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Preface

This booklet would like to whet your appetite to immerse yourself into the world of classical
Differential Geometry. Here we do not reproduce the mathematical theory, but want
instead focus on typical examples and their computations with the help of the small CAS
Eigenmath. The mathematical concepts and operations in Differential Geometry are
often clumsy and uncomfortable and accompanied by heavy calculations, so Eigenmath
as your computer algebraic companion should unburden you of calculations in this theme.
We only cite some of the necessary underlying mathematical definitions and facts to be
able to show the corresponding implementation of the concepts into the language of the
computer algebra system Eigenmath.

For the mathematical description of Differential Geometry parallel with this script, I rec-
ommend the treatments by Galloway, Heckmann, Hertrich-Jeromin, Hitchin,
Shifrin and Wheeler to be found on the internet. These free online texts presents
proofs of proposition and facts, that are only cited here. Recommended books are e.g.
Banchoff/Levitt, Pressley or Thorpe, mentioned in the bibliography.

Looking back at my first contact with Eigenmath I was very impressed by the ingenious
implementation of the Einstein tensor in the calculation of the Schwarzschild metric
by George Weigt in [42]. His script is an eye opener and a convincing powerful example
of the amazing efficiency of Eigenmath.

The collection of the Eigenmath examples and exercise scripts in this booklet not only
want to help the reader to dive into the classical Differential Geometry of surfaces, but
also to become comfortable with the use of the CAS Eigenmath in this field.
It should be mentioned that one do not need to load any software packets into Eigenmath
to do your calculations as it it necessary in most of the big CAS as Maple, Mathematica,
Maxima, Reduce or Sage etc. All you need is immediately at you fingertips and bulid-
in in round about 100 Eigenmath functions - the rest is coded ad hoc with no pain.
So Eigenmath is a small but well designed and powerful CAS, that may be used to
solve problems in mathematics and the natural and engineering sciences. In particular,
the clever built-in functions dot, contract, d, sum allow compact, easy and condensed
tensorial constructs of classical Differential Geometry.

For the inspection or running an Eigenmath script of this booklet no installation is
necessary, everything runs directly online: a click on a link like this one • B Click here in
this text is enough to invoke Eigenmath with the corresponding script being imported -
and by a click on the RUN button the calculation is made, allowing further ad hoc inputs
form the user. If you own a Mac or Linux PC, there is the option to install the app
Eigenmath free of charge and run the scripts by mark–copy–paste into the Eigenmath
window.

https://georgeweigt.github.io/eigenmath-demo.html
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There is a solution booklet with cross-checked calculations using Maple Vr4 and the packet
diffgeo.m by Reckziegel [24] to be found at Lindner [17].

The author studied Differential Geometry from his dear academic teacher Prof. Dr. Peter
Dombrowski at the university of Cologne, Germany, in the 70ies of the last century in a
suite of wonderful precise, crystal clear and inspiring lectures. At that time, illustrations
in the lectures were hardly possible, mostly given with chalk sketches on the blackboard
or hand sketches in the script. Calculations in the lectures exercises were tedious. This
has now all changed for the better, this booklet try to demonstrate this with Eigenmath
for the calculations and CalcPlot3D for the drawings.

I dedicate this little book as a friendly reference to P. Dombrowski. I also took some nice
lectures by Prof. Dr. Helmut Reckziegel, who later wrote a fine book on Differential
Geometry with Maple.

Peter Dombrowski

I want to thank George Weigt for his friendly support with tips and hints while writing
these notes.

Wolfgang Lindner
Leichlingen, Germany
January 2023



1 SURFACES IN THREE DIMENSIONS 5

1 Surfaces in Three Dimensions

Differential Geometry make heavy use of (partial) differentiating functions. We start by
quoting a definition what a surface in space is, cf. e.g. Shifrin [32, p.35]. Then we visit
and explore some specimens and individuals in the zoo of surfaces and show how to express
and inspect surfaces and their characteristics in Eigenmath.

1.1 Definition - Surface

Let U be an open1 set in IR2. Let φ : U → IR3 be a function on U .
We will use u, v as coordinates in our parameter region U , and x, y, z as coordinates in IR3.
a. φ is called C1 iff φ and its partial derivatives ∂φ

∂u
and ∂φ

∂v
exist and are continuous.

b. φ is called smooth iff φ is C3. (We will assume all our functions φ are C3.)
c. φ : U → S ⊂ IR3 is called parametrization of S iff φ is C3 and one-to-one and φu×φv 6= 0,

i.e. (φu, φv) are linear independent.
d. S ⊂ IR3 is called a surface iff S is connected and each point has a neighborhood that is

(regularly) parametrized.
• We will use subscripts a la ...u to indicate partial derivatives, as follows:

fu ≡ ∂f
∂u

fv ≡ ∂f
∂v

fuu ≡ ∂2f
∂u2

fuv ≡ ∂2f
∂u∂v

• As a first preview on what follows in the forthcoming chapters and to give an ’advanced
organizer’ we present in one scene most of the objects and concepts we will discuss later
in detail:

Figure 1:

Basic perception/mental image of space vs surface:
IR3: the ambient space �.
S: a surface © inside the ambient space.
TpS: tangential space at p on the surface S.
e2 = Z2 ..: basis vectors in ambient space, denoted e. or Z..
∂1 = E1 ..: basis in tangential space TpS, denoted ∂. or E..

1If in the following chapters U is not open, we could easily find an open set U ′ with U ⊂ U ′.
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•: a point with coordinates (x, y, z) ∈ IR3 in ambient space.
•: a point with coordinates (u, v) ∈ U on surface S.

Remark. We agree on the following conventions and notations in order to distinguish
between objects in space respectively on the surface if necessary. In doubt we use latin
letters like i, j, k (running through 1,2,3) to index mathematical entities in ambient space
V = IR3 and we use greek letters like α, β (running through 1,2) to address mathematical
objects in a surface S. Per example, the covariant metric tensor in ambient space g (in
short: the space metric g) is noted as gij, whereas the covariant metric tensor in surface
(in short: the surface metric s) may be noted as gαβ or as sαβ. If the context is clear and
there is no doubt, we also use gij as notation for the surface metric.

LEXICON Math Eigenmath
space coordinates X = (x, y, z) or xi xi X=(x,y,z)

surface coordinates U = (u, v) or uα uα U=(u,v)

space basis e1, e2, e3 ei, i = 1, 2, 3 e1,e2,e3

surface basis ∂1, ∂2 or E1, E2 ∂i or Ei, i = 1, 2 E1,E2

space metric g = gij gij g=gij

surface metric s = sαβ sαβ s=salphabeta

We start with some memories about surfaces of multivariate functions. We remember
of graphs alias function surfaces, level sets and parameterizations. Function surfaces
(’graphs’) are preferred in advanced calculus, when it comes to partial derivatives and
surface integrals, cf. [21] or [33, p.111, p.207 ff]. Parameterizations of surfaces are the
main tool in Differential Geometry and we will focus later on that.

Remark. (A hint for the use of Eigenmath)
If you see a link like

• Mark & Copy the blue code lines. B Then Click here and Paste it into the input box �RUN. Press RUN.

do not forget to click into the Online form to give it the focus. You have the focus, if the
Eigenmath Online frame change to blue. Please check, wether all input lines are pasted
with the right NEW LINE ending! Otherwise correct the pasting inside the online frame so
that the code is formatted exactly as in the blue template here in this booklet.

If you see a link to open or run a script in CAS Eigenmath like

• B Click here to RUN the code.

you will directly be online linked to Eigenmath to run, work or alter this code script.

https://georgeweigt.github.io/eigenmath-demo.html
https://lindnerdrwg.github.io/diffgeo01.html
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Figure 2:
Visualization of the tangential plane TpS at p on surface S
with tangential basis vectors ∂1 and ∂2 and ambient space
basis E1, E2, E3 in IR3, cf. Rejbrand [25].

1.2 Function Surfaces

The graph of a function of two variables is a surface in space. The graph of function f(x, y)
consists of all points (x, y, z) in space such that (x, y) is in the definition domain of the
function and f(x, y) = z, i.e.

graph(f) := {(x, y, z) ∈ IR3|z = f(x, y)}

Function surfaces alias function graphs are used primarily in multivariate calculus books,
cf. Dineen [7] or Marsden [21].

Example 1. We plot graph(f) of the function f : IR2 → IR defined by f(x, y) = xy with
CalcPlot3D. Start CalcPlot3D by clicking this link: B Open CalcPlot3D .

Then we only have to override the given function term z = 7xy/exp(x2 + y2) with xy

in the Graph menu:

https://c3d.libretexts.org/CalcPlot3D/index.html
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Figure 3:
surface plot of graph(f) in IR3 of function f(x, y) = xy over
rectangle (x, y) ∈ [−2,+2]× [−2,+2] in IR2.
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To use function f e.g. to calculate some points on the f -surface we invoke Eigenmath.

# EIGENMATH

f(x,y) = x*y

f(3,2)

f(a,b)

"the point at the right peek"2D

f(2,2)

B click here and copy & paste the previous blue code lines into the input box �RUN. Then press RUN.

Exercise 1. Sketch the graph of f(x, y) = x− y+ 2. For which coordinates x, y, z do you
reach point p = (−2, 0, 0)? C.f. [21, p.711]

Exercise 2. Reproduce the plot of the so-called dog saddle i.e. the function surface of
f(x, y) = 4x3y − 4xy3, c.f. [21, p.722].

Exercise 3. Plot the function surface of f(x, y) = x3−3x
1+y2

, c.f. [21, p.821].

Exercise 4. Plot the function surface of f(x, y) = sin(πx)
1+y2

, c.f. [21, p.822].

Exercise 5. Plot the function surface of f(x, y) = x2−y2
x2+y2

, c.f. [21, p.837].

Exercise 6. Plot the function surface of f(x, y) = y3

x2+y2
, c.f. [21, p.837].

Exercise 7. Plot the function surface of f(x, y) = x3−3xy2
x2+y2

, c.f. [21, p.837].

https://georgeweigt.github.io/eigenmath-demo.html
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1.3 Level Surfaces

Every graph is a level surface, so level sets generalize the concept of a graph.
Let f be a function of three variables and let c be a constant real number.
A c-level surface of f , denoted f−1(c), is the set of all allowable inputs pairs (x, y) with
f(x, y) = c:

f−1(c) := {(x, y, z) ∈ IR3 : f(x, y, z) = c}

Level surfaces alias level sets of functions are primarily used by Thorpe [36] and are also
addressed in some detail in Dineen[7].

Example 2. We plot the 1-level surface f−1(1) of the function f : IR3 → IR defined by
f(x, y, z) = x2 +y2−z2, i.e. the set {(x, y, z) ∈ IR3 : x2 +y2−z2 = 1} with CalcPlot3D.
In the Add to graph: menu we select Implicit surface and write in the input box
[Eq: x∧2+y∧2-z∧2=1].

Figure 4:
Level surface of x2 + y2 − z2 = 1 over the
cube (x, y, z) ∈ [−2,+2]× [−2,+2]× [−2,+2].
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We check some points in IR3 for being members of the 1-level set of f with Eigenmath:

# EIGENMATH

f(x,y,z) = x^2+y^2-z^2

f(1,1,1) -- (1,1,1) is in level surface

f(sqrt(2),0,1) -- (sqrt(2),0,1) is in level surface

f(2,1,2) -- (2,1,2) is in level surface

B To open Eigenmath click here.

Exercise 8. Let f(x, x, z) = x2 + y2 − z2. Plot the level surface f(x, y, z) = −1.
Cf. [21, p.722].

Exercise 9. Let f(x, y, z) = x2 +2y2 +3z2 = 10 be the ellipsoid realized as a level surface.
Plot it.

Exercise 10. Let f(x, y, z) = xey − z. Plot the level surface f−1(0).

Exercise 11. Let f(x, y, z) =
√
x+
√
y +
√
z. Plot the level surface f−1(4).

https://georgeweigt.github.io/eigenmath-demo.html
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1.4 Parametric Surfaces

Surfaces in 3-dimensional space are most described using a parametric representation. Each
point p on a surface S is assigned a pair of parameter values u and v by a mapping φ, i.e.
a parametrization φ maps a 2-dimensional region U of IR2 to part of a surface in IR2.

• For example, φ : [0, 2π]× [o, π]→ IR3 defined through

(u, v) 7→ (2 sin(v) cos(u), 2 sin(v) sin(u), 2 cos(v))

patches the 2-dimensional sphere S2. One also denote this mapping by

x(u, v) = 2 sin(v) cos(u) y(u, v) = 2 sin(v) sin(u) z(u, v) = 2 cos(v)

or shorter x = 2 sin(v) cos(u), y = 2 sin(v) sin(u), z = 2 cos(v).
This surface is visualized by CalcPlot3D in the following way: invoke the menu via

≡ Examples > Parametric Surfaces > Sphere > and click the trace pane t . The result is:

Figure 5:

Parametric surface by φ with parameters u, v.
(1): the parametric surface φ([0, 2π]× [o, π]).
(2): some toggles for zoom, Edges, Faces etc.
(3): the trace pane to toggle (u, v) parameter region on/off.
(4): the parameter region [0, 2π]× [o, π] is ’on’.
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We implement this parametrization φ using Eigenmath:

# EIGENMATH

Phi(u,v) = (2 sin(v) cos(u), 2 sin(v) sin(u), 2 cos(v))

Phi -- show Phi

Phi(1,1)

float(Phi(1,1))

Phi(pi/3,pi/3)

Phi(a,b)

B Click here to RUN the code.

Eigenmath output:

In case you want to check, if u and v are admissible for input in the parametrization
formula, you may test it in (1) before the calculation is done in (2) and otherwise through
out an error message in (3):

# EIGENMATH

Phi(u,v) = test( and( and(0 <= u,u <= 2pi), --(1)

and(0 <= v,v <= pi)),

(2 sin(v) cos(u), 2 sin(v) sin(u), 2 cos(v)), --(2)

"u or v not allowed." ) --(3)

float(Phi(1,1))

Phi(-pi/3,pi/3) -- output: ’u or v not allowed.’

Remark. 1. Parametrization of surfaces is the most general concept to describe surfaces
in space, cf. [7, p.100]. A parametrization is also called a surface patch or a chart.
More information is found e.g. in [23, p.59 ff], [36, p.121 ff] or [22, p.1 ff] or [32, p.34].
2. Because level surfaces and parametric surfaces are locally the same, cf. [36, p.121 ff],
we use in the following mostly surface parametrizations.

https://lindnerdrwg.github.io/diffgeo01.html
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3. Thorpe [36, p.110] gives the definition: A parametrized 2-surface in IR3 is a smooth
map φ : U → IR3, which is regular2. Herein U is a connected open set in IR2.

Exercise 12. (Plücker’s Conoid)

a. Identify Plücker’s Conoid in the Parametric Surface list of CalcPlot3D.

b. What is the parametric region for u, v ?

c. Give the definition of the parametrization φ.

d. Write down the parametrization φ in Eigenmath and do some tests.

Exercise 13. (Catenoid) The catenoid is the 2D parametric surface defined by the follow-
ing parametric equations:

φ(u, v) =

 c cosh v
c

cosu
c cosh v

c
sinu

v


where u ∈ [−π, π) and v ∈ R and c is a non-zero real constant.
Plot the catenoid for c = 1 using CalcPlot3D.

Exercise 14. (Helicoid) The helicoid is the 2D parametric surface defined by

φ(u, v) = (v cos(αu), v sin(αu), u)

with patch region u ∈ [−π, π), v ∈ R and α is a non-zero real constant.
Plot the helicoid surface for α = 1 using CalcPlot3D.

Exercise 15. (Scherk’s surface) The Scherk surface is the 2D parametric surface de-
fined by

φ(u, v) = log

(
cos(u)

cos(v)

)
where (u, v) ∈

(
−π

2
,+π

2

)
×
(
−π

2
,+π

2

)
⊂ R2.

Plot the Scherk surface using CalcPlot3D.

2i.e. the Jacobi matrix of all partial derivatives is non-singular, which allows to have locally non-zero
normal vector fields, see below and §1.1. a.–d.
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Exercise 16. (Enneper’s surface) The Enneper surface is the 2D parametric surface
defined by φ(u, v) = (u− 1

3
u3 + uv2, v− 1

3
v2 + vu2, u2 − v2) with patch region u ∈ [−π, π),

v ∈ R. Plot the Enneper surface using CalcPlot3D.

♥

Let’s sum up:

LEXICON Math Eigenmath
function surface for f : U ⊂ IR2 → IR: f(U) ⊂ IR3 f(x,y)

level surface for f : U ⊂ IR3 → IR: f−1(c) ⊂ IR3 f(x,y,z)=c

parametric surface for φ : U ⊂ IR2 → IR3: φ(U) ⊂ IR3 phi(u,v)

There is no commonly accepted notation for parametrization φ (=greek letter p for parameter)

and their partial derivatives φu ≡ ∂uφ ≡ ∂φ
∂u

, so we present this

LEXICON Math Eigenmath
Parametrization ; partial derivative w.r.t. u:

in Banchoff[2]: ~X(u, v) ; ~Xu X(u,v) ; d(X,u)
in Dineen[7]: φ(u, v) ; φu phi(u,v) ; d(phi,u)

in Grinfeld[11]: Sα ; ∂R
∂Sα

S=(S1,S2) ; d(R,S1)

in Heckmann [13], Wheeler [43]: r(u, v) ; ru r(u,v) ; d(r,u)
in Pressley[23]: σ(u, v) ; σu sigma(u,v) ; d(sigma,u)

in Thorpe[36]: ϕ(u, v) ; ϕu phi(u,v) ; d(phi,u)
in Shifrin[32]: x(u, v) ; xu x(u,v) ; d(x,u)

Grinfeld calls the parameter (u, v) the Surface coordinates, denoted (S1, S2).
Pressley denotes the parametrization σ after the greek lower case letter s for Surface.
Heckmann and others denote the parametrization r after the position (direction) vector
pointing to a point R on the surface . . .
We use the convention in Dineen.

♥

We should now have a solid feeling for what a 2D surface is.

♥
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2 The Gauss Map

We quote Thorpe [36, p.31 ff], see also Banchoff [2, p.173] or Shifrin [32, p.45].

2.1 Definition

An oriented 2-surface S in IR3 is a 2-surface together with a smooth unit normal
vector field N on S. The function N : S → IR3 maps S into the unit sphere S2.
Think N : S → S2 as map which assigns to each point p ∈ S the point in IR3

obtained by translating the unit normal vector Np to the origin.
This map N is called the Gauss map.

Remark. This concept has two important consequences:

1. The Gauss map N allows for an intuitive visual feeling how (much) the surface is
’curved’. Look at Fig. 6! We will comment about it in a moment.

2. The exterior normal vector N allows for explicit calculation formulas of the curvature
of a surface - with Eigenmath too. This will be a main theme of this booklet.

3. The normal N allows for the calculation and visualization of the tangent plane TpS
at a point p on the surface S. We will show how.

Figure 6:

Left: Image of Gauss map in S2 of a plane M . The blue
normal vector Np at p in plane M is mapped to the red
vector N

′
p in sphere S2.

Right: Image of Gauss map in S1 of a curve (part of ellipse,
a 1D surface) M . The normal vector Np at p at tangential
’plane’ TpM is mapped to green vector N

′
p in sphere S1.



2 THE GAUSS MAP 17

Comment. We interpret fig.6.
Left: The surface M is a plane in IR3. At each point p of M the normal points in the same
direction, i.e. the normal field is constant on the whole of M . Ergo the image of the Gauss
map remains the same constant normal N

′
p on the sphere! This shows that the normal field

does not change its value - the plane is not ’curved’. Using CalcPlot3D we can move
resp. trace the normal on the u-v-region and verify visually that N is constant and the
coordinates of N , which are displayed at the green message pane above, remain the same.
Right: The 1D ’surface’ M is part of an ellipse in IR2. At the endpoint p of the position
vector R(p) the green exterior normal Np is perpendicular to the tangent plane TpM of the
surface M . If you hike along M in direction of the letter ’y’ the normal rests perpendicular
to the changing TpM ’s, but change its direction (and magnitude) always faster! Ergo N
is not constant on M and its images N

′
p builds a part of the sphere S1. Ergo the surface

M is ’curved’. Using CalcPlot3D we can trace the normal N on the u-v-region and
verify visually that N is permanently changing its direction and also its coordinates, which
are displayed at the CalcPlot3D’s green message pane above. This explains en passent
what ’field’ means ...
This should give you a first intuitive feeling what a curvature is.

LEXICON Math Eigenmath
exterior surface normal vector field: N N

exterior surface normal vector at p: Np N(p)

2.2 Examples of surface normals

In the following we give examples of normal vectors (fields) of surfaces S, using all three
representations - normals on function surfaces, on level surfaces and on parametric surfaces.
We also demonstrate how to calculate the corresponding tangential space TpS using the
normal vector at a specific point p.

2.2.1 Normal on a Function Surface

If we parameterize S = graph(f) using the parameterization φ(u, v) = (u, v, f(u, v)), then
we can always choose

N :=
(−fu,−fv, 1)√

1 + f 2
u + f 2

v

(2.1)

as unit normal (vector field) N . Remember: fu ≡ ∂f
∂u

.

Example 3. Let f : IR2 → IR defined by f(x, y) = x2 + y2 − 4x− 6y + 13, cf. [21, p.714].
a. Calculate the unit normal N at p = (4, 3).
b. Plot the function surface with unit normal N .
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Solution: We use Eigenmath. N is calculated by means of the differential operator
d(f,x), which returns the partial derivative of f with respect to x.

# EIGENMATH

f(u,v) = u^2+v^2-4u-6v+13

f

p = (4,3)

U = (u,v) -- coordinates in input region U in R^2

fu = d(f,u) -- partial derivative with respect to u

fv = d(f,v)

N = (-fu,-fv,1)/sqrt(1+fu^2+fv^2) --(1) formula for N

Np = eval(N, u,4, v,3) --(2) normal N at p

Np

• B Click here to RUN the script.

Eigenmath output: Np ≈ [-0.97,0,0.24].

Comment. In (1) we calculate the unit normal N using the given formula. With eval(.)

we put u = 4 and v = 3 in the return value for N . We get

Np = (
−4√

17
, 0,

1√
17

)

The plot of CalcPlot3D shows a paraboloid of revolution with unit normal at p = (4, 3)
pointing into the interior of the surface parallel to the u = x axis with a tiny elevation
of −0.24 in the direction of the z-axis. The approx. value of Np is also displayed in the

message pane of CalcPlot3D as ~N(4, 3) = −0.9701̂i+ 0.2425k̂.

Exercise 17. Verify the formula for N using the given parameterization and the general
formula for parametric surfaces in 2.2.3.

https://lindnerdrwg.github.io/diffgeo02.html
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Exercise 18. (parabolic cylinder) Sketch the function surface given by z = −y2, cf. [21,
p.714]. Calculate and display the unit normal N at p = (1, 2).
Trace Np using u-v-region and watch the changing N .

Exercise 19. (volcano) Sketch the function surface given by

z = (x2 + 3y2) · e1−x2−y2

over the u-v-domain [−2,+2]× [−2,+2], cf. [21, p.717].
Calculate and display the unit normal N at p = (1, 1).

2.2.2 Normal on a Level Surface

It is well known from calculus, cf. e.g. [36, p.8], that the gradient of a function f of three
variables is orthogonal to the tangential plane TpS at that point, where the gradient is
calculated. Let p lie on the level surface S defined by f(x, y, z) = c ∈ IR, then grad(f, p)
is perpendicular (”normal”) to TpS, i.e. grad(f, p) ⊥ TpS.
Therefore, if f is the defining function for a level surface S = f−1(c) we always choose the
unit normed gradient3 grad(f) of f as the canonical unit normal vector field N :

N :=
grad(f)

‖grad(f)‖
(2.2)

Example 4. Let f(x, y, z) = x2 + y2 − z2. Calculate grad(f, p) for p = (0, 0, 1).
Plot this gradient at the level surface f(x, y, z) = −1. c.f. [21, p.806].

Solution: We use Eigenmath. grad(f) is calculated by means of the differential operator
d(f,x), which returns the partial derivative of f with respect to x.

# EIGENMATH

f(x,y,z) = x^2 + y^2 - z^2

f

p = (0,0,1)

X = (x,y,z) -- coordinates in ambient space

d(f,X) -- (1) d(f,X) = grad(f) i.e. all partial derivates

gradfp = eval(d(f,X), x,0, y,0, z,1)

gradfp -- (2)

• B Click here to RUN the script.

Eigenmath output: [2x, 2y, -2z] and gradfp = (0,0,-2).

3We denote the gradient of f by grad(f) and do not choose the common notation ∇f , because Eigen-
math does not have the nabla symbol ∇ available.

https://lindnerdrwg.github.io/diffgeo03.html
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We plot the hyperboloid of two sheets using CalcPlot3D.

Exercise 20. Calculate the unit normal N at p for the surface M in fig.6.left.

Exercise 21. Let f(x, y, z) = x2 + 2y2 + 3z2 = 10 be the ellipsoid realized as a level
surface.
a. Calculate a unit normal vector at each of the points p1 = (

√
10, 0, 0), p2 = (−

√
10, 0, 0)

and q1 = (1, 0,
√

3), q2 = (−1, 0,−
√

3).
b. Do these normals point to the inside or outside of the ellipsoid?
c. Plot the complete scene with CalcPlot3D and verify your findings, cf. [21, p.807].

Example 5. (Example 2.3 of [7, p.18]) Let S denote the set of all points in IR3 which
satisfy the equation x2 + 2y2− 5z2 = 1. Find the tangent space TpS and the normal at the
point (2,−1, 1) on S.

Solution: Our ansatz is:
1. Calculate the normal vector field N of S. In this case N must not be of unit length.
2. Calculate TpS using the fact that N ⊥ TpS, i.e. TpS : (X − p) •N = 0 for all X ∈ TpM .
We use Eigenmath.

# EIGENMATH

f(x,y,z) = x^2+2y^2-5z^2

f

f(2,-1,1) -- check if p in S, ok

p = (2,-1,1)

X = (x,y,z) -- coordinates in ambient space R^3

d(f,X) -- this is N=grad(f) normal vector field
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gradfp = eval(d(f,X), x,2, y,-1, z,1)

gradfp -- this is Np = grad(f,p) the normal at p

TpS = dot(X-p,gradfp) -- this must be zero, because N_|_TpS

TpS

Eigenmath output:

• B Click here to RUN the script.

Because 4x− 4y − 10z − 2 = 0, we resume that TpS : 2x− 2y − 5z = 1.
Let’s plot the whole scene using CalcPlot3D.

Remark. The normal Np was added by hand ♥

https://lindnerdrwg.github.io/diffgeo04.html
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2.2.3 Normal on a Parametric Surface

For a parameterized surface φ : U → IR3 with S = φ(U) we always choose

N :=
φu × φv
‖φu × φv‖

(2.3)

as unit normal (vector field). Herein φu is the partial derivative of φ w.r.t. the first
parameter u. It is well known that N is orthogonal to the tangential plane TpS at the
point, where N is calculated, i.e.

Np ⊥ TpS

Example 6. (Plücker’s Conoid)

Plücker’s Conoid is the parametrized surface defined by the parametric equations
φ(u, v) = (v · cos(u), v · sin(u), 2 cos(u) · sin(u)), where u ∈ [0, 2π] and v ∈ [−3, 3].

Calculate the normal vector field Npluecker.
Calculate the exterior surface unit normal Np at p = (π, 1).

Solution: We use Eigenmath. N is calculated by means of the differential operator
d(phi,u) which returns the partial derivative of the parameterization φ with respect to u.

# EIGENMATH

"PLUECKER conoid"

phi(u,v) = (v*cos(u), v*sin(u),2*cos(u)*sin(u)) -- parametrization

phi -- display phi

phi(pi,1) -- the point p in S

phiu = d(phi,u) -- partial derivative w.r.t. u

phiu

phiv = d(phi,v)

phiv

N = cross(phiu,phiv) -- exterior normal vector

N
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N1 = N/abs(N) -- exterior unit length normal

N1

Np = eval(N1, u,pi, v,1) -- normal at point p

Np

float(Np)

Eigenmath output:

• B Click here to RUN the script.

Comment. On the LHS we look at the normal vector field N(u, v). On the RHS we see
above the normal vector Np =N(pi,1) ∈ IR3 and below its approximate value.

Example 7. (Cylinder) The cylinder is the 2D parametric surface defined by

φ(u, v) = (a cos(v), a sin(v), u)

with patch region v ∈ [−π, π), u ∈ R and a a non-zero real constant.
a. Reproduce the plot of the cylinder in Wolfram [46] for a = 1 using CalcPlot3D.
Compare the parameterizations used by Wolfram with that of CalcPlot3D at
≡ Examples > Parametric Surfaces > Cylinder >.
b. Calculate the normal vector field N for the cylinder.
c. Calculate the exterior surface normal Np at p = (1, π).

Solution to b. and c. We use Eigenmath.

# EIGENMATH

"Cylinder"

phi(u,v) = (a cos(v), a sin(v), u)

a = 1

phi -- display phi

https://lindnerdrwg.github.io/diffgeo05.html
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phi(1,pi) -- look at p=(pi,1) in S

phiu = d(phi,u) -- partial derivative w.r.t. u

phiu

phiv = d(phi,v)

phiv

N = cross(phiu,phiv) -- exterior normal vector

N

absN = abs(N)

absN = 1 -- simplify via c^2+s^2=1

absN

N1 = N/absN -- exterior unit length normal

N1

Np = eval(N1, u,1, v,pi) -- normal at point p Np

float(Np)

Eigenmath output of N1 and N1(p):

• B Click here to RUN the script.

https://lindnerdrwg.github.io/diffgeo06.html
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2.3 Exercises

Exercise 22. (Cone) The cone is the 2D parametric surface defined by

φ(u, v) = (u cos(v), u sin(v), u)

with patch region u ∈ [−π, π), v ∈ R.
a. Reproduce the plot of the cone in Wolfram [45] using CalcPlot3D.
Compare the parametrization used by Wolfram with that of CalcPlot3D at
≡ Examples > Parametric Surfaces > Cone >.
b. Calculate the normal vector field N for the cone.
c. Calculate the exterior surface normal Np at p = (1, π).

Exercise 23. (Sphere) The r-sphere is the 2D parametric surface defined by

φ(u, v) = (r cosu sin v, r sinu sin v, r cos v)

with patch region u ∈ [0, 2π), v ∈ [0, π) and r a positive real constant.

Figure 7:

Fine drawing of the sphere in an old book by Kreyszig
[15, p.93] with ’geographic coordinates’ on the surface of

the sphere. Lexicon: Kreyszig:
here:

u1 u2

u v

a. Reproduce the plot of the sphere in Wolfram [52] using CalcPlot3D and r = 1.
Compare the parametrization used by Wolfram with that of CalcPlot3D at
≡ Examples > Parametric Surfaces > Sphere >.
b. Calculate the normal vector field N for the unit sphere i.e. r = 1.
c. Calculate the exterior surface normal Np at p = (π, π).
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Exercise 24. (Helicoid) The helicoid is the 2D parametric surface defined by

φ(u, v) = (v cos(αu), v sin(αu), u)

with patch region u ∈ [−π, π), v ∈ R and α a non-zero real constant.
a. Reproduce the plot of the helicoid in Wolfram [48] for α = 1 using CalcPlot3D.
Compare the parametrization used by Wolfram with that of CalcPlot3D at
≡ Examples > Parametric Surfaces > Helicoid >.
b. Calculate the normal vector field N for the helicoid.
c. Calculate the exterior surface normal Np at p = (π, 1).

Exercise 25. (Catenoid) The catenoid is the 2D parametric surface defined by the follow-
ing parametric equations:

φ(u, v) =

 c cosh v
c

cosu
c cosh v

c
sinu

v


where u ∈ [0, 2π) and v ∈ R and c is a non-zero real constant.
a. Reproduce the plot of the catenoid in Wolfram [44] for c = 1 using CalcPlot3D.
Compare the parametrizations used by Wolfram with that of CalcPlot3D at
≡ Examples > Parametric Surfaces > Catenoid >.
b. Calculate the normal vector field N for the catenoid.4

c. Calculate the exterior surface normal Np at p = (π, 1).

Exercise 26. (Scherk’s surface) The Scherk surface is the 2D parametric surface de-
fined by

φ(u, v) = (u, v, ln(
cos v

cosu
))

where u, v ∈ [0, 2π).
a. Plot the Scherk surface using CalcPlot3D.
b. Calculate the normal vector field N for the Scherk surface.
c. Calculate the exterior surface normal Np at p = (π, 1).

4Wolfram gives N(u, v) = (− cos(u)sech(v/c),−sech(v/c) sin(u), tanh(v/c)),
cf. https://mathworld.wolfram.com/HyperbolicSecant.html. To get the concrete normal in c. you
don’t has to try to get exactly this result.

https://mathworld.wolfram.com/HyperbolicSecant.html
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Exercise 27. (Enneper’s surface) The Enneper surface is the 2D parametric surface
defined by

φ(u, v) = (u− 1

3
u3 + uv2, v − 1

3
v2 + vu2, u2 − v2)

with patch region u ∈ [−π, π) and v ∈ R .
a. Reproduce the plot of Enneper surface in Wolfram [47] using CalcPlot3D.

b. Calculate the normal vector field N for the Enneper surface.
c. Calculate the exterior surface normal Np at p = (1, 1).
d. Try the parametrization Ψ which is given in Wolfram [47] to solve b. and c.

♥

We should now have a solid feeling
for what a normal vector (field) on a surface is.

♥
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3 The First Fundamental Form

Figure 8:
Visualization of the tangential plane TpS at p on surface S
with tangential basis vectors ∂1 and ∂2 and ambient space
basis E1, E2, E3 in IR3, cf. Rejbrand [25].

To develop general methods to study properties of surfaces in ambient space, we describe
the geometry of a surface by means of a parametrization φ : U → IR3 and measurements,
which are defined on the parameter set U . The so-called metric tensor g alias the first
fundamental form I is such a measurement of a surface parametrization φ, that plays
an crucial role in Differential Geometry and General Relativity. It allows to define and
calculate distances and angles and other measurements on surfaces (’manifolds’) in space,
just as the inner product do it on a Euclidean space. But be warned: in Lindner [16,
p.33 ff] resp. Grinfeld [11, p.56 ff] we defined and calculated the metic tensor ĝ for
the ambient space IR3 using a coordinate basis in IR3, but now we define a metric in a
tangential space TpS of a parametric surface S! Looking at fig. 8 we will therefore use
tangential basis vectors in TpS to construct the metric tensor of the parametrization.

Remark. 1. The components of the surface metric tensor g in a tangential space basis
∂1, ∂2 is a symmetric matrix (tensor), whose entries transform ’covariantly’ under changes
to the coordinate system. Thus a surface metric tensor is a covariant symmetric tensor of
type (0, 2).
2. The surface metric tensor is heavily used to do so-called index juggling, cf. [11, p.88],
i.e. tensor operations of raising or lowering an index, see [16], [2, p.335 ff], [22, p.25 ff].
For the definition of g only the tangential space basis φu, φv of φ will be necessary, the
surface normal vector N will occur crucial in the definition of the second fundamental form
II alias the 2nd fundamental tensor h in the next chapter.
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3.1 Definition

Let φ : U → IR3 be a parametrization of an 2-dimensional parametric surface S.
Let’s denote the parameters (u, v) for the moment tensorial by (u1, u2) and the tangential
space basis vectors of TpS by

∂ = (∂1, ∂2) := (φu1 , φu2) ≡ (
∂φ

∂u1
,
∂φ

∂u2
) (3.1)

Then the (covariant) surface metric tensor g = (gij) alias the first fundamental form I (the
”fff”) is defined as the matrix of the pairwise dot products of these tangential space basis
vectors, i.e.

gij := ∂i • ∂j (3.2)

Remark.
1. The metric tensor is also called Gram’s matrix, therefore the notion gij.
2. We have the explicit calculation formula using the parameterization φ of surface S

gij =
∂φ

∂ui
• ∂φ
∂uj

(3.3)

3. The following lexicon helps to memorize these conventions.

LEXICON Math Eigenmath
covariant surface metric tensor g: gij gdd or simply g

contravariant surface metric tensor g−1: gij guu or gu or inv(g)

In Eigenmath we try to mimic the tensor notion of ij resp. ij resp. i
j by the identifier dd

(read: ’down down’) resp. uu (read: ’up up’) resp. ud (read: ’up down’).5

4. The metric components of g are mostly denoted in classic Gauss writing as

E := g11 = g(∂1, ∂1)

F := g12 = g(∂1, ∂2)

G := g22 = g(∂2, ∂2)

Ergo we have g =
[
E
F
F
G

]
and g−1 = 1

E·G−F 2 ·
[
G
−F
−F
E

]
.

Cf. e.g. [23, p.98].

5. We prefer the notation surface metric tensor for g. But if one thinks metaphorically at
calculating small distances ’ds’ between ’two infinitesimally close’ points6 on the surface
resp. the tangential plane, one gets the following expression for the points distance

I ≡ ds2 = Edu2 + 2Fdudv +Gdv2 = E · du ∧ du+ 2F · du ∧ dv +GE · dv ∧ dv (3.4)

which is the bilinear noted variant of g. This motivates the name choice ’1st fundamental
form’ I. Using such differential forms to calculate line length, areas or volumes using
Eigenmath is demonstrated in [16]. Therefore we will not discuss measurements like
distances or volumes here. Nevertheless you find an example here [8, p.14 ff], [19, p.172].

5This convention was introduced by G. Weigt in his script about the Schwarzschild metric, cf. [42].
6More about this route e.g. in [4, p.170 ff] or [23, p.98].
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3.2 Implementation and Examples

Example 8. (The surface metric tensor g for the monkey saddle) One of the most ele-
mentary examples is the 2-dimensional monkey saddle, cf. Reckziegel [24, p.103],

or google for Bwolfram monkey saddle.
A parametrization for the monkey saddle is

φ : U → IR3

(u, v) 7→ (u, v, u3 − 3uv2)

We use Eigenmath to calculate the surface metric tensor g and the first fundamental
form I ≡ ds2.

# EIGENMATH

"Monkey saddle"

phi(u,v) = (u,v, u^3 - 3u v^2)

du = d(phi,u) -- partial derivative of phi w.r.t. u, cf. eq. (3.2)

dv = d(phi,v)

E = dot(du,du) -- dot product of basis vectors

E

F = dot(du,dv)

F

G = dot(dv,dv)

G

g=((E,F),(F,G)) -- fff in matrix shape

g

guu = inv(g) -- the contravariant fff

guu
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-- alternativ construction

g = zero(2,2)

g[1,1] = dot(du,du)

g[1,2] = dot(du,dv)

g[2,1] = g[1,2]

g[2,2] = dot(dv,dv)

g

-- fff I alias ds^2 in differential form (line element)

ds2 = E*dudu + 2*F*dudv + G*dvdv

ds2

• B Click here to RUN this script.

Eigenmath output:

and (fff) displays the fff in classic differential form, where ds2 in (fff) means ds2 etc.

Exercise 28. a. Reproduce the plot of the monkey saddle with CalcPlot3D.
b. A textbook gives the first fundamental form ”I” of the monkey saddle by

I
How to reconstruct the coefficients E,F,G from I?

https://lindnerdrwg.github.io/diffgeo07.html
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3.3 Exercises

Exercise 29. Calculate the surface metric tensor g for the ’saddle’ surface z = xy.
Hint: parametrization φ by φ(u, v) = (u, v, u · v).

Exercise 30. Let S denote the surface parametrized by φ(u, v) = (u, v, u2 + v2), u, v ∈ IR.
Calculate the surface metric tensor g and the fff I for this surface.

Exercise 31. (The surface metric tensor g for a function surface)
A parameterization of the graph of f with z = f(x, y) is φ(u, v) = (u, v, f(u, v)).
a. Verify with Eigenmath:

E = 1 + f 2
u F = fu · fv G = 1 + f 2

v

b. Calculate the surface metric tensor g and the fff I for the function graph.

Exercise 32. (The surface metric tensor g for the elliptic paraboloid )
The elliptic paraboloid is the parametric surface defined by φ(u, v) = (u, v, u2 + v2).
a. Verify the coefficients of g using Eigenmath: E = 1 + 4u2, F = 4uv,G = 1 + 4v2.
b. Then write down the fff as I = ds2 = . . . .

• You may cross-check your results of the following exercises in [17].

• Calculate the coefficients of the surface metric tensor g =
[
g11
g21

g12
g22

]
=
[
E
F
F
G

]
alias the 1st

fundamental form I using Eigenmath for the following surfaces . . .

Exercise 33. the cylinder φ(u, v) = (a cos(v), a sin(v), u). Choose a = 2.

Exercise 34. the cone φ(u, v) = (u cos(v), u sin(v), u).

Exercise 35. hyperbolic paraboloid φ(u, v) = (u, v, u2 − v2).

Exercise 36. the helicoid φ(u, v) = (v cos(αu), v sin(αu), u). Choose α = 1.

Exercise 37. the unit sphere φ(u, v) = (cos(u) sin(v), sin(u) sin(v), cos(v)).

Exercise 38. the catenoid φ(u, v) = (c cosh v
c

cosu, c cosh v
c

sinu, v).

Exercise 39. the torus φ(u, v) = ((b+ a cos(v)) cos(u), (b+ a cos(v)) sin(u), a sin(v)).

Verify: E = (b+ a cos(v))2, F = 0, G = a2.

Exercise 40. the Plücker Conoid φ(u, v) = (v · cos(u), v · sin(u), 2 cos(u) · sin(u)).
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Exercise 41. the Scherk surface φ(u, v) = (u, v, ln( cos v
cosu

)).

Exercise 42. the Enneper surface φ(u, v) = (u− 1
3
u3 + uv2, v − 1

3
v2 + vu2, u2 − v2).

Exercise 43. the Beltrami pseudosphere
φ(u, v) = (sinu cos v, sinu sin v, cosu+ ln(sinu(cosu+ 1))).

Exercise 44. the hexenhut φ(u, v) = ( α√
u
· cos v, α√

u
· sin v, u) where α2 = 2

3
√
3
.

Exercise 45. the Bianchi surface

φ(u, v) =


2·
√
v2+1·sin(u)·cos(−v+arctan(v))

1+v2 sin(u)2

−2·
√
v2+1·sin(u)·sin(−v+arctan(v))

1+v2 sin(u)2

ln(tan( 1
2u

)) + 2·cos(u)
1+v2 sin(u)2

 (3.5)

Remark. Check your results e.g. by visiting B Rejbrand’s Encyclopedia.

Exercise 46. (The surface metric tensor g for a surface of revolution)
A surface of revolution is obtained by rotating a graph of f : ]a, b[→ IR around an coordinate
axis.

A parameterization is given by

φ(u, v) = (f(u) cos(v), f(u) sin(v), g(u)) (3.6)

Calculate the surface metric tensor g for a surface of revolution parametrized by (3.6).

Remark. For more information see e.g. BWolfram: SurfaceOfRevolution, [2, p.113], [15, p.218],
[23, p.80], [24, p.77],

https://trecs.se/surfaces.php
https://mathworld.wolfram.com/SurfaceofRevolution.html
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Exercise 47. (The surface metric tensor g for a ruled surface)
A ruled surface is a surface S that can be swept out by moving a line in space, i.e it is a
surface which is a collection of straight lines, called the rulings of the surface:

Kreyszig, p. 218

Let c : ]a, b[→ IR3 be a parametrization of a curve with c(u) ∈ S, i.e. each point of c meets
a ruling. Let E(u) ∈ IR3 be a non-zero unit vector positioned at c(u).
Then each point of the surface S is given by the parametrization

φ(u, v) = c(u) + v · E(u) (3.7)

• E.g. Plücker’s Conoid can be written as a ruled surface via the decomposition

φ(u, v) =

 v · cos(u)
v · sin(u)

2 cos(u) · sin(u)

 =

 0
0

2 cos(u) · sin(u)

+ v ·

 cos(u)
sin(u)

0

 (3.8)

Remark. B wolfram: Ruled Surface

Exercise 48. (ruled surfaces vs. surfaces of revolution)
Some of the classical surfaces studied above are constructible as a surface of revolution or
as ruled surface. Fill in and complete the following table:

LEXICON surface is . . . ruled with c and ~r revolution with f and g
c = (0, 0, 2 cosu sinu) E = (cosu, sinu, 0): Plücker’s Conoid

f(u) = g(u) = u: cone
f(u) = r = const g(u) = u: cylinder

f = cosu g = sinu: unit sphere
. . . : . . . . . .

with . . .∈ {helicoid, catenoid, hyp. paraboloid, torus, Scherk, Enneper, pseudosphere, ..}.

a. Calculate the surface metric tensor g for a general defined ruled surface by (3.7).
b. Verify the results of the calculated values in exercise 33 – 45 using the general formula.

Remark. B wiki: Ruled surface.

https://mathworld.wolfram.com/RuledSurface.html
https://en.wikipedia.org/wiki/Ruled_surface
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4 The Second Fundamental Form

Once again, now with N :

Figure 9:
Visualization of the tangential plane TpS at p on surface S
with tangential basis vectors ∂1 and ∂2, ambient space basis
E1, E2, E3 and normal vector N in IR3, cf. Rejbrand [25].

To develop general methods to study properties and the shape of surfaces in ambient
space, we describe the geometry of a surface by means of a parametrization φ : U → IR3

and measurements, which are defined on the parameter set U . The metric tensor g alias
the fff I allowed to measure distances, angles and areas on S.

To measure how ’curved’ a surface is, we introduced the Gauss map resp. the surface
normal vector field N and got a first feeling of the curvature of S by watching the moving
N on the surface. To do this, we have to consider the surface from the outside by means
of the exterior normal N , i.e. look at S as an object of the ambient space IR3, see fig.9.

Various terms have emerged to cope with the curvature of S, each of which sheds light
on different aspects: the Gaussian curvature, the mean curvature, the normal curvature,
the principal curvatures etc. This seems quite confusing at first, but fortunately all these
characteristics can ultimately be traced back to the so-called shape operator A and the
so-called 2nd fundamental tensor h alias the 2nd fundamental form (the ”sff”) II.

So the precise tools to measure the curvature are the sff h and the shape operator A, which
will be defined and implemented first. For the definition of the surface metric i.e. the fff g,
there was only the tangential space basis of the parameterization φ necessary, whereas the
surface normal vector N is now crucial in the construction of the 2nd fundamental form h
and the shape operator A.

All this will be studied in this chapter.
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4.1 Definition

Let φ : U → IR3 be a parametrization of an 2-dimensional parametric surface S.
Let φu and φv be the canonical basis in the tangential space TpS.

Let g = gij be its surface metric tensor and V :=
√
det(g) ist volume element.

Let ~n := φu×φv
|φu×φv | be the unit normal vector field on TpS.

Let’s denote the parameters (u, v) for the moment ’tensorial’ by (u1, u2).
We then define the coefficients of the 2nd fundamental tensor h by

hik := φuiuk • ~n (4.1)

or more explicit

hik :=
∂2φ

∂ui∂uk
•N =

1

V
· det( ∂φ

∂u1
,
∂φ

∂u2
,
∂2φ

∂ui∂uk
) (4.2)

Remark.
1. Equation (4.1) is in Pressley [23, p.124], equation (4.2) in Reckziegel [24, p.110].
2. The components of the 2nd fundamental tensor h are denoted after Gauss by

L := h11 = φuu • ~n
M := h12 = φuv • ~n
N := h22 = φvv • ~n

Ergo we have h =
[
h11
h21

h12
h22

]
=
[
L
M

M
N

]
=
[
φuu•~n
φuv•~n

φuv•~n
φvv•~n

]
.

The following lexicon helps to identify these coefficients L,M,N in other textbooks, which
use sometimes other letters:

LEXICON Math Eigenmath
Gauss: L,M,N L,M,N

Dineen [7, 201], Shifrin [32, p.45 ff]: l,m, n l,n,m

Pressley [23, 124] or [22, p.94] or [19, p.175] or [15, p.146]: L,M,N L,M,N

Banchoff [2, 180], Wolfram mathworld: e, f, g e,f,g

Using Eigenmath we prefer mostly L,M,N and therefore denote the normal vector in
a mathematical context by ~n and in Eigenmath scripts by n to avoid identifier collision
with the surface normal N .
3. One calls the expression

II := Ldu2 + 2Mdudv +Ndv2 ≡ L · du ∧ du+ 2M · du ∧ dv +N · dv ∧ dv

the second fundamental form (abbreviated sff) of φ.
4. For more information on h = II see for example [23, p.98], [2, p.178 ff] or [19, p.171].
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4.2 Implementation and Examples

These constructions should become clear by studying some examples with Eigenmath.

Example 9. (the second fundamental tensor of the surface z = xy)
We use Eigenmath to calculate the second fundamental tensor h and the second funda-
mental form II for the surface S : z = xy, cf. [7, p.202].
The parametrization for the function surface S is φ(u, v) = (u, v, u · v).

Calculate the coefficients L,M,N of the 2nd fundamental tensor h. Determine I.

Solution. We use Eigenmath.
1st we use RHS of equation (4.2) and use the well known identity of linear algebra
det(φ1, φ2, φik) = (φ1 × φ2) • φik in (1), wherein φ1 × φ2 is the normal vector (not yet
normed to length 1):

# EIGENMATH

phi(u,v) = (u,v, u*v)

phi

"surface metric tensor"

g = zero(2,2)

g[1,1] = dot(d(phi,u), d(phi,u))

g[1,2] = dot(d(phi,u), d(phi,v))

g[2,1] = g[1,2]

g[2,2] = dot(d(phi,v), d(phi,v))

g

"inverse of g (could be simplified by mind)"

ginv = inv(g)

ginv

V= sqrt(det(g))

V

"we use defining equation (4.2)"

-- until now we do not use N explicit, so use name N for coefficient

L = 1/V * dot( cross(d(phi,u), d(phi,v)), d(phi,u,u)) --(1)

L

M = 1/V * dot( cross(d(phi,u), d(phi,v)), d(phi,u,v))

M

N = 1/V * dot( cross(d(phi,u), d(phi,v)), d(phi,v,v))

N

• B Click here to RUN this script.

https://lindnerdrwg.github.io/diffgeo08.html
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Eigenmath output:

2nd We use LHS of equation (4.2) resp. equation (4.1) and to avoid the det(..) – which
incorporate implicit the normal vector N = ~n using the cross product – we now have to
calculate explicit the normal vector ~n:

# EIGENMATH

"surface metric tensor alias fff"

g = zero(2,2)

g[1,1] = dot(d(phi,u), d(phi,u))

g[1,2] = dot(d(phi,u), d(phi,v))

g[2,1] = g[1,2]

g[2,2] = dot(d(phi,v), d(phi,v))

g

"unit normal vector"

N = cross(d(phi,u),d(phi,v))

N

absN = abs(N)

absN

N = N/absN

N

"sff in matrix/tensor shape using (4.1)"

h = zero(2,2)

h[1,1] = dot( d(phi,u,u), N)

h[1,2] = dot( d(phi,u,v), N)

h[2,1] = h[1,2]

h[2,2] = dot( d(phi,v,v), N)

h

l = h[1,1]

l

m = h[1,2]

m

n = h[2,2] -- use n because N is normal vector

n

• B Click here to RUN this script.

https://lindnerdrwg.github.io/diffgeo09.html
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Eigenmath output:

It follows: I = 2 · 1√
u2+v2+1

.

Example 10. (the second fundamental tensor of the helicoid)
The helicoid is the 2D parametric surface defined by φ(u, v) = (v cos(u), v sin(u), u).

Calculate the coefficients l,m, n of the 2nd fundamental tensor h.

Solution. We use Eigenmath. We use equation (4.1). Therefore we have to calculate g,
N := ~n and h. We name the coefficients of the second fundamental form l,m, n to avoid
name clash with the normal vector N .

"HELICOID"

phi(u,v) = (v cos(u),v sin(u), u)

phi

"surface metric tensor"

g = zero(2,2)

g[1,1] = dot(d(phi,u), d(phi,u))

g[1,2] = dot(d(phi,u), d(phi,v))

g[2,1] = g[1,2]

g[2,2] = dot(d(phi,v), d(phi,v))

g

"unit normal vector"

N = cross(d(phi,u),d(phi,v))

N

absN = abs(N)

absN

N = N/absN

N

"h in matrix/tensor shape"

h = zero(2,2)
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h[1,1] = dot( d(phi,u,u), N)

h[1,2] = dot( d(phi,u,v), N)

h[2,1] = h[1,2]

h[2,2] = dot( d(phi,v,v), N)

h

l = h[1,1]

l

m = h[1,2]

m

m = simplify(m)

m

n = h[2,2]

n

• B Click here to RUN this script.

Eigenmath output:

https://lindnerdrwg.github.io/diffgeo10.html


4 THE SECOND FUNDAMENTAL FORM 41

4.3 Exercises

• You may cross-check your results of the following exercises in [17].

Exercise 49. Calculate the 2nd fundamental tensor h for the unit sphere S.
Look for B Wolfram: sphere and use their parameterization.
Check your result with that given by wolfram.
You may switch inside this page to wolfram|alpha.

Exercise 50. Calculate the 2nd fundamental tensor h for the catenoid S.
Look for B Wolfram: catenoid and use their parameterization.
Check your result with that given by wolfram.

Exercise 51. Calculate the 2nd fundamental tensor h for the torus S.
Look for B Wolfram: torus and use their parameterization with a = 1.
Check your result with that given by wolfram.

Exercise 52. (The 2nd fundamental tensor h for a surface of revolution)
The surface is obtained by rotating the graph of f : ]a, b[→ IR around an axis.

taken from Kreyszig, p.107

The parameterization is known to be φ(u, v) = (f(u)cos(v), f(u)sin(v), g(u)).
Calculate the 2nd fundamental tensor h for a surface of revolution.

Exercise 53. (The 2nd fundamental tensor h for a function surface)
Let z = f(x, y) be a function surface.
A parameterization of the graph of f is φ(u, v) = (u, v, f(u, v)).
a. Verify with Eigenmath the coefficients of h:

L = (1 + f 2
u + f 2

u)−2 · fuu
M = (1 + f 2

u + f 2
u)−2 · fuv

N = (1 + f 2
u + f 2

u)−2 · fuv

b. Give h in matrix shape and write down the sff for the function graph.

https://mathworld.wolfram.com/Sphere.html
https://mathworld.wolfram.com/Catenoid.html
https://mathworld.wolfram.com/Torus.html
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Exercise 54. (The 2nd fundamental tensor h for the monkey saddle).
A parametrization for the monkey saddle is φ : U → IR3 by (u, v) 7→ (u, v, u3 − 3uv2).
a. Give the second fundamental tensor h in matrix shape (hij).
b. Write down the sff in differential form II = . . . .

taken from Kreyszig, p.168

• You may cross-check your results of the following exercises in [17].

• Calculate the coefficients of the 2nd fundamental tensor h =
[
h11
h21

h12
h22

]
=
[
L
M

M
N

]
alias the

2nd fundamental form II using Eigenmath for the following 2D surfaces . . .

Exercise 55. the saddle φ(u, v) = (u, v, uv).

Exercise 56. the cylinder φ(u, v) = (a cos(v), a sin(v), u). Choose a = 1.

Exercise 57. the cone φ(u, v) = (u cos(v), u sin(v), u).

Exercise 58. the elliptic paraboloid φ(u, v) = (u, v, u2 + v2).

Exercise 59. the hyperbolic paraboloid φ(u, v) = (u, v, u2 − v2).

Exercise 60. the unit sphere φ(u, v) = (cos(u) sin(v), sin(u) sin(v), cos(v)).

Exercise 61. the Plücker conoid φ(u, v) = (v · cos(u), v · sin(u), 2 cos(u) · sin(u)).

Exercise 62. the Scherk surface φ(u, v) = (u, v, ln( cos v
cosu

)).

Exercise 63. the Enneper surface φ(u, v) = (u− 1
3
u3 + uv2, v − 1

3
v2 + vu2, u2 − v2).

See [8, p.22].

Exercise 64. the Beltrami pseudosphere
φ(u, v) = (sinu cos v, sinu sin v, cosu+ ln(sinu(cosu+ 1))).
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Exercise 65. the hexenhut φ(u, v) = (α/
√
u · cos v, α/

√
u · sin v, u) where α2 = 2

3
√
3
,

see Wheeler [43, p.21 ff].

Exercise 66. the Bianchi surface

φ(u, v) =


2·
√
v2+1·sin(u)·cos(−v+arctan(v))

1+v2 sin(u)2

−2·
√
v2+1·sin(u)·sin(−v+arctan(v))

1+v2 sin(u)2

ln(tan( 1
2u

)) + 2·cos(u)
1+v2 sin(u)2


Remark. Check your results also e.g. by visiting B Rejbrand Encyclopaedia.

https://trecs.se/surfaces.php
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5 Shape Operator and Weingarten Map

We now implement the crucial tool to measure the curvature of a surface parametrized by
the parametrization φ : U → IR3, the so-called shape operator A. An also used name for
A is Weingarten map. To construct A we need both, the fff g and the sff h.

5.1 Definition

Let φ : U → IR3 be a parametrization of an 2-dimensional parametric surface S.
Let φu and φv be the canonical basis in the tangential space TpS.
Let g = gij be its surface metric tensor and g−1 = gij, its inverse matrix.
Let h = hij be its 2nd fundamental tensor.

Then we define the coefficients of the shape operator A ∈ IR2×2

alias the Weingarten map A by

Aik :=
2∑
j=1

gij · hik (5.1)

where i = 1, 2 and k = 1, 2.

Remark.
1. Equation (5.1) is from Reckziegel [24, p.137].

2. Using the coefficients E,F,G of g and L,M,N of h we have explicit

A = g−1 • h =

[
E F
F G

]−1
•
[
L M
M N

]
(5.2)

=
−1

E ·G− F 2
·
[

G −F
−F E

]
•
[
L M
M N

]
i.e.

A =
1

EG− F 2
·
[
GL− FM GM − FN
EM − FL EN − FM

]
(5.3)

cf. Oloff [22, p.108].

3. For more information about the shape operator see e.g. Banchoff [2, p.186], Thorpe
[36, p.55], Pressley [23, p.139], Oloff [22, p.104 ff] or Shifrin [32, p.45 ff].
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5.2 Examples

Example 11. (the shape operator of the saddle surface z = xy)
A parametrization for this function surface S is φ : U → IR3 with (u, v) 7→ (u, v, u · v).
Use Eigenmath to calculate the shape operator A for the surface S : z = xy.

Solution. We use equation (5.2) and calculate at first g and h, then A.

# EIGENMATH

phi(u,v) = (u,v, u*v)

"fff alias surface metric tensor g"

g = zero(2,2)

g[1,1] = dot(d(phi,u), d(phi,u))

g[1,2] = dot(d(phi,u), d(phi,v))

g[2,1] = g[1,2]

g[2,2] = dot(d(phi,v), d(phi,v))

"inverse of g (could be simplified by mind)"

ginv = inv(g)

ginv

V = 1/sqrt(det(g))

"sff in tensor shape"

h = zero(2,2)

h[1,1] = 1/V* dot( cross(d(phi,u), d(phi,v)), d(phi,u,u))

h[1,2] = 1/V* dot( cross(d(phi,u), d(phi,v)), d(phi,u,v))

h[2,1] = h[1,2]

h[2,2] = 1/V* dot( cross(d(phi,u), d(phi,v)), d(phi,v,v))

"shape operator"

A = dot(ginv, h)

A

• B Click here to RUN this script.

Eigenmath output:

https://lindnerdrwg.github.io/diffgeo11.html
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Example 12. (the shape operator of the helicoid)
The helicoid is the 2D parametric surface defined by φ(u, v) = (v cos(u), v sin(u), u).
Use Eigenmath to calculate the shape operator A for the helicoid.

Solution. We use Eigenmath. We know from previous examples the coefficients of the
first and the second fundamental form of φ.

"shape operator HELICOID"

-- coefficients of surface metric g

E = 1

F = 0

G = v^2+1

-- coefficients of h

L = 0

M = (v^2+1)^(-1/2)

N = 0

-- we use (5.2)

A = dot( inv(((E,F),(F,G))) , ((L,M),(M,N)) )

A

• B Click here to RUN this script.

Eigenmath output:

Exercise 67. (the shape operator of the elliptic paraboloid)
The elliptic paraboloid is the parametric surface defined by φ(u, v) = (u, v, u2 + v2).
a. Verify using Eigenmath: E = 1 + 4u2, F = 4uv,G = 1 + 4v2.
b. Verify using Eigenmath: L = 2(4u2 + 4v2 + 1)−1/2,M = 0, N = L.
c. Calculate the shape operator for the elliptic paraboloid along the pattern of example 11
and alternative along example 12.

https://lindnerdrwg.github.io/diffgeo12.html
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5.3 Exercises

• You may cross-check your results of the following exercises in [17].

• Calculate the shape operator A = g−1 •h using Eigenmath for the following 2D surfaces
. . .

Exercise 68. the cylinder φ(u, v) = (a cos(v), a sin(v), u). Choose a = 1.

Exercise 69. the cone φ(u, v) = (u cos(v), u sin(v), u).

Exercise 70. the hyperbolic paraboloid φ(u, v) = (u, v, u2 − v2).

Exercise 71. the monkey saddle φ(u, v) = (u, v, u3 − 3uv2).

Exercise 72. the unit sphere φ(u, v) = (cos(u) sin(v), sin(u) sin(v), cos(v)).

Exercise 73. the catenoid φ(u, v) = (c cosh v
c

cosu, c cosh v
c

sinu, v).

Exercise 74. the torus φ(u, v) = ((b+ a cos(v)) cos(u), (b+ a cos(v)) sin(u), a sin(v)).

Exercise 75. the function graph φ(u, v) = (u, v, f(u, v)).

Exercise 76. the surface of revolution φ(u, v) = (f(u) cos(v), f(u) sin(v), g(u)).

Exercise 77. the Plücker conoid φ(u, v) = (v · cos(u), v · sin(u), 2 cos(u) · sin(u)).

Exercise 78. the Scherk surface φ(u, v) = (u, v, ln( cos v
cosu

)).

Exercise 79. the Enneper surface φ(u, v) = (u− 1
3
u3 + uv2, v − 1

3
v2 + vu2, u2 − v2).

Exercise 80. the Beltrami pseudosphere
φ(u, v) = (sinu cos v, sinu sin v, cosu+ ln(sinu(cosu+ 1))).

Exercise 81. the hexenhut φ(u, v) = (α/
√
u · cos v, α/

√
u · sin v, u).

Exercise 82. the Bianchi surface

φ(u, v) =


2·
√
v2+1·sin(u)·cos(−v+arctan(v))

1+v2 sin(u)2

−2·
√
v2+1·sin(u)·sin(−v+arctan(v))

1+v2 sin(u)2

ln(tan( 1
2u

)) + 2·cos(u)
1+v2 sin(u)2


Remark. One can check some of the results also by visiting B Rejbrand Encyclopaedia.

https://trecs.se/surfaces.php


6 SCALAR CURVATURE MEASURES 48

6 Scalar Curvature Measures

There are many concepts that have emerged to cope with the curvature of a surface S, each
of which sheds light on different aspects of the idea of curvature: the Gaussian curvature,
the mean curvature, the normal curvature, the principal curvatures etc. We now define
some of these characteristics of a surface S by means of the shape operator A .

6.1 Definition

Let φ : U → IR3 be a parametrization of an 2-dimensional parametric surface S.
Let g be the surface metric tensor of φ with the coefficients E,F,G.
Let h be the 2nd fundamental tensor of φ with the coefficients L,M,N .
Let A be the shape operator of φ.
We then define

a. The Gauss curvature K is the real-valued function K : U → IR with

p 7→ K(p) := det(A(p)) =
LN −M2

EG− F 2
(6.1)

b. The mean curvature H is the real-valued function H : U → IR with

p 7→ H(p) :=
1

2
· trace(A(p)) =

EN +GL− 2FM

2(EG− F 2)
(6.2)

c. The principal curvatures κi ∈ IR of S are the roots of the equation

det(A− κ · I) = 0 (6.3)

where I =
[
1
0
0
1

]
∈ IR2×2 is the 2-by-2 identity matrix, i.e the principal curvatures are the

eigenvalues of the shape operator A.
The eigenvectors corresponding to the the principal values κi are called the principal
vectors alias principal curvature directions, denoted ~κ.

We have the fact

Theorem. The first and second principal curvatures κ1 and κ2 are the real-valued functions
κi : U → IR with

κ1 := H −
√
H2 −K (6.4)

κ2 := H +
√
H2 −K (6.5)

Remark. 1. Equations (6.1), (6.2) and (6.4), (6.5) are from Reckziegel [24, p.115], ad
equation (6.3) cf. Pressley [23, p.132].
2. For more information about the curvature measures see e.g. Thorpe [36, p.86–89],
Pressley [23, p.132; p.147 ff], Oloff [22, p.108 ff] or Shifrin [32, p.49].
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6.2 Examples

Example 13. (Gaussian, mean and principal curvature of the helicoid)
The helicoid is the 2D parametric surface defined by φ(u, v) = (v cos(u), v sin(u), u).
1. Use Eigenmath to calculate the Gaussian curvature, the mean curvature and the
principal curvatures for the helicoid.
2. How much is the Gaussian and mean curvature at the point p = (1, 1)?
3. Write Gaussian K, mean H and principal curvatures λ as a function of an arbitrary
point p = (u, v) on the helicoid.
4. Calculate the principal curvature directions ~κi(p) at p = (1, 1).

Solution. This example is a bit longer.

1st We use (6.1) and (6.2). We comment after the code lines and the output.

# EIGENMATH

"GAUSS and mean curvature of HELICOID"

-- coefficients of fff

E =1

F = 0

G = v^2+1

-- coefficients of sff

L = 0

M = (v^2+1)^(-1/2)

N = 0

-- shape operator via (5.2)

A = dot( inv(((E,F),(F,G))) , ((L,M),(M,N)) )

A --(0)

"GAUSS curvature via (6.1)"

K = det(A)

K --(1)

"mean curvature via (6.2)"

H = contract(A)

H --(2)

"principal curvature via (6.3)"

det(A - lambda unit(2)) --(3)

lambda1 = 1/(v^2+1) --(4)

lambda1

lambda2 = -1/(v^2+1)

lambda2
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Eigenmath output:

Comment. We took the coefficients of the fff and the sff from results before. Then the
shape operator is calculated in (0) via formula (5.2). In (1) the Gauss curvature K is
calculated and in (2) the mean curvature, whereby the trace of A is given by the tenso-
rial denoted and generalized Eigenmath function contract - if wanted, one can use the
self written alias function trace(M)=contract(M). In (3) we determine the values of prin-
cipal curvatures λi ≡ κi, see (4), which we get easily by mind from the presented equation.

2nd We use Eigenmath’s eval function to evaluate K, H and λ at a specific point in S.

"K and H and lambda at p=(1,1)"

-- p:1 1

Ap = eval(A, u,1, v,1) --(5)

Ap

Kp = det(Ap) --(6)

Kp

Hp = contract(Ap) --(7)

Hp

lambda1p = eval(lambda1, u,1, v,1) -- (8)

lambda1p

lambda2p = eval(lambda2, u,1, v,1)

lambda2p
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Eigenmath output:

Comment. (5) evaluates the shape operator A at p = (1, 1) with the values u = 1 and
v = 1, which are substituted in (0). Therefore Kp, Hp and λp are automatically returned
with its values evaluated.

3rd We again use (6.1) and (6.2) to generalize.

"K and H and lambda as functions at p=(u,v)"

Ap(p) = eval(A, u,p[1], v,p[2]) --(9)

Ap

Ap(1,1)

Kp(p) = det(Ap(p)) --(10)

Kp

Kp(1,1) -- -1/4

Hp(p) = contract(Ap(p)) --(11)

Hp(1,1) -- 0

lambdap(p) = det(Ap(p)-x*unit(2)) --(12)

lambdap

lambdap(1,1) -- x^2-1/4
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Eigenmath output:

Comment. We generalize what was done in (5) for a special point. Therefore in (9) we
write p undetermined as arbitrary point on the LHS, meaning a point p = (p[1], p[2]) with
two coordinates, which can then be used on the RHS of the defining equation (9). The
special value of the Gauss curvature at (6) is then realized via a function call with the
input (1, 1) like Kp(1, 1) in (10). So we will be able to easily calculate a bundle of values
of K! Look at the next example. The same is done for Hp and λp, which are now also
functions for arbitrary points on U .

4th We use the new functions Kp, Hp and λp. Sorry, Eigenmath has at the moment no
build-in function for arbitrary matrices to calculate their eigenvalues and eigenvectors. So
we recur on the definition of these concepts and do a small step by mind or with paper &
pencil.

# EIGENMATH

"calculate principal directions at p=(1,1)"

roots(lambdap(1,1),x) --(13)

-- [-0.5, 0.5]

Ap(1,1)-1/2*unit(2) --(14)

-- ansatz for EigVevctors

dot(Ap(1,1)-1/2*unit(2), (x,y)) --(15)

dot(Ap(1,1)+1/2*unit(2), (x,y)) --(16)
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Eigenmath output:

Comment. We now from command (12), that λp(1, 1) = x2− 1
4
. So Eigenmath’s roots

function calculates the roots of this quadratic equation (which we had done before in
mind, but want to show its principe here ♥ ). Ok. In (15) we use the well known ansatz
(A − λ · E) = O for the determination of eigenvectors by known eigenvalues λi. We take
from the first line of the returned equation matrix the line

y√
2
− 1

2
x = 0

which gives e.g. the eigenvector [
−1
−1√
2

]
for λ1 = −1/2.

• B Click here to run RUN script.

Fact. The principal curvatures κi are the roots of the equation det(sff − κ · fff) = 0, i.e.

det(h− κ · g) = 0 (6.6)

i.e.  L− κE M − κF
M − κF N − κG

 = 0 (6.7)

This is a simplified version of (6.3), which does not use the shape operator A at all.
Cf. Pressley [23, p.132] or Sochi [31, p.121].

Exercise 83. Calculate the principal curvatures κ of the helicoid using (6.7).

https://lindnerdrwg.github.io/diffgeo13.html
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Remark. In case one want a fully automatic solution for the last task, please give Maxima
or Maximaon line a chance:

Figure 10:

Left: calculation of characteristic polynomial of matrix A
and their associated eigenvalues and eigenvectors with CAS
Maxima. Output line (%o3) gives the list [−1/2, 1/2] of
the two eigenvalues with their corresponding multiplicity of
[1, 1]. Output line (%o4) repeats line o3 and then displays
the list of the two eigenvectors.
Right: calculation of the same task using Maxima Online
via B Click here to invoke MaximaOn. One has to input the
line (%i4) in the input region.

http://maxima.cesga.es/index.php
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Example 14. (Gauss and mean curvature of the elliptic paraboloid)
The elliptic paraboloid is the 2D function surface defined by

φ(u, v) = (u, v, u2 + v2) (6.8)

with patch region (u, v) ∈ R2 or by the parametric ansatz defined by

φ(u, v) = (a
√
u cos(v), b

√
u sin(v), cu) (6.9)

with real constants a, b, c and patch region (u, v) ∈ R+ × [0, 2π], cf. [31, p.14].
For this example we use the parametrization φ in (6.8).
a. Verify using Eigenmath: E = 1 + 4u2, F = 4uv,G = 1 + 4v2.
b. Verify using Eigenmath: L = 2(4u2 + 4v2 + 1)−1/2,M = 0, N = 2(4u2 + 4v2 + 1)−1/2.
c. Calculate the Gauss curvature K and mean curvature H for the integer grid points of
the square [−2, 2]× [−2, 2] in IR2. Discuss your observations.

d. Display a tableau of the values of the curvature K for 5 different user input points.

Solution.
a: and b: see above. So we have:

# EIGENMATH

phi(u,v) = (u,v, u^2+v^2)

-- coefficients of surface metric tensor

E = 1 + 4u^2

F = 4 u v

G = 1 + 4v^2

-- coefficients of 2nd fundamental tensor

L = 2(4u^2+4v^2+1)^(-1/2)

M = 0

N = 2(4u^2+4v^2+1)^(-1/2)

-- shape operator
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A = dot( inv(((E,F),(F,G))) , ((L,M),(M,N)) )

K = det(A)

H = contract(A)

c: we define functions Ap, Kp and Hp and prepare the grid in (1):

# ...

"K and H as functions of p=(u,v)"

Ap(p) = eval(A, u,p[1], v,p[2])

Kp(p) = det(Ap(p))

Kp

Hp(p) = contract(Ap(p))

Hp

"prepare grid Kuv, i.e. entry K(u,v)"

Kuv = zero(6,6) --(1)

do( Kuv[1,1]=0, Kuv[1,2]=-2, Kuv[1,3]=-1, Kuv[1,4]=0, Kuv[1,5]=1, Kuv[1,6]=2)

do( Kuv[1,1]=0, Kuv[2,1]=-2, Kuv[3,1]=-1, Kuv[4,1]=0, Kuv[5,1]=1, Kuv[6,1]=2)

Kuv --(2)

Eigenmath output:

Comment. We set the two borders of tablau (matrix) as ’axis’ in (1), which are intended
to be the coordinates, where the curvature values are to be read off, e.g. curvature K(−1, 1)
will be displayed later at position (5, 3) of the matrix tableau.
Now we fill the grid with the corresponding curvature values, so we receive a distribution
of Kp:
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# ...

"fill grid"

for( i,2,6, Kuv[2,i] = Kp(-2,i-4)) --(3) row number two

for( i,2,6, Kuv[3,i] = Kp(-1,i-4))

for( i,2,6, Kuv[4,i] = Kp(-0,i-4))

for( i,2,6, Kuv[5,i] = Kp(+1,i-4))

for( i,2,6, Kuv[6,i] = Kp(+2,i-4)) -- last row

Kuv --(4)

Eigenmath output:

Comment. You may read off the curvature value Kp(1,−1) = 4
81

at Kuv|45.
In (3), i.e. row 2 of matrix Kuv, we follow the curvature distribution for u = −2 fixed.
We observe that Kp|u=−2 is of constant value 4/1089 ≈ 0.004 - a very small value. So the
surface is along u = −2 only minimal curved. In line u = 0 the curvature has a maximal
value of 4: this is at the bottom of the surface, where the surface is obviously most curved.
All this is in accordance with our intuitive view.
You may follow the coordinate line u = −2 on the u-by-v-region in CalcPlot3D by
tracing the movable point with your mouse to verify the observations above.

Remark. In an analogous way, preparing and filling the grid Huv, one gets the value
distribution of the mean curvature H:
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d: We construct the tableau of the values Kp for 5 different user input points p using a
zero(3,6) matrix container, where the first two columns are filled with the headings.

# ...

"function table for K with free choosen points"

Kuv = zero(3,6)

Kuv[1] = ("u:" ,1 ,3.1 ,-1 ,0 ,5)

Kuv[2] = ("v:" ,2 ,4 ,5 ,0 ,5)

Kuv[3] = ("Kp(u,v):",Kp(1,2), Kp(3.1,4), float(Kp(-1,5)), Kp(0,0), Kp(5,5))

Kuv

Eigenmath output:

Figure 11:

K max. Distribution of the values of Gauss curvature K
using a color code. Equal color means equal K. Blue color
means higher value of K, red smaller values.
The plot was done with Maple V.4 using Reckziegel’s
diffgeo packet.

• B Click here to RUN this script.

In summa: we are now able to calculate the Gauss K and mean curvature H
at individual point on the surface, for a sequence (1D vector) of points or a
full 2D tableau (matrix) of points to observe the distribution of the K resp. H
values.

https://lindnerdrwg.github.io/diffgeo32.html
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Exercise 84. Solve the previous example using the parametrization (6.9).
For your exploration choose a = b = c = 1.
a. Verify the

Coefficients of metric tensor g 2nd fundamental tensor h
E = 1 + 1

4u
M = 1

2u
√
1+4u

F = 0 N=0
G = u N = 2u√

1+4u

b. Verify: K = 4
(1+4u)2

6.3 Exercises

• You may cross-check your results of the following exercises in [17].

Exercise 85. (the Gauss, mean and principal curvature of the saddle z = xy)
A parametrization for this function surface S is φ : U → IR3 with (u, v) 7→ (u, v, u · v).

a. Use Eigenmath to calculate the Gaussian and mean curvature for the saddle.
b. Calculate the principal curvatures and the corresponding principal curvature directions.
c. Calculate the Gaussian and mean curvature at the point p = (1, 1).

Exercise 86. (Gauss, mean and principal curvature of the hyperbolic paraboloid)
The hyperbolic paraboloid is the 2D parametric surface defined by φ(u, v) = (u, v, u2 − v2).
Recall: g =

[
g11
g21

g12
g22

]
=
[
E
F
F
G

]
=
[
1+4u2

−4uv
−4uv
1+4v2

]
h =

[
h11
h21

h12
h22

]
=
[
L
M

M
N

]
=
[
2(4u2+4v2+1)−1/2

0
0

−2(4u2+4v2+1)−1/2

]
.

a. Use Eigenmath to calculate the Gaussian and mean curvature functions.
b. Calculate Gaussian and mean curvature at the points pi = (i, 5/i), i ∈ {1, 2, 3, 4, 5}.
c. Calculate the principal curvatures and the corresponding principal curvature directions.

Exercise 87. (Gauss, mean and principal curvature of the ? surface)
The ? surface is the parametric surface defined by φ(u, v) = (u+ v, u− v, uv).

a. Determine the 1st and 2nd fundamental tensors g and h.
b. Verify: at p = (1, 1) we have K = −1/16 and H = 1/16

√
2.

c. Calculate Gaussian and mean curvature at the points pi = (i, i2), i ∈ {−2,−1, 0, 1, 2}.
d. Calculate the principal curvatures and the corresponding principal curvature directions.
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Exercise 88. (Gauss, mean and principal curvature of torus)
The torus is the parametric surface defined by – R = ro in the figure –

φ(u, v) = ((R + r cos(v)) cos(u), (R + r cos(v)) sin(u), r sin(v))

with patch region (u, v) ∈ R2.

Kreyszig [15, p.165]

Recall: the metric tensor g has coefficients E = (R + r cos(v))2, F = 0, G = r2.
the 2nd fundamental tensor h has L = −(R + r cos(v)) cos(v),M = 0, N = −r.

a. Verify: K = cos(v)
r(R+r cos(v))

.

b. Calculate K(pi) and H(pi) at the points pi = (i, i2), i ∈ {−2,−1, 0, 1, 2}.
c. Calculate the principal curvatures and the corresponding principal curvature directions.

Exercise 89. (Gauss, mean and principal curvature of Beltrami’s pseudosphere)
Beltrami’s pseudosphere is the parametric surface defined by

φ(u, v) = (sinu cos v, sinu sin v, cosu+ ln(sinu(cosu+ 1)))

with patch region (u, v) ∈ IR+.

a. Determine the 1st and 2nd fundamental tensors (gij) resp. (hij).
b. Calculate K(pi) and H(pi) at the points pi = (i, i2), i ∈ {−2,−1, 0, 1, 2}.
c. Calculate the principal curvatures and the corresponding principal curvature directions.
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Exercise 90. (Gauss, mean and principal curvature of a funnel, cf. [2, p.156])
The funnel is the parametric surface defined by φ(u, v) = (v cos(u), v sin(u), ln(v)), with
patch region (u, v) ∈ [0, 2π]× R2.

a. Plot the funnel using CalcPlot3D.
b. Determine the 1st and 2nd fundamental tensors g resp. h.

Verify: g =
[
g11
g21

g12
g22

]
=
[
v2

0
0

1+1/v2

]
.

c. Calculate K(pi) and H(pi) at the points pi = (i, i2), i ∈ {−2,−1, 0, 1, 2}.
d. Calculate the principal curvatures κi.

• You may cross-check your results of the following exercises in [17].

• Calculate the Gauss curvature K, the mean curvature H and principal curvatures κi for
the following 2D surfaces using Eigenmath . . .

Exercise 91. the elliptic cylinder φ(u, v) = (a cos(u), b sin(u), v) over [0, 2π[×IR.
Recall: g has the components E = a2 sin2 u+ b2 cos2 u, F = 0, G = 1.

h has the components L = −ab√
a2 sin2 u+b2 cos2 u

,M = 0, N = 0.

a. Verify: K = 0 and H = −ab
(a2 sin2 u+b2 cos2 u)3/2

.

b. Verify: κ1 = −ab
(a2 sin2 u+b2 cos2 u)3/2

and κ2 = 0.

Exercise 92. the cone φ(u, v) = (u cos(v), u sin(v), u) with u > 0.
Recall: g has the components E = 2, F = 0, G = u2.

h has the components L = u√
2
,M = 0, N = 0.

a. Verify: K = 0 and H =
√
2

4u
.

b. Verify: κ1 = 0 and κ2 = 2H.

Exercise 93. the monkey saddle φ(u, v) = (u, v, u3 − 3uv2).
Recall: g has the components E = 1 + 9(u2 − v2)2, F = 18uv(v2 − u2), G = 1 + 36u2v2.

Define for the moment: a := 1 + 9(u2 + v2)2. Then
h has the components L = 6u√

a
,M = −6v√

a
, N = −6u√

a
.

Verify: K = −36(u2+v2)
a2

and H = 27u(−u4+2u2v2+3v4)
a3/2

.

Exercise 94. the unit sphere φ(u, v) = (1 cos(u) sin(v), 1 sin(u) sin(v), 1 cos(v)).

Exercise 95. the catenoid φ(u, v) = (c cosh v
c

cosu, c cosh v
c

sinu, v) with c = 1.
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Exercise 96. the function graph φ(u, v) = (u, v, f(u, v)).

Exercise 97. the surface of revolution φ(u, v) = (f(u) cos(v), f(u) sin(v), g(u)).

Exercise 98. the Plücker conoid φ(u, v) = (v · cos(u), v · sin(u), 2 cos(u) · sin(u)).

Exercise 99. the Scherk surface φ(u, v) = (u, v, ln( cos v
cosu

)).

Exercise 100. the Enneper φ(u, v) = (u− 1
3
u3 + uv2, v − 1

3
v2 + vu2, u2 − v2).

Exercise 101. the hexenhut φ(u, v) = (α/
√
u · cos v, α/

√
u · sin v, u) where α2 = 2

3
√
3
.

Recall: g has the components E = 1 + 9(u2 − v2)2, F = 18uv(v2 − u2), G = 1 + 36u2v2.
Define for the moment: a := 1 + 9(u2 + v2)2. Then
h has the components L = 6u√

a
,M = −6v√

a
, N = −6u√

a
.

Exercise 102. the Bianchi surface

φ(u, v) = (
2 ·

√
v2 + 1 · sin(u) · cos(−v + arctan(v))

1 + v2 sin(u)2
,
−2 ·

√
v2 + 1 · sin(u) · sin(−v + arctan(v))

1 + v2 sin(u)2
, ln(tan(

1

2u
)) +

2 · cos(u)
1 + v2 sin(u)2
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7 Christoffel Symbols and Riemann Tensors

Figure 12:

How to imagine the Christoffel symbol of first kind Γ(1)

and the Christoffel symbol of second kind Γ(2) as 23 = 8
numbers arranged in a tensorial manner in 2 layers. This
structure is respected by the output of Eigenmath.

The Christoffel symbol plays a prominent role in Differential Geometry and General
Relativity, where we define the Riemann curvature tensor Ra

bcd, the Ricci tensor Rbd

and the Einstein curvature scalar R with the help of the Christoffel symbols of 1st

and 2nd kind. We will need the Riemann curvature tensor Ra
bcd to formulate the famous

Gaussian theorema egregium.

7.1 Definition

Let φ : U → IR3 be a parametrization of a 2-dimensional parametric surface S.
For the purpose of this definition we need to heavily index the parameters in a tensorial manner

and therefore we use the notation (u1, u2) ∈ U instead of (u, v) as before.

Let g = (gij) be the surface metric tensor of φ with inverse matrix g−1 = (gij).

a. The Christoffel symbol of 1st kind, denoted Γij,k : U → IR is defined by

Γij,k :=
∂2φ

∂ui∂uj
• ∂φ
∂uk
≡ φuiuj • φuk (7.1)

where i, j, k ∈ {1, 2}7.
Using the fundamental metric tensor g we may write equation (7.1) in equivalent form8

Γij,k :=
1

2
· (gjk,i + gik,j − gij,k) (7.2)

where gij,k ≡ ∂gij
∂uk

denotes the partial derivative of gij with respect to the coordinate uk.

7cf. Coxeter [5, p.439], Pressley [23, p.241], Sochi [31, p.34]
8cf. Coxeter [5, p.439], Reckziegel [24, p.146] or Sochi [31, p.34]
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b. The Christoffel symbol of 2nd kind, denoted Γkij : U → IR is defined by using the
inverse metric tensor gij and memorizing the Einstein summation convention9 as

Γkij :=
1

2
· gkm · (gmi,j + gmj,i − gij,m) (7.3)

• Decoding the Einstein summation convention and to prepare for the implementation
of these formulas in Eigenmath we write equation (7.3) explicit as

Γkij =
1

2
·

2∑
m=1

gkm · (gmi,j + gmj,i − gij,m) (7.4)

Now we are able to define the Riemann curvature tensors of 1st and 2nd kind. We
denote the partial derivative with respect to the coordinate uj in short by ∂i, because
we then may write the formulas for R in a better memorizable shape, cf. [22, p.91]:

c. The Riemann curvature tensor of 1st kind, denoted Rijkl : U → IR is defined by

Rijkl := ∂kΓjli − ∂lΓjki + Γilr · Γrjk − Γikr · Γrjl (7.5)

and the Riemann curvature tensor of 2nd kind, denoted Ri
jkl is defined by

Ri
jkl := ∂kΓ

i
jl − ∂lΓijk + Γrjl · Γirk − Γrjk · Γirl (7.6)

Remark.
1. We remark that the latin indices i, j, k, l used in the previous equations do not imply
that we are in 3D ambient space, but are meant here to denote the indexed parameters of
the parametric surface following a usual convention, cf. chapter 1.
2. The Christoffel symbol of 2nd kind may also be defined by means of decoding with
the Einstein summation convention

Γijk := gli · Γl
jk (7.7)

This last definition is an example of lowering the index l by multiplying with the metric
tensor g (’index juggling’).
3. We have

LEXICON Math Eigenmath
metric tensor g: gij g or gdd

inverse of metric tensor g−1: gij ginv or guu or gu
Christoffel symbol of 1st kind : Γijk Gammaddd or GammaI
Christoffel symbol of 2nd kind : Γkij Gammaudd or GammaII

Riemann curvature tensor of 1st kind : Rijkl Rdddd or RI
Riemann curvature tensor of 2nd kind : Ri

jkl Ruddd or RII

9see e.g. Lindner [16]
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Remember: in Eigenmath we encode the tensorial notation ’index up (upper index)’ as
’u’ and ’index down (lower index)’ as ’d’, therefore in Eigenmath’s output window Γkij is
printed as Γudd. But we often prefer also the notation ΓII .
4. The Riemann curvature tensor R of type (4, 0) resp. (3, 1) has 24 = 16 coefficients
arranged in 4 2-by-2 matrices, analogue to figure 12.
5. As for equations (7.5) and (7.6) see for example Kreyszig [15, p.176] , Lipschutz
[19, p.214 ff; 224] , Steeb [34, p.62] or Thorpe [36, p.230 ff].
6. Because all objects Γijk,Γ

k
ij, Rijkl, R

i
jkl are constructed using only the coefficients of

metric tensor gij, these objects belongs to the so-called intrinsic geometry of surface S.

♥

Implementing formulas (7.1) . . . (7.6) in Eigenmath and calculating some ex-
amples should enhance a clear understanding of these mathematical constructs.
A CAS like Eigenmath will relieve us of the tedious calculations, which are in-
volved in the terms for the Christoffel symbols and the Riemann curvature
tensors.

♥

7.2 Example - Γ and Ri
jkl for the surface z = xy

We now demonstrate two implementations of the Christoffel symbols and the Riemann
curvature tensors: one closely oriented on formulae a. resp. b. and its term structure.
The first implementation will become slowly more abstract, starting with simple functions
to reflect the structure of the definition of the concepts and then using Eigenmaths
repeat control structure for to make the CAS representation more comfortable. The other
implementation uses clever compact tensor techniques such as contract and index juggling
and was given by G. Weigt in [42].

7.2.1 Calculation of Γ and R using functions

We show first the implementation and comment it afterwards:

# EIGENMATH

-- HYPERBOLIC PARABOLOID

phi(u,v) = (u , v, u*v) --(1)

-- x y z

U = (u,v) --(2)

g(i,j) = dot(d(phi, U[i]), d(phi,U[j])) --(3)

g(1,1)

eval(g(1,1), u1,2, u2,3) --(4)



7 CHRISTOFFEL SYMBOLS AND RIEMANN TENSORS 66

g = ((g(1,1),g(1,2)), --(5)

(g(2,1),g(2,2)) )

g

"CHRISTOFFEL symbol Gijk of 1st kind without using g, see (7.1)"

Gamma1(i,j,k) = dot( d(phi, U[i], U[j]), d(phi, U[k]) ) --(6)

Gamma1(1,2,2) --(7)

Gamma1(2,2,2)

-- index pattern for 8 entries

Gamma1 = ( ((Gamma1(1,1,1), Gamma1(1,1,2)), --(8) 1st matrix

(Gamma1(1,2,1), Gamma1(1,2,2))),

((Gamma1(2,1,1), Gamma1(2,1,2)), --(9) 2nd matrix

(Gamma1(2,2,1), Gamma1(2,2,2))) )

Gamma1 --(10)

"CHRISTOFFEL symbol Gijk of 1st kind with g, see (7.2)"

GammaI(i,j,k) = 1/2 * ( d(g[j,k],U[i]) + --(11)

d(g[i,k],U[j]) -

d(g[i,j],U[k]) )

GammaI(1,2,2) --(12)

GammaI(2,2,1)

GammaI = ( ((GammaI(1,1,1),GammaI(1,1,2)), --(13)

(GammaI(1,2,1),GammaI(1,2,2))),

((GammaI(2,1,1),GammaI(2,1,2)),

(GammaI(2,2,1),GammaI(2,2,2))) )

GammaI

• B Click here to RUN this script.

Comment. We define the surface via the parameterization in (1) and choose U = (u, v) as
coordinates, where the access U [i] ≡ ui in (3) reflects the notion in the text. Equation (3)
is the translation of the dot product of the tangential basis vectors φi to Eigenmath. (4)
evaluates the metric coordinate g11 at the point p = (u, v) = (2, 3) of U . In (5) the whole
metric is saved in a 2-by-2 matrix. Equation (6) use (7.1) to define the Christoffel
symbol of 1st kind once again, denoted Gamma1, without making use of the metric. We
test this in (7) to calculate the value Γ122. The whole Christoffel symbol is then saved
in two matrices in (8) resp. (9), respecting the structure of figure 12. Equation (11) use

https://lindnerdrwg.github.io/diffgeo14.html
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(7.2) to give an alternative definition of the Christoffel symbol of 1st kind once again,
denoted now GammaI, with making use of the metric! We test this in (12) to calculate
the value GammaI(1,2,2)= Γ122. The whole Christoffel symbol is then saved in two
matrices in (13).

Eigenmath output:

• We now implement the Christoffel symbol of 2nd kind. Equation (15) use (7.4): the
components are calculated using both the metric g and the ’contravariant’ metric tensor
gu a.k.a. the inverse of the metric tensor in (14). All values are collected in tensor ΓII , see
(16).

"CHRISTOFFEL symbol Gi^jk of 2nd kind"

gu = inv(g) -- .u means up i.e. inverse of metric (14)

gu

-- GammaII as function GammaII()

-- index pattern (+)

-- gu[k,m]*( d(g[m,i],u[j]) + ij

-- d(g[m,j],u[i]) - ji

-- d(g[i,j],u[m])) ) ij

GammaII(k,i,j) = 1/2* sum(m,1,2, --(15)

gu[k,m]*( d(g[m,i],U[j]) +

d(g[m,j],U[i]) - d(g[i,j],U[m]) ))

GammaII(2,2,2)

GammaII(2,2,2)

GammaII = ( ((GammaII(1,1,1),GammaII(1,1,2)), --(16)

(GammaII(1,2,1),GammaII(1,2,2))),

((GammaII(2,1,1),GammaII(2,1,2)),

(GammaII(2,2,1),GammaII(2,2,2))) )

GammaII
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• B Click here to RUN this script.

Eigenmath output:

• As for the Riemann curvature tensors of 1st and 2nd kind, denoted RI(i,j,k,l) resp.
RII(i,j,k,l) in the Eigenmath code, the implementation in equations (17) and (18) is
straight forward; recall, that GammaI resp. GammaII is now a tensor (multi-matrix) via (16)
with [..]-access:

"RIEMANN curature tensor Rijkl of 1st kind as function"

RI(b,m,s,q) = d(GammaI[b,m,q],u[s]) - --(17)

d(GammaI[b,m,s],u[q]) +

sum(n,1,2, GammaI[b,n,s]*GammaII[n,m,q] ) -

sum(n,1,2, GammaI[b,n,q]*GammaII[n,m,s] )

RI1212 = RI(1,2,1,2)

RI1212

"RIEMANN curature tensor Ri^jkl of 2nd kind as function"

RII(b,m,s,q) = d(GammaII[b,m,q],u[s]) - --(18)

d(GammaII[b,m,s],u[q]) +

sum(n,1,2, GammaII[b,n,s]*GammaII[n,m,q] ) -

sum(n,1,2, GammaII[b,n,q]*GammaII[n,m,s] )

RII1212 = RII(1,2,1,2)

RII1212

• B Click here to RUN this script.

Eigenmath output:

https://lindnerdrwg.github.io/diffgeo15.html
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7.2.2 Calculation of Γ and R without tensor techniques

•We calculate the Christoffel symbols in equations (1) resp. (2) using for loops to fill
the containers GammaI und GammaII automatically with the corresponding entries.

# EIGENMATH

-- hyperbolic PARABOLOID, version 2

phi(u,v) = (u , v, u*v)

U = (u,v)

gij(i,j) = dot(d(phi,U[i]), d(phi,U[j]))

"metric tensor g"

g = zero(2,2)

for(i,1,2, for( j,1,2, g[i,j] = gij(i,j)))

g

gu = inv(g)

gu

"--------------------------------------------- Gamma I"

GammaI = zero(2,2,2) -- (1) Gijk

for( i,1,2,

for( j,1,2,

for( k,1,2,

GammaI[i,j,k] = 1/2 *

( d(g[j,k],U[i]) +

d(g[i,k],U[j]) -

d(g[i,j],U[k]) ))))

GammaI

GammaI[2,2,2] -- test, ok

"--------------------------------------------- Gamma II"

GammaII=zero(2,2,2) -- (2) Gi^jk

for( k,1,2,

for( l,1,2,

for( m,1,2,

GammaII[k,l,m] =

sum(i,1,2, gu[k,i]*1/2 *

( d(g[m,i],U[l]) +

d(g[l,i],U[m]) -

d(g[m,l],U[i]) )

))))

GammaII

GammaII[2,2,2]
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• B Click here to RUN this script.

Eigenmath output: same as above.

• We calculate the Riemann curvature tensors in equations (3) resp. (4) in a completely
analogous way.

# EIGENMATH

"-------------------------------- Riemann I"

RI = zero(2,2,2,2) -- (3) Rijkl

for( b,1,2,

for( m,1,2,

for( s,1,2,

for( q,1,2,

RI[b,m,s,q] =

d(GammaI[b,m,q],U[s]) -

d(GammaI[b,m,s],U[q]) +

sum(n,1,2, GammaI[b,n,s]*GammaII[n,m,q] ) -

sum(n,1,2, GammaI[b,n,q]*GammaII[n,m,s] )

))))

RI

RI[1,2,1,2] -- test, ok

"-------------------------------- Riemann II"

RII = zero(2,2,2,2) -- (4) Ri^jkl

for( b,1,2,

for( m,1,2,

for( s,1,2,

for( q,1,2,

RII[b,m,s,q] =

d(GammaII[b,m,q],U[s]) -

d(GammaII[b,m,s],U[q]) +

sum(n,1,2, GammaI[b,n,s]*GammaII[n,m,q] ) -

sum(n,1,2, GammaI[b,n,q]*GammaII[n,m,s] )

))))

RII

RII[1,2,1,2]

• B Click here to RUN this script.

Eigenmath output:

https://lindnerdrwg.github.io/diffgeo17.html
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Comment. The output of RII exceeds the screen. If you like to see also the not-displayed
values use the matrix access to individual entries e.g. RII[2,2,1,2].

Remark. Pay attention: the call of the Christoffel symbol or Riemann curvature
tensor functions uses round brackets (..), but the direct access to the elements of the
corresponding tensor matrices uses square brackets [..].

7.2.3 Calculation of Γ and R with tensor techniques

We now implement both the Christoffel symbols and the Riemann curvature tensors
using compact tensor techniques following G. Weigt.

# EIGENMATH

-- hyperbolic PARABOLOID

phi(u,v) = (u , v, u*v) --(1)

U = (u,v) -- region of phi --(2)

gij(i,j) = dot( d(phi,U[i]), d(phi,U[j])) --(3)

g = zero(2,2)

for(i,1,2, for( j,1,2, g[i,j] = gij(i,j))) --(4)

g
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gu = inv(g) --(5)

gu

Dg = d(g, U) --(6)

Dg

"CHRISTOFFEL SYMBOL 1st kind"

-- Analyse defining formula: --(7)

--

-- Gamma = 1/2 (g + g - g ) Formula

-- abc ab,c ac,b bc,a INDEX-PATTERN

-- 123 12 3 13 2 23 1 INDEX-PATTERN

GammaI = 1/2 (Dg + transpose(Dg,2,3) - transpose(Dg,2,3,1,2)) --(8)

-- ok transpose c.b transpose c.a and b.a

GammaI

"CHRISTOFFEL SYMBOL 2nd kind"

-- Analyse defining formula:

--

-- a au

-- Gamma = g . Gamma

-- bc ubc

GammaII = dot(gu, GammaI) --(9)

GammaII

Comment. We define the surface via the parameterization in (1) and choose U = (u, v) as
coordinates, where the access U [i] ≡ ui in (2) reflects the notion in the text. Equation (3)
is the translation of the dot products of the tangential basis vectors φi to Eigenmath. (4)
constructs the surface metric tensor g = (gij) and (5) calculates its corresponding inverse
matrix, the so-called contravariant metric tensor gu. (6) computes all partial derivatives
of the metric tensor g w.r.t. all coordinates U = (u, v) and saves the result in Dg.
(8) translates equation (7.4) to Eigenmath and (9) the equation (7.7).

Eigenmath output: same as above.

• B Click here to RUN this script.

https://lindnerdrwg.github.io/diffgeo19.html
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• Now for the implementation of the Riemann curvature tensors using compact tensor
techniques. The explanation is inline.

# EIGENMATH

"RIEMANN CURVATURE tensor Ri^jkl 2nd kind"

-- Analyze formula, G=Gamma

-- a a a a u a u

-- R = G - G + G * G - G * G

-- bcd bd,c bc,d uc bd ud bc

--

-- Index pattern:

-- Ra.bcd = Ga.bd,c - Ga.bc,d + Ga.uc*Gu.bd - Ga.ud*Gu.bc

-- 1 234 1 24 3 1 23 4 T2 T2

-- 1 u3 u 24 1 4 23

T1 = d(GammaII, U) --(10) 1st temporary result

T2 = dot(transpose(GammaII,2,3), GammaII) --(11) 2nd temporary result

RII = transpose(T1,3,4) -T1+ transpose(T2,2,3) - transpose(T2,2,3,3,4)

-- transpose d.c ok transpose c.b transp. d.b then d.c

RII

"RIEMANN CURVATURE tensor Rijkl 1st kind"

-- with lowering the index (index juggling) via (7.7)

RI = dot(g, RII) --(11)

RI

• B Click here to RUN this script.

Eigenmath output: same as above.

Remark. 1. Both the Christoffel symbols and the Riemann curvature tensors are
implemented using only the surface metric tensor g. Hence both objects belongs to the
so-called intrinsic geometry of the surface S = φ.

2. The Christoffel symbol of 2nd kind plays a big role in the construction of the so-
called Levi-Civita connection ∇ alias the covariant derivation ∇XY of a vector field Y
w.r.t. X, cf. Oloff [22, p. 90 ff] or Reckziegel [24, p.147 ff] or Thorpe [36, p. 225 ff].

3. The above presented tensorial version of the calculation of Christoffel symbol and
Riemann curvature tensor are most elegant and effective: you does not have to specify
the dimension of the surface. So one may calculate the metric and the derived objects
in the same way in higher dimensions, which is essential in General Relativity, see e.g.

https://lindnerdrwg.github.io/diffgeo20.html
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calculations in the 4D Schwarzschild space time, cf. Oloff [22, p. 96 ff] or Weigt
[42]. Using the for-loop constructs - which are perhaps more simple and insightful - you
must manually specify the considered dimension, i.e.

n=3

for( i,1,n, do ...

♥ This was a long example. But we wanted to present a gentle rise of abstrac-
tion in order to fully understand what is going on and to equip the user which
a selection of means to be choose from. The following examples and exercises
may therefore be realized according to your mood ♥.

7.3 Example - Γ and Ri
jkl for the Helicoid

Sometimes it is necessary that the user should help Eigenmath to to deal with com-
plicated output and to simplify especially terms involving trigonometric functions.
This is demonstrated in the following

Example 15. (the calculation of Γ and R for the helicoid)
The helicoid is the 2D parametric surface defined by φ(u, v) = (v cos(u), v sin(u), u).

a. Use Eigenmath to calculate the Christoffel symbol for the helicoid.
b. Use Eigenmath to calculate the Riemann curvature tensors for the helicoid.
c. Use Eigenmath to calculate the value of RII

1212 for the helicoid. Use both the Riemann
curvature function RII(1,2,1,2) and the Riemann curvature tensor RII[1,2,1,2].
What is the value of RII(1,2,1,2)|(u,v)=(pi,1)?
Check your results with Wolfram.mathworld [48] or Rejbrand Encyclopaedia.

Solution. To determine the Christoffel symbols and the Riemann curvature tensor we
need the surface metric g. The coefficients of g should be simplified, before the calculation
of the tensors are done - otherwise the results would be very long and uncomfortable and
could not be crosschecked with the literature.

# EIGENMATH

phi(u,v) = (u cos(v), u sin(v), c v) -- HELICOID

U =(u,v) -- coordinates of surface

g = zero(2,2)

g[1,1] = dot(d(phi,u), d(phi,u))

g[1,1] -- cu^2+su^2=1

g[1,1] = 1

g[1,2] = dot(d(phi,u), d(phi,v))

g[1,2]

https://trecs.se/surfaces.php
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g[2,1] = g[1,2]

g[2,1]

g[2,2] = dot(d(phi,v), d(phi,v))

g[2,2] -- (c^2+u^2)*(cos(v)^2+sin(v)^2)

g[2,2] = c^2 + u^2

g

gu = inv(g)

gu

Dg = d(g, U)

Dg

"CHRISTOFFEL SYMBOL 1st kind"

GammaI = 1/2 (Dg + transpose(Dg,2,3) - transpose(Dg,2,3,1,2))

GammaI

"CHRISTOFFEL SYMBOL 2nd kind"

GammaII = dot(gu, GammaI)

GammaII

"RIEMANN CURVATURE tensor Ri^jkl 2nd kind"

T1 = d(GammaII, U)

T2 = dot(transpose(GammaII,2,3), GammaII)

RII = transpose(T1,3,4)- T1 + transpose(T2,2,3) - transpose(T2,2,3,3,4)

RII

"RIEMANN CURVATURE tensor Rijkl 1st kind"

RI = dot(g, RII)

RI

-- c)

RiemII(b,m,s,q) = d(GammaII[b,m,q],u[s]) -

d(GammaII[b,m,s],u[q]) +

sum(n,1,2, GammaI[b,n,s]*GammaII[n,m,q] ) -

sum(n,1,2, GammaI[b,n,q]*GammaII[n,m,s] )

RiemII(1,2,1,2)

eval( RiemII(1,2,1,2), u,pi, v,1)

Comment. To simplify the returned expressions for g[1,1] and g[2,2] we look at the as-
sociated output and set the new value into the metric tensor by means of an assignment
g[1,1]=1 resp. g[2,2]=c2 + u2.
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• B Click here to RUN this script.

Eigenmath output:

Comment. On the LHS we display GammaII= Γklm.
On the RHS we see part of RII= Ri

jkl.
The tensor RI= Rijkl ist displayed in the 1st line in the last output-part and the special
value of RiemII(1,2,1,2) is calculated via a function call to the function RiemII - without
the necessity to calculate all 16 entries of RII:

https://lindnerdrwg.github.io/diffgeo21.html
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7.4 Exercises

Let’s calculate the Christoffel symbols and the Riemann curvature tensors
for our small collection of classical 2D surfaces. Sometimes you should help
Eigenmath to simplify trigonometric expressions or to simplify fractions.

• You may cross-check your results of the calculation of the Christoffel symbols of the
following exercises in [17]. For RI and RII you have to use Eigenmath.

• Calculate the (1) the Christoffel symbols ΓI and ΓII

(2) the curvature tensor RI and
(3) the curvature tensor RII and
(4) the value RII(1,2,1,2) at (u, v) = (π, 1)

for the following surfaces using Eigenmath . . .

Exercise 103. . . . the elliptic cylinder φ(u, v) = (a cos(u), b sin(u), v) over [0, 2π[×IR.
Recall: g has the components E = a2 sin2 u+ b2 cos2 u, F = 0, G = 1.

Verify: Γ1
11 = (a2−b2) sin(2u)

2a2 sin2 u+2b2 cos2 u
and all other coefficients are zero.

Exercise 104. the cone φ(u, v) = (u cos(v), u sin(v), u) with u > 0.
Recall: g has the components E = 2, F = 0, G = u2.
Verify: Γ1

[
0
0

0
−u/2

]
and Γ2 =

[
0

1/u
1/u
0

]
.

See [2, p.232].

Exercise 105. the elliptic paraboloid φ(u, v) = (u, v, u2 + v2).

Exercise 106. the monkey saddle φ(u, v) = (u, v, u3 − 3uv2).
Recall: g has the components E = 1 + 9(u2 − v2), F = 18uv(u2 − v2), G = 1 + 36u2v2.

Exercise 107. the unit sphere φ(u, v) = (1 cos(u) sin(v), 1 sin(u) sin(v), 1 cos(v)).
See B Cox: R.

Exercise 108. the catenoid φ(u, v) = (c cosh v
c

cosu, c cosh v
c

sinu, v). Choose c = 1.

Exercise 109. the torus φ(u, v) = ((b+ a cos(v)) cos(u), (b+ a cos(v)) sin(u), a sin(v)).
See [15, p.180, p.383].

Exercise 110. the function graph φ(u, v) = (u, v, f(u, v)).
See [15, p.180, p.383].

Exercise 111. the surface of revolution φ(u, v) = (f(u) cos(v), f(u) sin(v), g(u)).

Exercise 112. the Plücker conoid φ(u, v) = (v · cos(u), v · sin(u), 2 cos(u) · sin(u)).

Exercise 113. the Scherk surface φ(u, v) = (u, v, ln( cos v
cosu

)).
Recall: g has coefficients E = sec2 u, F = − tanu tan v,G = sec2 v, where sec = 1

cos
.

Verify:

Γ1 =

[
tanu 0

0 − sinu cosu sec2 v

]
Γ2 =

[
− sin v cos v sec2 u 1

1 tan v

]

https://digitalcommons.latech.edu/cgi/viewcontent.cgi?article=1008&context=mathematics-senior-capstone-papers
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Exercise 114. the Enneper φ(u, v) = (u− 1
3
u3 + uv2, v − 1

3
v2 + vu2, u2 − v2).

Recall: the metric tensor g: E = G = 1 + 2u2 + 2v2 + u4 + 2u2v2 + v4, F = 0.
Verify:

Γ1 =

[
2u

u2+v2+1
2v

u2+v2+1
2v

u2+v2+1
−2u

u2+v2+1

]

Exercise 115. the Beltrami pseudosphere
φ(u, v) = (sinu cos v, sinu sin v, cosu+ ln(sinu(cosu+ 1))) .

Recall: g has coefficients E = − cos2 u
cos2 u−1 , F = 0, G = 1− cos2 u.

Verify:

Γ1 =

[ sinu
− cosu+cos3 u

0

0 sinu(cosu−1)
cosu

]

Exercise 116. the hexenhut φ(u, v) = (α · cos v√
u
, α · sin v√

u
, u) where α2 = 2

3
√
3
.

Recall: g has coefficients E = 1+27u3

27u3
, F = 0, G = 4

27u
.

h has coefficients (L,M,N) = (− 3

2u3·
√

1+27u3

u4

, 0, 2

u·
√

1+27u3

u4

).

Verify:

Γ1 =

[ −3
2(1+27u3)

0

0 2
1+27u3

]
Γ2 =

[
0 −1

2u
−1
2u

0

]
See: Wheeler [43, p.22 ff]

Exercise 117. the ’hexe’ surface φ(u, v) = (
√
u · cos v,

√
u · sin v, u).

Verify:
a. g has coefficients (E,F,G) = (1+4u

4u
, 0, u).

b. h has coefficients (L,M,N) = ( 1
2u·
√
1+4u

, 0, 2u√
1+4u

).
c.

Γ1 =

[ −1
2u(1+4u)

0

0 −2u
1+4u

]
Γ2 =

[
0 1

2u
1
2u

0

]
Exercise 118. the Bianchi surface

φ(u, v) =


2·
√
v2+1·sin(u)·cos(−v+arctan(v))

1+v2 sin(u)2

−2·
√
v2+1·sin(u)·sin(−v+arctan(v))

1+v2 sin(u)2

ln(tan( 1
2u

)) + 2·cos(u)
1+v2 sin(u)2


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Exercise 119. (The Gauss Relations for Γ)
The Christoffel symbols are given by the following Gauss relations as functions of the
coefficients E,F,G of the metric tensor g and their first order derivations. We have the

Fact. Let φ : U → IR3 be a parametrization of a 2-surface S.
Let g =

[
φu•φu
φu•φv

φv•φu
φv•φv

]
≡
[
E
F
F
G

]
be the metric tensor of φ.

Then we have

Γ1
11 =

GEu − 2FFu + FEv
2(EG− F 2)

(7.8)

Γ1
12 =

GEv − FGu

2(EG− F 2)
(7.9)

Γ1
22 =

2GFv −GGu − FGv

2(EG− F 2)
(7.10)

Γ2
11 =

2EFu − EEv − FEu
2(EG− F 2)

(7.11)

Γ2
12 =

EGu − FEv
2(EG− F 2)

(7.12)

Γ2
22 =

EGv − 2FFv + FGu

2(EG− F 2)
(7.13)

a. Program the Gauss relations in Eigenmath for the helicoid.
Hint: here is a sketch, Γ1

11
‖Math = Ga111 ‖EigenMath . . . :

phi(u,v)= ..

E = d(phi,u)

..

Ga111 = 1/2 (G d(E,u) - 2 F d(F,u) + F d(E,v) / (E G - F^2)

..

Ga222 = 1/2 (E d(G,v) -2 F d(F,v) + F d(G,u)/(EG - F^2 )

-- and if you like to have the tensor GammaII

Ga1 = ((Ga111, Ga112),(Ga121,Ga122))

Ga2 = ..

GammaII = (Ga1, Ga2)

Remark. A proof is in Heckmann [13, p.25].
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8 Intrinsic Curvature

The intrinsic curvature of a 2D surface can be calculated using only the coefficients of the
metric tensor g - without recourse to the shape operator who make use of the extrinsic
concepts of the sff h.

8.1 Definition

Let U be the parameter region of the metric tensor g = (gij) = g(u, v).
Let ∂u := ∂

∂u
be the partial derivative w.r.t. the variable u and ∂v := ∂

∂v
. . . .

Let ΓII := (Γ1,Γ2) be the Christoffel symbol of 2nd kind associated with g.
Then we define the intrinsic curvature Kintrinsic by

Kintrinsic(u, v) := ∂vΓ
2
11 − ∂uΓ2

21 + Γ2
21 · (Γ1

11 − Γ2
12) + Γ2

11 · (Γ2
22 − Γ1

21) (8.1)

Remark. 1. The definition (8.1) is in Reckziegel [24, p. 160].
2. In §9 we show, how the Gauss curvature K can be calculated using the intrinsic
curvature Kintrinsic.
3. Verify: Kintrinsic = R1212

8.2 Implementation and Examples

We now give some examples and exercises to calculate the intrinsic curvature Kintrinsic.
We start with the so-called hyperbolic half plane, whose results are clear and short and
allows a focus on the intermediate steps.

Example 16. (The intrinsic curvature of the hyperbolic upper half plane H)
Let H := {(u, v) ∈ IR2|v > 0} be the hyperbolic half plane with 1st fundamental form

ds2 = du2+dv2

v2
resp. its metric tensor g(u, v) =

[
u2

0
0
v2

]
.

Calculate the the intrinsic curvature KH
intrinsic(u, v) of the hyperbolic half plane H.

Solution We use Eigenmath. First we compute the Christoffel symbols using known
tensor techniques. Then we implement the intrinsic curvature by formula (8.1).

# EIGENMATH

"HYPERBOLIC HALF PLANE"

U = (u,v)

g = ((1/v^2, 0),(0, 1/v^2))

gu = inv(g)

Dg = d(g,U)

GammaI = 1/2 (Dg + transpose(Dg,2,3) - transpose(Dg,2,3,1,2))

GammaI



8 INTRINSIC CURVATURE 81

GammaII = dot(gu, GammaI)

GammaII

"intrinsic curvature"

Ch111 = GammaII[1,1,1]

Ch121 = GammaII[1,2,1]

Ch211 = GammaII[2,1,1]

Ch221 = GammaII[2,2,1]

Ch222 = GammaII[2,2,2]

Kintrinsic = 1/g[1,1]*( d(Ch211,v) - d(Ch221,u) +

Ch221*(Ch111-Ch221) +

Ch211*(Ch222-Ch121) )

Kintrinsic

Eigenmath output:

...
• B Click here to RUN this script.

Comment. The result KH
intrinsic(u, v) ≡ −1 demonstrates, that this curvature is of con-

stant value, because the result is not dependent of both u and v. Ergo: The hyperbolic
half plane has constant intrinsic curvature, cf. Banchoff [2, p.227] or Reckziegel [24,
p.161].

Exercise 120. In case you don’t like tensor techniques: Calculate the the intrinsic curva-
ture KH

intrinsic(u, v) of the hyperbolic half plane H without tensor techniques, by using the
iterative computation of the Christoffel symbols instead.

https://lindnerdrwg.github.io/diffgeo22.html
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Example 17. (The intrinsic curvature of the helicoid)
The metric tensor g of the helicoid is known to have the coefficients E = 1, F = 0, G =
1 + v2. Calculate the the intrinsic curvature Khelicoid

intrinsic(u, v) of the helicoid.

Solution We use Eigenmath. First we compute the Christoffel symbols using com-
pact tensor techniques. Then we determine the intrinsic curvature by formula (8.1).

# EIGENMATH

"HELICOID"

U = (u,v)

-- coefficients of fff

E =1

F = 0

G = v^2+1

g = zero(2,2)

g[1,1] = E

g[1,2] = F

g[2,1] = F

g[2,2] = G

gu = inv(g)

Dg = d(g,U)

Dg

"CHRISTOFFEL Symbol 1st kind"

GammaI = 1/2 (Dg + transpose(Dg,2,3) - transpose(Dg,2,3,1,2))

GammaI

"CHRISTOFFEL Symbol 2nd kind"

GammaII = dot(gu, GammaI)

GammaII

"intrinsic curvature"

Ch111 = GammaII[1,1,1]

Ch121 = GammaII[1,2,1]

Ch211 = GammaII[2,1,1]

Ch221 = GammaII[2,2,1]

Ch222 = GammaII[2,2,2]

Kintrinsic = 1/g[1,1]*( d(Ch211,v) - d(Ch221,u) +

Ch221*(Ch111-Ch221) +

Ch211*(Ch222-Ch121) )

Kintrinsic
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Eigenmath output:

• B Click here to RUN this script.

Comment. The result Khelicoid
intrinsic(u, v) ≡ 0 demonstrates, that the helicoid has constant

intrinsic curvature 0 at every point.

8.3 Exercises

Recall: the Christoffel symbols ΓII were calculated in §7.4.

• You may cross-check your results of the following exercises in [17].

Task: Calculate the intrinsic curvature Kintrinsic(u, v) for the following surfaces
using Eigenmath . . .

Exercise 121. the cylinder φ(u, v) = (a cos(v), a sin(v), u). Choose a = 1.
Verify: Kcylinder

intrinsic(u, v) = 0

Exercise 122. the cone φ(u, v) = (u cos(v), u sin(v), u).
Verify: Kcone

intrinsic(u, v) = 0

Exercise 123. the elliptic paraboloid φ(u, v) = (u, v, u2 + v2).
Verify: Kell.para.

intrinsic(u, v) = 4
(4u2+4v2+1)2

Exercise 124. the hyperbolic paraboloid φ(u, v) = (u, v, u2 − v2).
Verify: Khyp.para.

intrinsic (u, v) = −4
(4u2+4v2+1)2

Exercise 125. the monkey saddle φ(u, v) = (u, v, u3 − 3uv2).
Verify: Kmonkey

intrinsic(u, v) = −36 u2+v2

(9u4+18u2v2+9v4+1)2

Exercise 126. the unit sphere φ(u, v) = (cos(u) sin(v), sin(u) sin(v), cos(v)).
Verify: Ksphere1

intrinsic(u, v) = 1

Exercise 127. the catenoid φ(u, v) = (c cosh v
c

cosu, c cosh v
c

sinu, v). Choose c = 1.
Verify: Kcatenoid

intrinsic(u, v) = 0

https://lindnerdrwg.github.io/diffgeo23.html
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Exercise 128. the torus φ(u, v) = ((b+ a cos(v)) cos(u), (b+ a cos(v)) sin(u), a sin(v)).
Verify: Ktorus

intrinsic(u, v) = cos v
2+cos v

Exercise 129. the function graph φ(u, v) = (u, v, f(u, v)).

Verify: Kgraph
intrinsic(u, v) = fuufvv−f2uv

(fu
2+fv

2+1)2

Exercise 130. the surface of revolution φ(u, v) = (f(u) cos(v), f(u) sin(v), g(u)).

Verify: Krevolution
intrinsic (u, v) = gu(−fuugu+guufu)

f(u)(fu
2+gu2)2

Exercise 131. the Plücker conoid φ(u, v) = (v · cos(u), v · sin(u), 2 cos(u) · sin(u)).

Verify: KPluecker
intrinsic (u, v) = −4(4 cos4 u−4 cos2 u+1)

(cos4 v+2 cos2 u cos2 v−... )

Exercise 132. the Scherk surface φ(u, v) = (u, v, ln( cos v
cosu

)).

Verify: KScherk
intrinsic(u, v) = − cos2 u cos2 v

(cos4 v+2 cos2 u cos2 v−... )

Exercise 133. the Enneper φ(u, v) = (u− 1
3
u3 + uv2, v − 1

3
v2 + vu2, u2 − v2).

Verify: KEnneper
intrinsic(u, v) = −4

(1+2u2+2v2+u4+2v2u2+v4)(u2+v2+1)2

Exercise 134. the Beltrami pseudosphere
φ(u, v) = (sinu cos v, sinu sin v, cosu+ ln(sinu(cosu+ 1))).

Verify: KBeltrami
intrinsic (u, v) = −1

Exercise 135. the hexenhut φ(u, v) = (α · cos v√
u
, α · sin v√

u
, u) where α2 = 2

3
√
3
.

Verify: Khexenhut
intrinsic (u, v) = −2187u4

(1+27u3)2

Exercise 136. the ’hexe’ surface φ(u, v) = (
√
u · cos v,

√
u · sin v, u).

Verify: Khexe
intrinsic(u, v) = 4

(1+4u)2

Exercise 137. the Bianchi surface

φ(u, v) =


2·
√
v2+1·sin(u)·cos(−v+arctan(v))

1+v2 sin(u)2

−2·
√
v2+1·sin(u)·sin(−v+arctan(v))

1+v2 sin(u)2

ln(tan( 1
2u

)) + 2·cos(u)
1+v2 sin(u)2


Verify: Kcone

intrinsic(u, v) = −1

Exercise 138. Implement the intrinsic curvature Kintrinsic(u, v) in Eigenmath as a func-
tion Kintrinsic(u,v), which only uses the functions GammaI(i,j,k) and GammaII(i,j,k).
• B Click here to SEE a solution.

https://lindnerdrwg.github.io/diffgeo31.html
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9 Riccci Tensor and Gauss Theorema egregium

The intrinsic curvature of a 2D surface can be calculated using only the coefficients of the
metric tensor g - without recourse to the shape operator who make use of the extrinsic
concepts of the sff h.

9.1 Definition - Ricci curvature

Let φ : U → IR2 be the parameterization of a surface S.
Let g = (gij) be the surface metric tensor of φ with inverse matrix g−1 = (gij).
Let Ri

jkl be the Riemann curvature tensor of 2nd kind.
Then we define . . .

a. . . . the Ricci tensor Ric via a contraction w.r.t. the middle index of the Riemann
curvature tensor by

Ricik :=
2∑
j=1

Rj
ijk (9.1)

where the Einstein summation convention is decoded to prepare for the implementation
of the formula in Eigenmath.

b. . . . the mixed Ricci tensor Ric via index juggling of the Ricci tensor by

Ricj i :=
2∑

k=1

gjkRicik (9.2)

c. . . . the Ricci curvature (scalar) R via index contraction of the Ricci tensor by

R :=
2∑
i=1

2∑
k=1

gikRicik (9.3)

alias R := Ricii.

Remark. The Ricci tensor Ric is often also called the scalar curvature of the surface S
resp. of the metric g.
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9.2 Gauss’s Theorema Egregium

Theorem. (Gauss 1827)
LET φ : U → IR2 be the parameterization of a surface S.

Let g = (gij) be the surface metric tensor of φ with coefficients E,F,G.
Let K be the Gauss curvature and Kintrinsic be the intrinsic curvature of g.
Let R be the Ricci curvature scalar.

THEN we have:

A. The Gauss curvature is half of the Ricci curvature scalar, i.e.

R = 2K (9.4)

B. The intrinsic curvature of g is g11-times of the Gauss curvature, i.e.

Kintrinsic = K · g11 (9.5)

C. The Gauss curvature is explicit calculated via Brioschi’s formula from 1852, i.e.

K =

det

−1
2
∂2E
∂v2

+ ∂2F
∂u∂v
− 1

2
∂2G
∂u2

1
2
∂E
∂u

∂F
∂u
− 1

2
∂E
∂v

∂F
∂v
− 1

2
∂G
∂u

E F
1
2
∂G
∂v

F G

− det

 0 1
2
∂E
∂v

1
2
∂G
∂u

1
2
∂E
∂v

E F
1
2
∂G
∂u

F G


(EG− F 2)2

(9.6)

Comment. The main statement of the Theorema Egregium from 1827 is: the Gauss
curvature K of a surface parameterization is a measure of its intrinsic geometry, i.e. K
can be calculated of the coefficients E,F,G of the metric tensor g alone! This is explicitly
stated in the Brioschi formula (9.6).
While the Weingarten map alias the shape operator describes the shape of a surface as
part of the ambient space, the numbers E,F,G and therefore the measurement of length
or area on the surface do not take any borrowing from the ambient space.
The Ricci tensor, the Ricci curvature and the Ricci curvature scalar are therefore con-
cepts of the intrinsic geometry of the surface. In contrast the Weingarten map alias the
shape operator are concepts of the extrinsic geometry of the surface – by using the normal
vector field of S.
It is the merit of C. F. Gauss to have shown that the Gauss curvature can be traced
back to the 3 real-valued functions E,F,G and their derivatives.

Remark. 1. A proof of A. is in Oloff [22, p.110].
2. A proof of B. is in Reckziegel [24, p.160].
3. A proof of C. is in Banchoff [2, p.230], Heckmann [13, p.30] or Pressly [23, p.233].
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9.3 Implementation and Examples

Example 18. (Calculation of the Ricci curvature scalar R of the helicoid)
We do the calculation as before with/without tensor techniques in Eigenmath. The
metric tensor g of the helicoid is known to have the coefficients E = 1, F = 0, G = 1 + v2.
Calculate the the Ricci curvature scalar R of the helicoid.

Solution
1. We use Eigenmath. First we compute the Ricci curvature Ric with compact tensor
techniques, cf. G. Weigt [42]. We use formula (9.3) with intermediate steps by (9.1) and
(9.2).

# EIGENMATH

"HELICOID"

U = (u,v)

E =1 -- coefficients of metric tensor g

F = 0

G = v^2+1

g = zero(2,2)

g[1,1] = E

g[1,2] = F

g[2,1] = F

g[2,2] = G

gu = inv(g)

Dg = d(g,U)

GammaI = 1/2 (Dg + transpose(Dg,2,3) - transpose(Dg,2,3,1,2))

GammaII = dot(gu, GammaI)

"Step 1. Calculate RIEMANN tensor Ri^jkl of 2nd kind."

T1 = d(GammaII, U)

T2 = dot(transpose(GammaII,2,3), GammaII)

RII = transpose(T1,3,4) - T1 + transpose(T2,2,3) - transpose(T2,2,3,3,4)

RII

"Step 2. Calculate RICCI tensor by (9.1). "

Ric = contract(RII,1,3)

Ric

"Step 3. Calculate RICCI curvature SCALAR by (9.3)."

R = contract( dot( gu, transpose(Ric)))

R
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Eigenmath output:

• B Click here to RUN this script.

Comment. The result Rhelicoid = 0 demonstrates, that the helicoid has a vanishing Ricci
curvature scalar at every point.

2. First we compute the Riemann curvature tensor Ric again using compact tensor tech-
niques, because we have shown above how to do it using for-loops (one could include it
here). We then use formula (9.3) with intermediate steps by (9.2) - but this time we
demonstrate the attention of the Einstein summation convention by explicit use of the
sum()-command of Eigenmath.

# EIGENMATH

"HELICOID"

U = (u,v)

g = ((1,0),(0,v^2+1))

gu = inv(g)

Dg = d(g,U)

GammaI = 1/2 (Dg + transpose(Dg,2,3) - transpose(Dg,2,3,1,2))

GammaII = dot(gu, GammaI)

"Step 1. Calculate Riemann tensor Ri^jkl of 2nd kind."

T1 = d(GammaII, U)

T2 = dot(transpose(GammaII,2,3), GammaII)

RII = transpose(T1,3,4) - T1 + transpose(T2,2,3) - transpose(T2,2,3,3,4)

RII

"Step 2. Calculate Ricci tensor using explicit for-loops."

Ric =zero(2,2)

for( m,1,2,

for( q,1,2, -- 1 3 : contract 1-3

Ric[m,q] = sum( s,1,2, RII[s,m,s,q]) ))

https://lindnerdrwg.github.io/diffgeo24.html
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Ric

"Step 3. Calculate Ricci scalar R using explicit for-loops."

R = sum( i,1,2, sum(j,1,2, gu[i,j]*Ric[i,j]) )

R

• B Click here to RUN this script.

Eigenmath output: same as above.

Exercise 139. (Brioschi’s formula)
Program Brioschi’s formula (9.6) in Eigenmath and compute the Gauss curvature K
for the helicoid with it.

Solution: sketch. Fill in the .. .

# EIGENMATH

phi(u,v) = (u cos(v), u sin(v), c v) -- the HELICOID

g = ((1,0),(0,c^2+u^2)) -- surface metric tensor

do( E=g[1,1], F=g[1,2], G=g[1,1]) -- define E,F,G

--define the 2 matrices

M1 = ((-1/2*d(E,v,v)+d(F,u,v)-1/2d(G,u,u), .. , ..),

(d(F,v)-1/2d(G,u) , .. , ..),

(1/2 d(G,v) , .. , G ) )

M1

M2= ((0 , .. , .. ),

(1/2 d(E,v), E , F ),

(1/2 d(G,u), F , G ))

M2

-- define GAUSS curvature

K = (det(M1)-det(M2))/(E G -F^2)

K

Exercise 140. Compute the Gauss curvature K for the ’saddle’ surface z = uv with
Brioschi’s formula.

https://lindnerdrwg.github.io/diffgeo24a.html
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9.4 The sine-Gordon Equation

∂2u

∂x∂y
= sin(u)

This is the so-called sine-Gordon equation, which was considered in the study of surfaces
of constant Gaussian curvature K = −1, called pseudospherical surfaces. We show how
this equation can be derived using the CAS Eigenmath. In this example we demonstrate
how to get this equation from the metric tensor resp. the 1st fundamental form of a surface
with corresponding metric tensor g.

Task. Let U ⊂ IR2 be the region of the metric tensor g, which is given by its 1st fundamental
form

I = dx ∧ dx+ cos(u(x, y)) · dx ∧ dy + cos(u(x, y)) · dy ∧ dx+ dy ∧ dy

alias its metric coefficients

g11 = g22 = 1, g12 = g21 = cos(u(x, y))

Calculate the Ricci curvature scalar of g , i.e. verify

R = − 2

sin(u)

∂2u

∂x∂y

Solution
We compute the Ricci scalar curvature R using tensor techniques. First we simplify the
contravariant metric tensor Math:

EigenM :
g−1

gu
having seen the intermediate result in (1). Then

we go on.

# EIGENMATH

"sine GORDON equation"

X = (x,y) -- u and v depends on x and y

U = (u(x,y), v(x,y))

g = ((1,cos(u(x,y))), (cos(u(x,y)),1)) --(1)

g

gu = inv(g)

gu --(2)

gu[1,1] = 1/sin(u(x,y))^2

gu[1,2] = - cos(u(x,y))/sin(u(x,y))^2

gu[2,1] = gu[1,2]

gu[2,2] = 1/sin(u(x,y))^2

gu

Dg = d(g,X)

Dg
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GammaI = 1/2 (Dg + transpose(Dg,2,3) - transpose(Dg,2,3,1,2))

GammaI

GammaII = dot(gu, GammaI)

GammaII

"RIEMANN Ri^jkl tensor."

T1 = d(GammaII, X)

T2 = dot(transpose(GammaII,2,3), GammaII)

RII = transpose(T1,3,4) - T1 + transpose(T2,2,3) - transpose(T2,2,3,3,4)

RII

"RIEMANN Rijkl tensor."

RI = dot(g, RII)

RI

"RICCI tensor."

Ric = contract(RII,1,3)

Ric

"RICCI curvature scalar"

R = contract( dot( gu, transpose(Ric)))

R

Eigenmath output:

• B Click here to RUN this script.

Comment. The long result for R has to be simplified by the user. Therefore we translate
the return value of Eigenmath in math language. We use the shortcut c := cos(u(x, y))
and s := sin(u(x, y)). Then the output of Eigenmath reads:

R = −2c3uxuy
s4

+
2c2uxy
s3

− 2c · uxuy
s2

+
2c · uxuy

s4
− 2uxy

s3

= . . . (use trigo formulae c2 + s2 = 1 and 1− c2 = s2)

=
−2uxy
s

= − 2

sin(u)

∂2u

∂x∂y
q.e.d.

Remark. 1 Our presentation of the sine-Gordon equation followed Steeb in [35, p. 64–67
and p. 363–365], where an implementation with for-loops is given in Reduce and C++.
2 For more info see e.g. wiki: Sine-Gordon equation

https://lindnerdrwg.github.io/diffgeo25.html
https://en.wikipedia.org/wiki/Sine-Gordon_equation
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9.5 The Ricci scalar of the Schwarzschild Spacetime Metric

Figure 13:

Descriptive representation of the Schwarzschild metric: A two-
dimensional area of space is considered. In the vicinity of the mass,
the distances are lengthened. This is illustrated by the fact that the
surface has been stretched in a visually existing further direction. Time
slows down near the mass. This is illustrated by the fact that relatively
little sand has trickled through the hourglass. The ray of light entering
the eye from the light source would have to traverse a very stretched
surface if it were to travel closer to the mass. Therefore, the light beam
makes an arc around the mass, to quote Carmesin [3].

Exercise 141. In Einstein’s theory of General Relativity, the Schwarzschild metric (also

known as the Schwarzschild solution) is the first solution of Einstein’s field equations, which was

found in 1916 by the German astrophysicist Karl Schwarzschild (1873 - 1916). It describes the

gravitational field of a homogeneous, non-charged and non-rotating sphere and is an example

of the curvature of space-time, where light paths and trajectories follow the curvature of the

space-time metric.

The Schwarzschild metric is a spherically symmetric Lorentzian metric defined on the
subset U = R× (2M,∞)× S210 in ambient 4D spacetime.
In Schwarzschild coordinates (t, r, θ, φ) ∈ U the Schwarzschild 1st fundamental form

10where S2 ⊂ IR3 is the unit sphere in IR3.
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has the expression11 with sign convention (−,+,+,+)

ds2 = −
(

1− 2M

r

)
dt2 +

1

1− 2M
r

dr2 + r2dθ2 + r2 sin2 θdφ2 (9.7)

resp. the Schwarzschild metric tensor is the matrix g with h(r) := 1 − 2M
r

and sign
convention (+,−,−,−)

g =


h(r) 0 0 0

0 − 1
h(r)

0 0

0 0 −r2 0
0 0 0 −r2 sin(θ)2

 (9.8)

a. Verify using the arbitrary h(r) term:

i.e.

R =
4∂h(r)

∂r

r
− 2

r2
+

2h(r)

r2
+
∂2h(r)

∂r∂r

b. Verify: if h(r) := 1− 2M
r

with M ∈ IR+ arbitrary, then R = 0.

• B Click here to RUN the solution.

Remark. 1. In this example Eigenmath works in a 4D space with coordinates (t, r, θ, φ),
but using tensor techniques to calculate the Christoffel tensors, the Riemann curvature
tensors or the Ricci curvature scalar gives the expected results.
2. We use the conventions and notations in [22, p.5, p.52, p.96].
3. An Eigenmath solution to this problem is given by G. Weigt in [42].

Exercise 142. (Post-Einstein-Schwarzschild-Metric)
a. Read the text B Post-Einstein-Schwarzschild-Metrik . Although it is written in German, you
should be able to recognize and understand all formulas.
b. Using the metric tensor in (3) on p.2 of this script, calculate the Christoffel tensors,
the Riemann curvature tensors or the Ricci curvature scalar using tensor techniques by
Eigenmath.

11By replacing M with GM/c2, with G as the gravitational constant and t with c · t (c speed of light),
one reconnects to the physical system of measurements.

https://lindnerdrwg.github.io/diffgeo26.html
https://astronomie-magdeburg.de/wp-content/uploads/2018/10/Einstein-Tensor-der-Post-Einstein-Schwarzschild-Metrik.pdf
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9.6 The Ricci scalar of the Gödel Spacetime Metric

Exercise 143. For the given metric tensor (gik), check the results of Gödel’s calculations
for the Christoffel tensors, the Ricci tensor and the Ricci curvature scalar R = 1

a2
.
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9.7 Exercises

Let’s calculate the Ricci curvature tensor Ric and the Ricci curvature scalar
R for our small collection of classical 2D surfaces. Sometimes you should help
Eigenmath to simplify trigonometric expressions or to simplify fractions.

• Calculate the Ricci curvature tensor Ric and Ricci curvature scalar R for the following
surfaces using Eigenmath . . .

Exercise 144. . . . the saddle φ(u, v) = (u, v, uv).

Exercise 145. the cylinder φ(u, v) = (a cos(v), a sin(v), u). Choose a = 1.

Exercise 146. the cone φ(u, v) = (u cos(v), u sin(v), u).

Exercise 147. the elliptic paraboloid φ(u, v) = (u, v, u2 + v2).

Exercise 148. the hyperbolic paraboloid φ(u, v) = (u, v, u2 − v2).

Exercise 149. the monkey saddle φ(u, v) = (u, v, u3 − 3uv2).

Exercise 150. the unit sphere φ(u, v) = (cos(u) sin(v), sin(u) sin(v), cos(v)).

Exercise 151. the catenoid φ(u, v) = (c cosh v
c

cosu, c cosh v
c

sinu, v). Choose c = 1.

Exercise 152. the torus φ(u, v) = ((b+ a cos(v)) cos(u), (b+ a cos(v)) sin(u), a sin(v)).

Exercise 153. the function graph φ(u, v) = (u, v, f(u, v)).

Exercise 154. the surface of revolution φ(u, v) = (f(u) cos(v), f(u) sin(v), g(u)).

Exercise 155. the Plücker conoid φ(u, v) = (v · cos(u), v · sin(u), 2 cos(u) · sin(u)).

Exercise 156. the Scherk surface φ(u, v) = (u, v, ln( cos v
cosu

)).

Exercise 157. the Enneper surface φ(u, v) = (u− 1
3
u3 + uv2, v − 1

3
v2 + vu2, u2 − v2).

Exercise 158. the Beltrami pseudosphere
φ(u, v) = (sinu cos v, sinu sin v, cosu+ ln(sinu(cosu+ 1))).

Exercise 159. the hexenhut φ(u, v) = (α/
√
u · cos v, α/

√
u · sin v, u) where α2 = 2

3
√
3
.

Exercise 160. the ’hexe’ surface φ(u, v) = (
√
u · cos v,

√
u · sin v, u).

Exercise 161. the Bianchi surface

φ(u, v) =


2·
√
v2+1·sin(u)·cos(−v+arctan(v))

1+v2 sin(u)2

−2·
√
v2+1·sin(u)·sin(−v+arctan(v))

1+v2 sin(u)2

ln(tan( 1
2u

)) + 2·cos(u)
1+v2 sin(u)2


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10 The Fundamental Theorem

First we quote the well known equations from Weingarten, Gauss and Codazzi-
Mainardi. Then we formulate the legendary Fundamental Theorem of surface theory.

10.1 The Weingarten Equations

The Weingarten equations express the partial derivatives of the surface normal ~n as a
linear combination of the tangential basis vectors, where its coefficient are calculated only
using the coefficients of the 1st and 2nd fundamental forms. These equation were found by
Weingarten in 1861.

Theorem. (Weingarten Equations)
LET φ : U → S ⊂ IR3 be a parameterization of a surface S in IR3.

Let (φu, φv) = (∂φ
∂u
, ∂φ
∂v

) be the local basis in TpS.

Let g = (gij) =
[
E F
F G

]
be the surface metric tensor of φ.

Let h = (hij) =
[
L M
M N

]
be the 2nd fundamental tensor of φ.

Let ~n := φu×φv
|φu×φv | be the unit normal of S in p.12

THEN we have the two Weingarten equations

~nu =
MF − LG
EG− F 2

· φu +
LF −ME

EG− F 2
· φv (10.1)

~nv =
NF −MG

EG− F 2
· φu +

MF −NE
EG− F 2

· φv (10.2)

Remark. For a proof cf. [13, p.26].

Example 19. (Check the Weingarten Equations for the helicoid)
We consider the parametric surface helicoid with shape constant c.
To verify the validity of the Weingarten Equations we use the surface basis φu, φv.

# EIGENMATH

phi(u,v) = (u cos(v), u sin(v), c v) -- HELICOID

U =(u,v) -- coordinates of surface

g = ((1,0),(0,c^2+u^2)) -- surface metric tensor

do( E=g[1,1], F=g[1,2], G=g[2,2]) --(1) name it E, F, G

h=((0, -c/sqrt(c^2+u^2)), (-c/sqrt(c^2+u^2),0)) -- known 2nd fu. tensor

12To avoid name clash, we use the symbol ~n for the normal vector, because N is used in the formulae
to denote the 4th coefficient of the sffh.
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do( L=h[1,1], M=h[1,2], N=h[2,2]) --(2) name it L, M, N

-- surface normal

n = cross(d(phi,u), d(phi,v)) --(3)

n[3]=u --(4)

n

-- surface unit normal

an = abs(n) --(5)

an = sqrt(c^2+u^2)

an

n = n/an --(6)

n

-- compare LHS and RHS of WEINGARTEN eq. (10.1)

RHS101 = 1/(E G - F^2)*(M F - L G)*d(phi,u) +

1/(E G - F^2)*(L F - M E)*d(phi,v)

RHS101

LHS101 = d(n,u)

LHS101 --(7)

• B Click here to RUN the solution.

Eigenmath output:

Comment. The 1st and 2nd ff g and h are known and given here directly in their matrices.
In (1) we give the coefficients of the fff g their classic names E,F,G and in (2) we name the
coefficients of the sff h classic as L,M,N . Line (3) constructs and simplifies (by mind) the
normal vector n by means of the cross product, calculates his length in (5) and normalize
n to unit length (6).
We then write down the 1st Weingarten equation (10.1) separeted in the LHS term named
LHS101 and the RHS term abbreviated RHS101 in Eigenmath. We have to verify, that
RHS101=LHS101 in order to show the equality. The RHS is delivered automatically by
Eigenmaths output, to check that this term is equal to the LHS term we help Eigenmath
a little bit in the 3rd component in (7):

− u2

(c2 + u2)3/2
− 1

(c2 + u2)1/2
=
−u2 + (c2 + u2)

(c2 + u2)3/2
=

c2

(c2 + u2)3/2
= RHS101 (10.3)

q.e.d.

https://lindnerdrwg.github.io/diffgeo27.html
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Exercise 162. Verify the validity of the Weingarten equation (10.2) for the helicoid.

Exercise 163. Verify the validity of the Weingarten equations for the surface z = uv.

Exercise 164. Verify the validity of the Weingarten equations for the monkey saddle,
the cone and the hyperbolic paraboloid and ... what you like.

10.2 The Gauss Equations

The Gauss equations are a system of three partial differential equations. They describe
a connection between the tangential vectors, the unit normal vector of a parametrized
surface and their coefficients of the 2nd fundamental form.

Theorem. (Gauss Equations)
LET φ : U → S ⊂ IR3 be a parameterization of a surface S in IR3.

Let E = (E1, E2) := (φu, φv) = (∂φ
∂u
, ∂φ
∂v

) be the local base in TpS. φuu := ∂2φ
∂u∂u

etc.
Let g = (gij) be the surface metric tensor of φ.
Let h = (hij) =

[
L M
M N

]
be the 2nd fundamental tensor of φ.

Let ~n := φu×φv
|φu×φv | be the unit normal of S in p.13

Let ΓII = (Γ1,Γ2) be the Christoffel symbol coefficients of 2nd kind.

THEN we have the three Gauss equations

φuu = Γ1
11 · φu + Γ2

11 · φv + L · ~n (10.4)

φuv = Γ1
12 · φu + Γ2

12 · φv +M · ~n (10.5)

φvv = Γ1
22 · φu + Γ2

22 · φv +N · ~n (10.6)

Proof: cf. Oloff [22, p.93], Pressley [23, p.240] or B Derivation of classical equations. �

Remark. If we denote the coordinate basis by E = (E1, E2) and the parameters as
(u1, u2) = (u, v) with integer indices, then the Gauss equations may be written by

∂E1

∂u1
= Γ1

11 · E1 + Γ2
11 · E2 + L · ~n

∂E1

∂u2
= Γ1

12 · E1 + Γ2
12 · E2 +M · ~n

∂E2

∂u2
= Γ1

22 · E1 + Γ2
22 · E2 +N · ~n

and then compactly expressed with the Einstein summation convention by one tensorial
equation (i, j ∈ {1, 2})

∂Ei
∂uj

= Γkij · Ek + hij · ~n (10.7)

We now verify the validity of the Gauss Equations for some surfaces.

13To avoid name clash, we use the symbol ~n for the normal vector, because N is used in the formulae
to denote the 4th coefficient of the sff.

https://en.m.wikipedia.org/wiki/Gauss-Codazzi_equations
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Example 20. (Gauss Equations for the helicoid)
We consider the parametric surface helicoid with shape constant c. To verify the validity
of the Gauss Equations we use the surface basis φu, φv and their derivatives φuu, φuv =
φvu, φvv , i.e. the second partial derivatives of the tangential basis vectors, which appears
on the LHS of the Gauss equations.

# EIGENMATH

phi(u,v) = (u cos(v), u sin(v), c v) -- parametrized helicoid

U =(u,v) -- coordinates of surface

g = ((1,0),(0,c^2+u^2)) -- surface metric tensor

g

h=((0, -c/sqrt(c^2+u^2)), (-c/sqrt(c^2+u^2),0))

h -- 2nd fund. form

do( L=h[1,1], M=h[1,2], N=h[1,1]) --(1)

do( print(L), print(M), print(N)) --(2)

n = cross(d(phi,u), d(phi,v)) --(3)

n[3]=u --(4)

n

an = abs(n) --(5)

an = sqrt(c^2+u^2)

an

n = n/an --(6)

n

gu = inv(g)

gu

Dg = d(g, U)

Dg

GammaI = 1/2 (Dg + transpose(Dg,2,3) - transpose(Dg,2,3,1,2))

GammaII = dot(gu, GammaI)

GammaII

"GAUSS equation check"

d(phi,u,u) - (GammaII[1,1,1]*d(phi,u) + GammaII[2,1,1]*d(phi,v) + L*n) --(G1)

d(phi,u,v) - (GammaII[1,1,2]*d(phi,u) + GammaII[2,1,2]*d(phi,v) + M*n) --(G2)

sin(v)*(c^2+u^2)/(c^2+u^2) - sin(v) --(7)

-cos(v)*(c^2+u^2)/(c^2+u^2) + cos(v)

d(phi,v,v) - (GammaII[1,2,2]*d(phi,u) + GammaII[2,2,2]*d(phi,v) + N*n) --(G3)
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Eigenmath output:

• B Click here to RUN the script.

Comment. The 1st and 2nd ff g and h are known and given here directly in their matrices.
In (1) we give the coefficients of the sff their usual names L,M,N and display them in (2).
Line (3) constructs and simplifies (by mind) the normal vector n by means of the cross
product, calculates his length in (5) and normalize n to unit length (6).
(G1), (G2),(G3) are the three Gauss equations expressed in Eigenmath. All terms of
the three equations are collected on the LHS, so we have to verify, that the result is 0 in
order to show the validity. The result (G1) = 0 and (G3) = 0 is delivered automaticly by
Eigenmaths output, to check that (G2) = 0 we help Eigenmath a little bit in (7). Ok.

Exercise 165. Verify the validity of the Gauss equations for the surface z = uv.

Exercise 166. Verify the validity of the Gauss Equations for
– the monkey saddle
– the cone
– the hyperbolic paraboloid
...

https://lindnerdrwg.github.io/diffgeo27a.html
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10.3 The Codazzi-Mainardi Equations

The Codazzi-Mainardi equations are important formulas which link together the metric
tensor g and the second fundamental form h of a parametric surface by means of the
Christoffel symbol of the 2nd kind..

Theorem. (Codazzi-Mainardi Equations)
LET φ : U → S ⊂ IR3 be a parameterization of a surface S in IR3.

Let g = (gij), h = (hij) =
[
L M
M N

]
be the 1st and 2nd fundamental tensors of φ .

Let ΓII = (Γ1,Γ2) be the Christoffel symbol coefficients of 2nd kind as above.

THEN we have the two Codazzi-Mainardi equations

Lv −Mu = L · Γ1
12 +M ·

(
Γ2

12 − Γ1
11

)
−N · Γ2

11 (10.8)

Mv −Nu = L · Γ1
22 +M ·

(
Γ2

22 − Γ1
12

)
−N · Γ2

12 (10.9)

or by compacting both equations via the Einstein summation convention into one tensorial
equation for i, j, l ∈ {1, 2}

∂hij
∂ul
− Γkil · hkj =

∂hil
∂uj
− Γkij · hkl (10.10)

Proof: cf. Pressley [23, p.241], Banchoff [2, p.229] or B Derivation of classical equations. �

Example 21. (Codazzi-Mainardi equations for the helicoid)
We consider the parametric surface helicoid with shape constant c. To verify the validity
of the Codazzi-Mainardi equations we need the coefficients L,M,N and the partial
derivatives of these coefficients of the sff h w.r.t. u and v, i.e. Lv,Mu,Mv, Nu and the
coefficients of ΓII . Again we collect all terms of the equation on the LHS and show, that
LHS = 0.

# EIGENMATH

phi(u,v) = (u cos(v), u sin(v), c v) -- HELICOID

U =(u,v) -- coordinates of surface

g = ((1,0),(0,c^2+u^2)) -- surface metric tensor

h = ((0, -c/sqrt(c^2+u^2)), (-c/sqrt(c^2+u^2),0)) -- 2nd FF

do( L=h[1,1], M=h[1,2], N=h[1,1]) -- name hij

do( print(L), print(M), print(N)) -- display L, M, N

gu = inv(g)

Dg = d(g, U)

https://en.wikipedia.org/wiki/Gauss-Codazzi_equations
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GammaI = 1/2 (Dg + transpose(Dg,2,3) - transpose(Dg,2,3,1,2))

GammaII = dot(gu, GammaI)

GammaII

"CODAZZI equation check"

d(L,v)-d(M,u) - --(CM1)

(L*GammaII[1,1,2] +

M*(GammaII[2,1,2]-GammaII[1,1,1]) -

N*GammaII[2,1,1] )

d(M,v)-d(N,u) - --(CM2)

(L*GammaII[1,2,2] -

M*(GammaII[2,2,2]-GammaII[1,1,2]) -

N*GammaII[2,1,2])

• B Click here to RUN the script.

Eigenmath output:

Comment. We implement the Codazzi-Mainardi equations 1:1 from equations (10.9)
and (10.10) in lines (CM1) and (CM2). Eigenmaths output displays that (CM1) =
(CM2) = 0. Ok.

Exercise 167. Verify the validity of the Codazzi-Mainardi equations for the surface
z = uv.

Exercise 168. Verify the validity of the Codazzi-Mainardi equations for
– the monkey saddle
– the cone
– the hyperbolic paraboloid
– a function graph
...

Exercise 169. Verify the validity of the Codazzi-Mainardi equations for the surface of
revolution with the parametrization φ : U → IR3 defined by φ(u, v) = (u cos(v), u sin(v), f(u))
with f : IR→ IR+ arbitrary.

Why is it important to test if the Codazzi-Mainardi equations are fulfilled for the
1st and 2nd fundamental forms of a surface? The answer is given in the so-called
Fundamental Theorem of Surfaces Theory.

https://lindnerdrwg.github.io/diffgeo27b.html
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10.4 The Fundamental Theorem of Surfaces Theory

The question arises to what extent a parametric surface is (uniquely) determined
by specifying the first and second fundamental forms. If one calculates the second
derivatives of the basis vectors of the tangent space of the surface, one finds that
the coefficients of the first and second fundamental forms cannot be chosen com-
pletely independently of each other. The necessary conditions work in the form of
the Codazzi-Mainardi equations and Brioschi’s formula. It is a fact that these
necessary conditions are also sufficient. Looking back, this motivates our short treat-
ment of the Codazzi-Mainardi equation.

With the Codazzi-Mainardi equations we are now ready to formulate the so-called
fundamental theorem of the surface theory, which is analogous to the fundamental theorem
of curve theory. It was published by O. Bonnet in 1867.

Theorem. (The Fundamental Theorem of Surfaces Theory)
LET the coefficients of the matrix g, h : U → IR of the first and second fundamental forms

(1) be C2-functions of the parameters u and v and
(2) satisfy the Codazzi-Mainardi equations and
(3) satisfy Brioschi’s formula for the calculation of the Gauss curvature K,

THEN there exists a uniquely determined (up to translations and rotations) surface S,
which owns these given first and second fundamental forms, i.e. IS = g and IIS = h.

Proof: Cf. Banchoff [2, p.238], Lipschutz [19, p.203] or B FuTheorem of surfaces, Gluck
[10, p.34] �

Remark. The conditions (2) and (3) are called the compatibility equations. They answer
the important existence question, if it is possible to construct a 2D surface with prescribed
1st and 2nd fundamental tensor coefficients.

10.5 Exercises

Exercise 170. Verify that the functions E = 1 + 4u2, F = −4uv,G = 1 + 4v2, L =
2(4u2 +4v2 +1)−1/2,M = 0, N = −2(4u2 +4v2 +1)−1/2 satisfy the compatibility equations.

Exercise 171. (existence of a surface with precribed fundamental coefficients)
Let (E,F,G) = (1, 0, sin2 u) and (L,M,N) = (1, 0, sin2 u) be candidates for the coefficients
for the 1st and 2nd fundamental tensors of a surface S, cf. [19, p.204].
a. Check, that E, .., N satisfy the compatibility equations, i.e. that the Codazzi-Mainardi
equations and Brioschi’s formula are fulfilled.
b. Show, that the surface S with this set of given fundamental coefficients is the sphere of
radius 1.

Exercise 172. Study the example 10.2 in [23, p.242] giving a cylinder of radius 1.

https://en.wikipedia.org/wiki/Gauss-Codazzi_equations
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Exercise 173. Verify that there is no surface S parametrized by φ(u, v) with 1st and 2nd

fundamental forms I = du2 + cos2 udv2 and II = cos2 udu2 + dv2, cf. [23, p.244].

Exercise 174. Do problem 9 in Gluck [10, p.37].

Exercise 175. Do problem 10 in Gluck [10, p.38].
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11 Covariant Derivative

Figure 14:

DXY : the directional derivative in IR3, e.g. grad.
The result is element of the ambient vector space.
∇XY : the covariant derivative in TpS. The result is in the
tangential vector space, i.e. ∇XY is the orthogonal projec-
tion of the directional derivative DXY onto TpM .

The Christoffel symbol Γ will now be used to formulate the concept of the covariant
derivative of two vector fields X and Y on the tangent space TpS of a parametrized surface
S in ambient space IR3.

11.1 Definition

Let φ : U → S ⊂ IR3 be a parameterization of a surface S in IR3.
Let E = (E1, E2) := (φu, φv) be the local base in TpS.
Let g = (gij) be the surface metric tensor of φ.
Let X, Y : U → TpS be two vector fields defined by their coefficients as X =

∑2
i=1X

i · Ei
and Y =

∑2
i=1 Y

i · Ei in the local base E.
Let ΓII = (Γ1,Γ2) be the Christoffel tensor coefficients of 2nd kind.

Then we define – using Einstein summation convention! – the covariant derivation of Y
w.r.t. X, noted ∇XY by

∇XY := X i∂Y
j

∂xi
Ej +X iY jΓkijEk (11.1)

or more explicit by decoding the Einstein summation convention

∇XY :=

(
Xu

∂Yu
∂u

+Xv
∂Yu
∂v

+
2∑

i,j=1

XiYjΓ
u
ij

)
Eu +

(
Xu

∂Yv
∂u

+Xv
∂Yv
∂v

+
2∑

i,j=1

XiYjΓ
v
ij

)
Ev

(11.2)

Remark. 1. Formula (11.1) is given e.g. in Oloff [22, p.91] or Thorpe [36, p.229].
2. Formula (11.2) is given in B Connexion de Levi-Civita.
3. In (11.2) the symbol

∑2
i,j=1 · · · ≡

∑2
i=1

∑2
j=1 . . . means a double summation.

https://fr.wikipedia.org/wiki/Connexion_de_Levi-Civita
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11.2 Implementation and Examples

In the following examples we calculate the two coefficients of the covariant derivative in
(10.2) and then associate the results to E1 resp. E2. We demonstrate this with three
different surfaces and different vector fields.

Example 22. (covariant derivative of two vector fields on z = uv)
We consider the function surface f(u, v) = u · v and its parametrization φ.

# EIGENMATH

-- HYPERBOLIC PARABOLOID

phi(u,v) = (u , v, u*v) -- S=phi(U)

U = (u,v)

g(i,j) = dot(d(phi, U[i]), d(phi,U[j]))

g = ((g(1,1),g(1,2)),

(g(2,1),g(2,2)) )

g

-- base in TpS

Eu = d(phi,u)

Eu

Ev = d(phi,v)

Ev

gu = inv(g)

gu

Dg = d(g, U) -- derivative of metric tensor

Dg

GammaI = 1/2 (Dg + transpose(Dg,2,3) - transpose(Dg,2,3,1,2))

GammaI

GammaII = dot(gu, GammaI)

GammaII

-- DEFINITION of covariant derivative via (10.2)

------------------------------------------------ (0)

covD(Y,X)= ( X[1]*d(Y[1],u) + X[2]*d(Y[1],v) +

sum(i,1,2, sum(j,1,2, X[i]*Y[j]*GammaII[1,i,j])), -- *Eu

X[1]*d(Y[2],u)+X[2]*d(Y[2],v) +

sum(i,1,2, sum(j,1,2, X[i]*Y[j]*GammaII[2,i,j])) ) -- *Ev

------------------------------------------------

"four example vector fields on the hyperbolic paraboloid" --(1)
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X = (u,v^3) -- = Xu*Eu +Xv*Ev = u*Eu + v^3*Ev

Y = (u v, u+v) -- = Yu*Eu +Yv*Ev = uv*Eu + (u+v)*Ev

D1 = (1,0) -- i.e. D1 = 1*Eu + 0*Ev = Eu in coordinates

D2 = (0,1)

covD(Y,X) --(2)

covD(D1,D1)

covD(D1,D2) --(3)

covD(D2,D2)

Eigenmath output:

Comment. The definition of the covariant derivative follows 1:1 the mathematical defi-
nition in (10.2), but we limit us to only calculate the pair of coefficients. In (1) we define
four different vector fields and calculate their covariant derivatives. The output displays
on the LHS the result of ∇XY and on the RHS the result of ∇EuEv.

• B Click here to RUN the example.

Example 23. (covariant derivative of two vector fields on the helicoid)
Consider the parametric surface of the helicoid.

# EIGENMATH

-- HELICOID

phi(u,v) = (u cos(v), u sin(v), c v)

U =(u,v) -- coordinates of surface

"metric tensor g"

g = zero(2,2)

g[1,1] = dot(d(phi,u), d(phi,u))

g[1,1] -- c^2+s^2=1 (1)

g[1,1] = 1

g[1,2] = dot(d(phi,u), d(phi,v))

g[2,1] = g[1,2]

g[2,2] = dot(d(phi,v), d(phi,v))

g[2,2] -- (c^2+u^2).(cos(v)^2+sin(v)^2) (2)

g[2,2] = c^2 + u^2

g

"base in TpS"

Eu = d(phi,u)

https://lindnerdrwg.github.io/diffgeo28.html
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Eu -- display Eu

Ev = d(phi,v)

Ev

gu = inv(g)

gu

Dg = d(g, U) -- derivative of metric tensor

Dg

GammaI = 1/2 (Dg + transpose(Dg,2,3) - transpose(Dg,2,3,1,2))

GammaI -- display GammaI

GammaII = dot(gu, GammaI)

GammaII -- display GammaII

-- DEFINITION of covariant derivative via (10.2)

-- using GammaII

------------------------------------------------

covD(Y,X)= ( X[1]*d(Y[1],u) + X[2]*d(Y[1],v) +

sum(i,1,2, sum(j,1,2, X[i]*Y[j]*GammaII[1,i,j])),

X[1]*d(Y[2],u)+X[2]*d(Y[2],v) +

sum(i,1,2, sum(j,1,2, X[i]*Y[j]*GammaII[2,i,j])) )

------------------------------------------------

X = (u^2,v^2) --i.e. .. = u^2*Eu + v^2*Ev

Y = (u-v, u+v) --i.e. .. = (u-v)*Eu +(u+v)*Ev

covD(Y,X)

Eigenmath output:

Comment. To have a simplified output we help Eigenmath in (1) and (2) to simplify
the coefficients g11 and g22. We use the well-known trigonometric Pythagoras formula.The
output displays the result of ∇XY .

• B Click here to RUN the example.

https://lindnerdrwg.github.io/diffgeo29.html
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Example 24. (covariant derivative of two vector fields on the sphere)
We consider the parametric sphere of radius R. The aim of this example is to verify the
covariant derivatives of the coordinate vector fields E1 = Eu ≡ ∂θ and E2 = Ev ≡ ∂ϕ,
whose results are given in Oloff [22, p.92; p.95].

# EIGENMATH

-- A SPHERE OF RADIUS R

phi(u,v) = (R sin(u) cos(v), R sin(u) sin(v), R cos(u))

-- x y z

U = (u,v)

Eu = d(phi,u)

Eu

Ev = d(phi,v)

Ev

"metric tensor g"

g = zero(2,2)

g[1,1] = dot(d(phi,u), d(phi,u))

g[1,1] = R^2 -- simplified by mind

g[1,2] = dot(d(phi,u), d(phi,v))

g[2,1] = g[1,2]

g[2,2] = dot(d(phi,v), d(phi,v))

g[2,2] = R^2 sin(u)^2 -- simplified by mind

g

gu = inv(g)

gu

Dg = d(g, U)

Dg

GammaI = 1/2 (Dg + transpose(Dg,2,3) - transpose(Dg,2,3,1,2))

GammaI

GammaII = dot(gu, GammaI)

GammaII

------------------------------------------------ COVARIANT DERIVATIVE

covD(Y,X)= ( X[1]*d(Y[1],u) + X[2]*d(Y[1],v) +

sum(i,1,2, sum(j,1,2, X[i]*Y[j]*GammaII[1,i,j])),

X[1]*d(Y[2],u)+X[2]*d(Y[2],v) +

sum(i,1,2, sum(j,1,2, X[i]*Y[j]*GammaII[2,i,j])) )

------------------------------------------------
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D1 = (1,0) -- Eu

D2 = (0,1) -- Ev

covD(D1,D1) --(1)

covD(D1,D2) --(2)

covD(D2,D2) --(3)

• B Click here to RUN the example.

Eigenmath output:

Comment. We interpret the Eigenmath output.
The output associated with line (1) means

covD(D1,D1) = ∇D1D1 =

[
0
0

]
≡ 0 · E1 + 0 · E2

≡ 0 · ∂ϑ + 0 · ∂ϕ = ∇∂ϑ∂
‖Oloff

ϑ = 0

The output associated with line (2) means

covD(D1,D2) = ∇D1D2 =

[
0

cos(u)/ sin(u)

]
≡ 0 · E1 +

cos(u)

sin(u)
· E2 ≡ 0 · ∂ϑ + cot(ϕ) · ∂ϕ

= ∇∂ϑ∂
‖Oloff

ϕ = cot(ϕ) · ∂ϕ

The output associated with line (3) means

covD(D2,D2) = ∇D2D2 =

[
− cos(u) sin(u)

0

]
≡ − cos(u) sin(u) · E1 + 0 · E2

≡ − cos(ϑ) sin(ϑ) · ∂ϑ + 0 · ∂ϕ = ∇∂ϕ∂
‖Oloff

ϕ = − cos(ϑ) sin(ϑ) · ∂ϑ

These results for the covariant derivatives of the coordinate vector fields on the sphere
agree with the results given by Oloff [22, p.92; p.95].

https://lindnerdrwg.github.io/diffgeo30.html
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11.3 Exercise

Exercise 176. (the directional derivative)

In the figure 14 we gave a first visual impression of what the difference of the covariant
derivative of two vector fields and their directional derivative is.

Oloff [22, p.88] gives the following definition of the directional derivative DXY of two
vector fields on a parametrized surface φ : U → IR3 with ∂1 ≡ φu ≡ Eu, ∂2 ≡ φv ≡ Ev:

DXY
Oloff

:= X i∂iY
k∂k (11.3)

a. Interpret formula (10.3) using our Eu, Ev instead of ∂1, ∂2.
Be warned: (10.3) is decoded by means of the Einstein summation convention.
b. Implement DXY as function dirD(Y,X) in Eigenmath and calculate the directional
derivatives of the vector fields of the forgoing examples.
c. Thorpe [36, p.55] gives an alternative geometric definition of the covariant derivative
as the tangential component of the directional derivative, i.e. as orthogonal projection of
the directional derivative onto the tangential space TpS of the surface:

∇XY := DXY − (DXY •N) ·N (11.4)

where N is the unit normal vector (field) of the surface, see also Hitchin [14, p.64] or
Shifrin [32, p.67]

Implement definition (11.4) in Eigenmath and reproduce some results of the examples of
this chapter.

Remark. Definition (11.4) uses the normal vector and is therefore an extrinsic concept.
The definition (11.2) uses only the 1st fundamental form and the Christoffel tensor and
belongs to intrinsic geometry.

• Consider the following parametric surfaces. Task: Calculate the covariant derivatives
∇XY of the vector fields X = (u2, v2) ≡ u2 ∗ Eu + v2 ∗ Ev and Y = (u − v, u + v) ≡
(u− v) ∗ Eu + (u+ v) ∗ Ev on the respective surface φ using Eigenmath . . .

Exercise 177. . . . the cylinder φ(u, v) = (a cos(v), a sin(v), u). Choose a = 1.

Exercise 178. the cone φ(u, v) = (u cos(v), u sin(v), u).

Exercise 179. the hyperbolic paraboloid φ(u, v) = (u, v, u2 − v2).

Exercise 180. the monkey saddle φ(u, v) = (u, v, u3 − 3uv2).

Exercise 181. the function graph φ(u, v) = (u, v, f(u, v)).

Exercise 182. the surface of revolution φ(u, v) = (f(u) cos(v), f(u) sin(v), g(u)).

Exercise 183. the Plücker conoid φ(u, v) = (v · cos(u), v · sin(u), 2 cos(u) · sin(u)).



11 COVARIANT DERIVATIVE 112

Exercise 184. the Scherk surface φ(u, v) = (u, v, ln( cos v
cosu

)).

Exercise 185. the hexenhut φ(u, v) = (α/
√
u · cos v, α/

√
u · sin v, u) where α2 = 2

3
√
3
.

Exercise 186. the ’hexe’ surface φ(u, v) = (
√
u · cos v,

√
u · sin v, u).

Exercise 187. Do some more covariant derivatives of vector fields of your choice on sur-
faces you are interested in.

♥

This ends our first steps into the Elementary Differential Geometry using Eigenmath as
our companion.
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12 Appendix: source code of diffgeoBox

This is a collection of the relevant definitions from the booklet. This file could be loaded
to do calculations with tensors using Eigenmath.

################ (2023) Dr.W.G. Lindner, Leichlingen DE

### diffgeoBox Differential Geometry box

################

-- ========================= Pattern to calculate

-- K,H,kappa,Christoffel,Riemann,Ricci,R

-- ------------------------- of parametization phi

phi(u,v) = (u,v, u+v) -- parametrization, please adjust 3rd component

phiu = d(phi,u) -- tangential space basis

phiv = d(phi,v)

U = (u,v) -- coordinates on TpS

-- surface metric tensor

g(i,j) = dot(d(phi, U[i]), d(phi,U[j]))

g = ((g(1,1),g(1,2)), (g(2,1),g(2,2)))

g

do( E=g[1,1], F=g[1,2], G=g[2,2]) -- classic names for g

gu = inv(g) -- inverse of g

V = 1/sqrt(det(g)) -- volume element

N = cross(phiu, phiv) -- surface normal vector field

N

-- 2nd fund. form

h(i,j) = 1/V*dot( cross(d(phi,u), d(phi,v)), d(phi,U[i],U[j]))

h = ( (h(1,1),h(1,2)), (h(2,1),h(2,2)))

h

do( L=h[1,1], M=h[1,2], N=h[2,2]) -- classic names for h

A = dot(gu, h) -- shape operator

A

K = det(A) -- GAUSS curvature

K

H = contract(A) -- mean curvature

H

Dg = d(g, U) -- partial derivatives

-- ------------------------- BEGIN of code by G. Weigt
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GammaI = 1/2 (Dg + transpose(Dg,2,3) - transpose(Dg,2,3,1,2))

GammaII = dot(gu, GammaI)

GammaII

T1 = d(GammaII, U)

T2 = dot(transpose(GammaII,2,3), GammaII)

RII = transpose(T1,3,4) -T1+ transpose(T2,2,3) - transpose(T2,2,3,3,4)

RII -- RIEMANN tensor Ri^jkl 2nd kind

RI = dot(g, RII) -- RIEMANN tensor Rijkl 1st kind

RI

Ric = contract(RII,1,3) -- RICCI tensor

Ric

-- RICCI curvature scalar

R = contract( dot( gu, transpose(Ric)))

R

-- ------------------------- END of code by G. Weigt

-- CHRISTOFFEL symbols coefficients

gammaI(i,j,k) = 1/2 * ( d(g[j,k],U[i]) +

d(g[i,k],U[j]) - d(g[i,j],U[k]) )

--gammaI(1,2,2)

gammaII(k,l,m) = sum(i,1,2, gu[k,i]*1/2 *

( d(g[m,i],U[l]) + d(g[l,i],U[m]) - d(g[m,l],U[i]) ))

--gammaII(1,2,2)

Kintrinsic(u,v)= do( -- intrinsic curvature

Ch111 = gammaII(1,1,1),

Ch121 = gammaII(1,2,1),

Ch211 = gammaII(2,1,1),

Ch221 = gammaII(2,2,1),

Ch222 = gammaII(2,2,2),

Kintrinsic1 = 1/g[1,1]*(

d(Ch211,v) - d(Ch221,u) +

Ch221*(Ch111-Ch221) + Ch211*(Ch222-Ch121)),

Kintrinsic1)

-- RIEMANN curvature Rijkl coefficients

RiemI(b,m,s,q) = d(gammaI(b,m,q),U[s]) - d(gammaI(b,m,s),U[q]) +

sum(n,1,2, gammaI(b,n,s)*gammaII(n,m,q) ) -

sum(n,1,2, gammaI(b,n,q)*gammaII(n,m,s) )

--RiemI(1,2,1,2)
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-- RIEMANN curvature Ri^jkl coefficients

RiemII(b,m,s,q) = d(gammaII(b,m,q),U[s]) - d(gammaII(b,m,s),U[q]) +

sum(n,1,2, gammaII(b,n,s)*gammaII(n,m,q) ) -

sum(n,1,2, gammaII(b,n,q)*gammaII(n,m,s) )

--RiemII(1,2,1,2)

-- RICCI tensor coefficients

Ricci(m,q) = sum( s,1,2, RiemII(s,m,s,q))

--Ricci(1,2)

--RICCI curvature scalar

Rcs = sum( i,1,2, sum(j,1,2, gu[i,j]*Ricci(i,j) ))

--Rcs

---- DEFINITION of covariant derivative

covD(Y,X)= ( X[1]*d(Y[1],u) + X[2]*d(Y[1],v) +

sum(i,1,2, sum(j,1,2, X[i]*Y[j]*GammaII[1,i,j])),

X[1]*d(Y[2],u)+X[2]*d(Y[2],v) +

sum(i,1,2, sum(j,1,2, X[i]*Y[j]*GammaII[2,i,j])) )

• B Click here to GET the code.

https://lindnerdrwg.github.io/diffgeo.html
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url: https://mathworld.wolfram.com/PlueckersConoid.html

[51] Wolfram mathworld: Scherk’s Surface.
url: https://mathworld.wolfram.com/ScherksMinimalSurfaces.html

[52] Wolfram mathworld: Sphere.
url: https://mathworld.wolfram.com/Sphere.html

https://mathworld.wolfram.com/PlueckersConoid.html
https://mathworld.wolfram.com/ScherksMinimalSurfaces.html
https://mathworld.wolfram.com/Sphere.html

	Surfaces in Three Dimensions
	Definition - Surface
	Function Surfaces
	Level Surfaces
	Parametric Surfaces

	The Gauss Map
	Definition
	Examples of surface normals
	Exercises

	The First Fundamental Form
	Definition
	Implementation and Examples
	Exercises

	The Second Fundamental Form
	Definition
	Implementation and Examples
	Exercises

	Shape Operator and Weingarten Map
	Definition
	Examples
	Exercises

	Scalar Curvature Measures
	Definition
	Examples
	Exercises

	Christoffel Symbols and Riemann Tensors
	Definition
	Example -  and Ri jkl for the surface z=xy
	Example -  and Ri jkl for the Helicoid
	Exercises

	Intrinsic Curvature
	Definition
	Implementation and Examples
	Exercises

	Riccci Tensor and Gauss Theorema egregium
	Definition - Ricci curvature
	Gauss's Theorema Egregium
	Implementation and Examples
	The sine-Gordon Equation
	The Ricci scalar of the Schwarzschild Spacetime Metric
	The Ricci scalar of the Gödel Spacetime Metric
	Exercises

	The Fundamental Theorem
	The Weingarten Equations
	The Gauss Equations
	The Codazzi-Mainardi Equations
	The Fundamental Theorem of Surfaces Theory
	Exercises

	Covariant Derivative
	Definition
	Implementation and Examples
	Exercise

	Appendix: source code of diffgeoBox
	Bibliography

