x+1/2*h, y + 1/2*k1, z + 1/2*l1),

l2 : h*g(x+1/2*h, y + 1/2*k1, z + 1/2*l1),

k3 : h*f(x+1/2*h, y + 1/2*k2, z + 1/2*l2),

l3 : h*g(x+1/2*h, y + 1/2*k2, z + 1/2*l2),

k4 : h*f(x+ h, y + k3, z + l3),

l4 : h*g(x+ h, y + k3, z + l3),

iterate3([x+h, y + 1/6*(1*k1+2*k2+2*k3+1*k4),

z + 1/6*(1*l1+2*l2+2*l3+1*l4)],

[x,y,z],[xo,yo,zo],n) )$

/* MAXIMA -- BRAEUNING’s method for 2nd order IVP --- */

RK4ode2( x,y,yp, xo,yo,ypo, h, n):= block(

k0 : 1/2*h^2* f(x,y,yp),

k1 : 1/2*h^2* f(x+h/2, y + 1/2*h*yp + 1/4*k0, yp + k0/h),

k1p : 1/2*h^2* f(x+h/2, y + 1/2*h*yp + 1/4*k0, yp + k1/h),

k2 : 1/2*h^2* f(x+h, y + h*yp + k1p, yp + 2*k1p/h),

k : 1/3*(k0+k1+k1p),

l : 1/6*(k0+2*k1+2*k1p+k2),

iterate3([x+h, y+h*yp+k, yp+2*l/h],[x,y,yp],[xo,yo,ypo],n) );
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/* MAXIMA --- ROMER’s method for 2nd order IVP --- */

RK4romer( x,y,yp, xo,yo,ypo, h, n):= block(

k1 : h* f(x,y,yp),

k2 : h* f(x+h/2, y + 1/2*h*yp + h/8*k1, yp + k1/2),

k3 : h* f(x+h/2, y + 1/2*h*yp + h/8*k1, yp + k2/2),

k4 : h* f(x+h, y + h*yp + h/2*k3, yp + k3),

iterate3([x+h, y+h*(yp+1/6*(k1+k2+k3)), yp+1/6*(k1+2*k2+2*k3+k4)],

[x,y,yp],[xo,yo,ypo],n) );

/* MAXIMA --- SHOOTING METHOD for BVP --- */

shoot(xo,a,b ,h,n, p,q) := block(

F(w):= last(RK4sys(x,y,z, xo,a,w, h, n))[2] - b,

W: find_root(F,w, p,q))$

/* MAXIMA --- FINITE DIFFERENCE METHOD (FDM) for BVP of 2nd order --- */

FDM(xo,xe,a,b,n):= block( kill(y),

h : (xe-xo)/n,

x(k) := xo + k*h,

y : makelist (concat (y,i), i,0, n),

yn : y[n+1],

yp(k) := (y[k+2]-y[k])/(2*h),

ypp(k):= (y[k]-2*y[k+1]+y[k+2])/h^2,

Eqs: flatten([y0=a, makelist( BVP(i),i,1,n-1), yn=b]),

Y : map(rhs, linsolve(Eqs, y)) )$
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