
Analyses ZDM 2003 Vol. 35 (2)

36

CAS-supported Multiple

Representations in Elementary Linear

Algebra

The Case of the Gaussian Algorithm

Wolfgang Lindner, Duisburg (Germany)

Abstract: Usually the Gaussian algorithm (GA) is presented at
school as a method of solving a given system of linear equations
by reducing it to a “triangular form”. In contrast to this
technically oriented view, I will demonstrate a CAS-supported
learning environment which includes a visual representation of
GA and an activity-oriented „Gauss-game”. This game stresses
the concept of elementary matrices and leads directly to a partial
implementation of GA in the form of a „semi-automatic”
functional CAS-program. These multiple representation of GA
tries to take into consideration the research results on mental
representations, to design rich variations of student activities
and thereby to lead leading to webbeb concepts around GA. The
CAS MuPAD is used.

Kurzreferat: Üblicherweise wird der Gauß-Algorithmus (GA)
in der Schule als eine Methode präsentiert, ein gegebenes
lineares Gleichungssystem durch Reduktion auf Dreiecksgestalt
zu lösen. Im Gegensatz zu dieser technisch orientierten Sicht
wird hier ein CAS-gestütztes Lernarrangement skizziert,
welches eine visuelle Repräsentation des GA und ein
handlungsorientiertes „Gauss-Spiel” einschließt. Dieses Spiel
basiert auf dem Konzept der Elementarmatrizen und führt
unmittelbar zu einer partiellen Implementation des GA in Form
eines „semi-automatischen” funktionalen CAS-Programms. Die
multiplen Repräsentationen des GA versuchen Forschungs-
befunde über mentale Repräsentationen aufzugreifen, um
reichhaltige Aktivitäten der Lernenden zu ermöglichen und
dadurch Vernetzungen im Umkreis des GA anzubahnen. Benutzt
wird das CAS MuPAD.

ZDM-Classification: A30, A4

1. Introduction

Recent research in the theory of learning mathematics has
stressed the importance of multiple representations for the
learning process. Consequently, recommendations in the
US NCTM-2000 Standards mention corresponding
didactic rules in teaching mathematics, e.g. the Rule of

Four: (re)present every mathematical topic numerically,
graphically, algebraically (analytically) and
descriptively.

This rule aims at the learner´s cognitive flexibility, with
is an important requirement for mastering complex and
open situations. Often this flexibility can be regarded as
the capability to switch fluently between different mental
representations of an object. The construction of flexible
knowledge is supported by using multiple forms of
representation of central mathematical concepts in the
learning process.

In this paper I will use the Computer Algebra System
(CAS) MuPAD as a technical medium for the
construction of multiple representations in learning
arrangements for elementary Linear Algebra, especially

for the teaching of Gauss-Jordan algorithm. The reader
who is familiar with the symbolic CAS Maple will
immediately feel at home, because both syntax and
semantics of MuPAD are comparable with Maple. There
exists a fully functional free version MuPAD Light, so the
interested reader can test the code and the system.

The CAS-environments itself are designed as moderate
constructivistic learning situations; experimental problem
contexts, confrontation with learning obstacles to invoke
mistakes, misconceptions, conflicts or surprising
outcomes are essential design components. Usually the
problems and exercises were presented in the form of
activity-based problem-oriented notebooks or worksheets,
sometimes as small lectures with open-ended mini-
projects presented as hyperlinked MuPAD specific DVI-
files which were then included and invoked as part of the
MuPAD help system.

2. Standard computational representation of GAUSS-

algorithm

Looking at current German textbooks on elementary
Linear Algebra at High School one will recognize that
most books start with the solution of systems of linear
equations using Gaussian elimination and are heavily
involved in numerical calculations and algebraic
operations (e.g. adding a multiple of one equation to
another). As a result, the topic - despite some word
problems -remains very formal and thus contradics the
Rule of the Four. Here is a typical example formulated in
MuPAD’s symbolic language in the form of a notebook
instead of on paper:

• // ..solving LGS by hand in worksheet

A := matrix([[3, 6, 6], // 3x+6y = 6
 [2, 3,3.5]]);// 2x+3y = 3.5

A1:= matrix([[1, 2, 2], // 1x+2y = 2
 [2, 3,3.5]]);// 2x+3y = 3.5

A2:= matrix([[1, 2, 2],
 [0,-1,-0.5]]);

A3:= matrix([[1, 2, 2],
 [0, 1, 0.5]]);

A4:= matrix([[1, 0, 1],
 [0, 1, 0.5]]);

linalg::gaussJordan(A); //verified by CAS
 +- -+
 | 1, 0, 1.0 |
 | 0, 1, 0.5 |
 +- -+

The solution process for the linear system is presented
simultaneously in matrix form and – at the right side of
the MuPAD commentary sign “//” - in equation form. The
last line invokes the built-in procedure gaussJordan of
the linalg-package, which immediately solves the
given system. In view of this productivity of the CAS it is
no longer reasonable that students learn the process of
elimination with paper and pencil in the form of the usual
“algorithmic” pattern.

ZDM 2003 Vol. 35 (2) Analyses

37

Redesigning the curriculum of elementary Linear
Algebra in schools therefore leads to the following
question: Should we cancel the Gaussian elimination or
are there still some benefits? And how can we redesign
the learning sequence? In order to find an answer to this
question I propose to locally extend the Rule of the Four
to the Rule of the Five by enriching the instruction
process “cas”ually with CAS-procedures (algorithmic
view). The surplus using CAS could be:
- to get insight by CAS visualizations, instead of only

calculating numbers
- to tutor the learning process by giving intermediate

results via the use of CAS
- to stimulate concept formation (i.e. the concept of the

inverse matrix)
- to use elementary programming activities as a

constructive substitution of mathematical proof
techniques – both are intellectually demanding thought
processes, which can spend emotional satisfaction.

3. Visual representations of GAUSS-algorithm

In the following chapters I will sketch a CAS learning
arrangement for the Gaussian algorithm (GA). I
presuppose that the students have a thorough
understanding of the concept of matrices and the
accompanying operations, especially of matrix
multiplication as discussed in Strang (1998). After two
well-known but different graphical representation I will
propose a new one: the matrix image of the GA solution

process. All three representations of the solution process
of a system of linear equations were given nearly
simultaneously to the students, e.g. in the same
cooperative CAS learning arrangement thus acting as a
“big” advanced organizer in the sense of Ausubel and
connecting the different approaches from the very
beginning.

3.1 Representation using the Row Image

Taking for example the simple linear system of §2 given
by the augmented system matrix A we let the students
watch and discuss the graphical illustration of the GA-
solution process A, A2, A3, A4:
• read("RowImage2d"): // user procedure

RowImage2d(A4) // final state:

Fig. 1: Row image of the solution process for a 2 by 2 system.

In this RowImage each row of matrix A is represented
visually as a line. The solution is the point (1;0.5) where

the lines meet. The coordinates of the solution point
remain invariant throughout the solution process. GA
adjusts the lines into a standard position parallel to the
axes where the solution is read off “best”.

The corresponding MuPAD code for the user-written
procedure RowImage2d may be written by the students
as an exercise and reflects the underlying mathematical
thoughts; the vertical line is produced as a polygon
between two points. The last line writes the code into a
file (frozen in machine readable form, which hides the
coding as a Black Box) named "RowImage2d":
• RowImage2d := proc(A:matrix,

 x1=-5,x2=5,y1=-5,y2=5)
begin
plotfunc2d(
 if A[2,1]=0

 then A[2,3]/A[2,2]
 else (A[2,3]-A[2,1]*x)/A[2,2]

 end_if,
 if A[1,2]=0

 then
 [Mode=List,

 [polygon(point(A[1,3]/A[1,1],y1),
 point(A[1,3]/A[1,1],y2))]]
 else (A[1,3]-A[1,1]*x)/A[1,2]

end_if,
 x=x1..x2, ViewingBox=[x1,x2,y1,y2],
 Ticks=[abs(x1)+abs(x2)+1,

 abs(x1)+abs(x2)+1],
 GridLines=Automatic)
end_proc:
write("RowImage2d", RowImage2d);

This MuPAD procedure RowImage2d was then used as
an exploration aid in the problem sets.

3.2 Representation using the Column Image
We will now look at the same linear system A from
another window by changing the representation.

In the ColumnImage of the solution process each
column of system matrix A is represented visually as a
(column) vector starting at the origin. The Gaussian
algorithm transforms the column vectors of A into a
standard position (“basis”) where the solution of the
linear system is immediately read:

Fig. 2: Column Image of Gauss algorithm for the linear system.

The start configuration is illustrated in Fig. 2, left; Fig.
2 left, for example, is produced via the following call:

Analyses ZDM 2003 Vol. 35 (2)

38

• plot(ColumnImage(A4),
 ViewingBox=[0,7,-2,5],
 Ticks=[8,8],GridLines=Automatic)

Remark: The implementation of the procedure
ColumnImage is rather technical and therefore used as
black box by the students.

3.3 Representation using the Matrix Image

Whereas the row picture and the column picture as visual
representation of Gaussian algorithm are well known
(Strang, 1998, p.22 ff) I suggest another view on the
solution process of the same linear system A, changing
the representation a third time: the MatrixImage of A
visualizes the columns of A as a polygonal line joining
these columns (“points”) from the first one to the last
with the last connection dashed. Here is, for example, the
chain of MatrixImage`s, which represent the snapshots of
the GA solution process A,.., A4 in §2:

Fig. 4a,b: Chain of Matrix Images of Gauss algorithm for the 2

by 2 linear System A; starting position and whole scene

In the MatrixImage view of the Gaussian algorithm the
linear system is again transformed from a start
configuration (Fig. 4a) into a standard position
(“canonical basis path”: from [1;0] via [0;1] to solution
[1;0.5]; see Fig. 4b) where the solution of the linear
system is immediately read from the endpoint. A surplus
is gained by regarding the transformation steps as linear
mappings acting on the foregoing matrix (“polygonal
figure”). The students can identify and explore shears,
stretchings, reflections in the x-axis etc, see Banchoff
(1983).

Remark: The implementation of the procedure
MatrixImage is again technical and therefore used as
black box by the students.

4. Intermezzo: Playing with Elementary Matrices

In describing the solution process of a linear system of
equations we are naturally led to the consideration of
elementary matrices, which en passant allows for the
construction of the inverse of a regular matrix and at the
same time evokes an idea of implementing a functional
version of the Gauss algorithm.

4.1 Playing with Elementary Matrices

Using the following Elementary-Matrix-Game the
students get a CAS-activity based informal concept of
elementary matrices and their properties.
Elementary-Matrix-Game:

Play ElementaryMatrix with your partner 10 times in
turn. Each player writes down an elementary matrix
e.g. EM(2,1,-2,3) as input at the MuPAD prompt,
both then write their prediction for the MuPAD output
matrix on paper.
! The player with the most correct predictions wins.
! OK, you can also play ElementaryMatrix EM as

solitaire at home.

• EM := (i,j,k,d,M) ->
 (M:=matrix(d,d,1,Diagonal);
 M[i,j]:=k;
 return(M)):

• matrix(2,3, -1,Diagonal)

 +- -+
 | -1, 0, 0 |
 | |
 | 0, -1, 0 |
 +- -+

• EM(2,1,-2,3); // <- change input here
 +- -+
 | 1, 0, 0 |
 | |
 | -2, 1, 0 |
 | |
 | 0, 0, 1 |
 +- -+

The meaning of the input parameters of EM should
become clear without any problems.

4.2 Playing with actions of Elementary Matrices from

the left

To let the students explore the effects of EM-matrices
acting from the left on a given matrix (linear system) A, I
designed the following cooperative
Effect-on-Matrix-Game: Play with your partner 10

times Effect-on-Matrix. Each player alters in turn one
of the first three variables in EM(1,1,1,2)*A, e.g. in
EM(2,1,-2,3) and both write their prediction for the
MuPAD output on paper.
! The player with the most correct predictions wins.
! You can play on level 2: here you must alter 2 of

the first three inputs in EM(1,1,1,2).
! You can use MatrixImage or another visualiza-

tion to consolidate your insight.
! Can you think of a level 3?

• A := matrix([[3,6,6], [2,3,3.5]]);
EM(1,1,2,2)*A;

ZDM 2003 Vol. 35 (2) Analyses

39

 +- -+ +- -+
3, 6, 6		6, 12, 12
2, 3, 3.5		2, 3, 3.5
 +- -+ +- -+

4.3 Playing GAUSS-JORDAN

Now I will show a CAS based learning arrangement in
the form of a game, which leads to a constructive concept
of the inverse of a matrix. At the same time the GA
algorithm becomes clear and an idea of using elementary
matrices for explicitly implementing GA arises.
GAUSS-JORDAN-Game: Beginning from the right,

the players take turns altering exactly one EM-factor in
the following equation #3. At the same time the
corresponding matrices in line #1 and #2 are altered.
The MuPAD output is watched. The game is over if one
player reaches the final output
 +- -+
 | 1, 0, 1.0 |
 | |
 | 0, 1, 0.5 |
 +- -+

and the solution of the well-known linear system A
emerges.

Before starting the game, we fix on 2-dimensional EM-
matrices for easy playing:
• EM := (i,j,k,d,M) ->

 (d:=2; // fixing on 2x2-Mat's
 M:= matrix(d,d,1,Diagonal);
 M[i,j]:=k; return(M)):

A := matrix([[3,6,6], [2,3,3.5]]);

We now demonstrate a first possible move; #1# gives
the sequence, #2# the product and #3# the changing A:

• EM(1,1,1),EM(1,1,1),EM(1,1,1/3); #1#
EM(1,1,1)*EM(1,1,1)*EM(1,1,1/3); #2#
EM(1,1,1)*EM(1,1,1)*EM(1,1,1/3)*A; #3#
// (3) (2) (1)

! Repeat the game and alter the matrix A of the
given linear system.

! You can play on level 2: delete rows #1 and #3
playing only on line #3

! You can use MatrixImage or another
visualization to consolidate your insight.

! This is the demanding level 3: can you go back
from the solution position to the start matrix A?

4.4 Playing and exploring further – getting an idea of

Invertibility
The CAS-learning arrangement in 4.3 demonstrated the
equivalence of the GA-transforming steps by using the
invertability of the elementary matrices and thus
transforming the “solution matrix” back into the given
linear system A. All concepts were stabilized by means of
visual multiple representations and action-based
cooperative CAS-games.

Compacting all EM-factors of the solution process in a
single resulting matrix G (resp. G_ for reversing the
process) the students construct the mathematical concept

of the inverse matrix in an informal way. The following
MuPAD notebook provides an outline:

• // Solution of last GAUSS-JORDAN-game:
EM(1,2,-2,2)*EM(2,2,-1,2)*EM(2,1,-2,2)

 *EM(1,1,1/3,2)*A;
 +- -+

 | 1, 0, 1.0 |
 | |
 | 0, 1, 0.5 |
 +- -+

• G:=EM(1,2,-2,2)*EM(2,2,-1,2)*
 EM(2,1,-2,2)*EM(1,1,1/3,2)

 +- -+
 | -1, 2 |
 | |
 | 2/3, -1 |
 +- -+

• G*A // Test
 +- -+
 | 1, 0, 1.0 |
 | |
 | 0, 1, 0.5 |
 +- -+

Defining the coefficient Matrix A_ of the system
matrix A, the students can see that G equals the built-in
inverse of A_:

• A_ := matrix([[3,6], [2,3]]);
• A_^-1
 +- -+
 | -1, 2 |
 | |
 | 2/3, -1 |
 +- -+

• A_^-1*A;
• linalg::gaussJordan(A); // same results

 +- -+ +- -+
 | 1, 0, 1.0 | | 1, 0, 1.0 |
 | | | |
 | 0, 1, 0.5 | | 0, 1, 0.5 |
 +- -+ +- -+

To sum up, up to this point the students have explored
the properties and effects of EM-matrices for the solution
process of systems of linear equations. The constructive
concept of the inverse A-1 of a given matrix A as product
of elementary matrices has evolved and is consolidated.
Now we are reaching a point where we can generate
hypotheses about the process of inverting, arguing rules
and proving theorems about (..)-1. After an experimental
CAS supported phase in the learning process we are now
entering the exactification phase in the sense of
Buchberger’s creativity helix (Heugl 1996, p. 82 ff). In
reconstructing elementary Linear Algebra from a CAS
point of view it is now possible to forget about the
technical solution process for solving systems of linear
equations and simply use the built-in Swiss army knifes
like (..)-1 or gaussJordan to further study the theory of
linear equations.

Alternatively it is possible to use the insight in the
construction process of A-1 resp. the solution process for
an linear system to program a simple tutorial version of

Analyses ZDM 2003 Vol. 35 (2)

40

Gaussian algorithm. This will be demonstrated next.

4.5 Motivating a program for GAUSS-JORDAN

algorithm in MuPAD

In the next paragraph we will consider the following 3 by
3 system of linear equations given in form of the
augmented system matrix B. To motivate the students for
the algorithm we let them solve the system B using EM-
matrices:
• B:=matrix([[2, 4,-2, 2], //2x+4y-2z = 2

 [4, 9,-3, 8], //4x+9y-3z = 8
 [-2,-3, 7,10]])//-2x-3y+7z=10

• EM(2,1,-2,3)*B
• EM(3,1,1,3)*EM(2,1,-2,3)*B
• EM(3,2,-1,3)*EM(3,1,1,3)*EM(2,1,-2,3)*B
• EM(3,3,1/4,3)*EM(3,2,-1,3)

 *EM(3,1,1,3)*EM(2,1,-2,3)*B

• EM(1,1,1/2,3)*EM(3,3,1/4,3)*EM(3,2,-1,3)
 *EM(3,1,1,3)*EM(2,1,-2,3)*B

We let them control the result using B-1 or
linalg::gaussJordan. Then they had to read in the
following unknown procedure rref, which also gives the
result but shows all relevant intermediate steps of the

solution process as a surprise:
• read("rref"):

rref(B);

 +- -+ -- +- -+
 | 1, 0, 0, -1 | | | 2, 4, -2, 2 |
 | | | | |
 | 0, 1, 0, 2 |, | | 4, 9, -3, 8 |,
 | | | | |
 | 0, 0, 1, 2 | | | -2, -3, 7, 10 |
 +- -+ -- +- -+

 +- -+ +- -+
 | 2, 4, -2, 2 | | 2, 4, -2, 2 |
 | | | |
 | 0, 1, 1, 4 |, | 0, 1, 1, 4 |,
 | | | |
 | 0, 1, 5, 12 | | 0, 0, 4, 8 |
 +- -+ +- -+ ..

This rises the question for the curious ones: how is
rref constructed? Can we remake it? The following
topic was therefore presented to some of my students in
the form of a bonus mini-project. It demonstrates another
didactic surplus in a productive CAS learning
arrangement.

5. A functional teaching-code version of the Gauss-

Jordan algorithm in MuPAD

In their preface Kernighan (1999, S.) list some important
programming principles: "These include simplicity, which
keeps programs short and manageable; clarity, which
makes sure they are easy to understand[..]; generality,
which means they work well in a broad range of
situations[..]; and automation, which lets the machine do
the work for us, freeing us from mundane tasks." In the
following, to realize some of these principles, I will use
the concept of semi-automatic algorithms, which was
mentioned independently by Sarvari (2001) and Lindner
(2001).

The next CAS mini-project shows a functional program

for the Gauss-Jordan algorithm (GJ). The code is
teaching-code and uses insights concerning elementary
matrices. The procedures will extend the professionally
implemented built-in procedure with tutorial elements by
showing intermediate results.

The plan is to program each phase of GJ as a stand-
alone MuPAD function. This way we will try to maintain
simplicity and clarity, being able to test each part of the
whole algorithm alone. At the end we will paste the
working parts together using the mathematical concept of

composition. This strategy is called functional

programming.

5.2.1 Going down for Elimination

Knowing about the usefulness of elementary matrices for
the elimination process (4.2), let us go down for
elimination building products of EM’s:

• export(linalg, nrows, ncols, col):

• Gdown:=(v,k)->
 _mult(EM(i,k,-v[i]/v[k], nrows(v))
 $i=k+1..nrows(v)):

Elimination := A ->
((A:=Gdown(col(A,i),i)*A)
 $ i=1.. ncols(A)-1; return(A)):

Elimination_:= A ->
(A:=Gdown(col(A,i),i)*A)
 $ i=1.. ncols(A)-1:

Note the use of explicit return(A) in function
Elimination, which therefore only gives back the last

value of matrix A, whereas omitting return(A) shows

all intermediate results:
• Elimination(B);
 +- -+
 | 2, 4, -2, 2 |
 | |
 | 0, 1, 1, 4 |
 | |
 | 0, 1, 5, 12 |
 +- -+

• Elimination(B);
 +- -+ +- -+
 | 2, 4, -2, 2 | | 2, 4, -2, 2 |
 | | | |
 | 0, 1, 1, 4 |, | 0, 1, 1, 4 |,
 | | | |
 | 0, 1, 5, 12 | | 0, 0, 4, 8 |
 +- -+ +- -+ ...

Every part of the code is testable alone so the student
can see the parts working. This is possible because
MuPAD works as interpreter:

• v:=col(B,1); Gdown(col(B,1),1);

 +- -+ +- -+
 | 2 | | 1, 0, 0 |
 | 4 | | -2, 1, 0 |
 | -2 | | 1, 0, 1 |
 +- -+ +- -+

• EM(i,1,-v[i]/v[1],nrows(v))
 $i=1+1..nrows(v);

ZDM 2003 Vol. 35 (2) Analyses

41

 +- -+ +- -+
 | 1, 0, 0 | | 1, 0, 0 |
 | | | |
 | -2, 1, 0 |, | 0, 1, 0 |
 | | | |
 | 0, 0, 1 | | 1, 0, 1 |

 +- -+ +- +

G(auss)down gets a column v of the coefficient matrix
A and a position (e.g. k) in v and builds the product of all
eliminating elementary matrices EM below this position
k. Such a product with many factors is realized in
MuPAD using _mult(..). The function Elimination
is now performing the process of repeated eliminations in
all columns of A using this helper function Gdown for the
elimination of a single column. In each step we get a
changed A (e.g. A1, A2, ..), so that the next elimination
step works on this changed intermediate result: therefore
this result must be memorized with A:=..

It is important to mention that the two lines above for
the procedures Gdown und Elimination are function-
ally equivalent to the code of GaussElimin in 5.1.

5.2.2 Going down for Normalization

This is a simple task:

• Gnorm := A ->
 _mult(EM(i,i, 1/A[i,i],nrows(A))
 $i=1..nrows(A)):
 // o.k.- it’s critical ..
Normalization := (A)-> Gnorm(A) * A:

Test suite:

• Gnorm(Elimination(B));
 +- -+
 | 1/2, 0, 0 |
 | |
 | 0, 1, 0 |
 | |
 | 0, 0, 1/4 |
 +- -+

• Normalization(Elimination(B));
 +- -+
 | 1, 2, -1, 1 |
 | |
 | 0, 1, 1, 4 |
 | |
 | 0, 0, 1, 2 |
 +- -+

5.2.3 Going up for (Back-) Substitution

We have learned to eliminate (going down), so we can
also do back-substitution (going up):

• Gup := (v,k) ->
 _mult(EM(i,k,-v[i]/v[k],nrows(v))
 $i=1..k-1):

• Substitution := A ->
 ((A:=Gup(col(A,i),i)*A) $i=1..nrows(A):
 return(A)):

• Substitution_:= A ->
 (A:=Gup(col(A,i),i)*A) $i=1..nrows(A):

Test suite:
• Substitution_(Normalization

 (Elimination(B)));

+- -+ +- -+ +- -+
1, 2, -1, 1		1, 0, -3, -7		1, 0, 0, -1
0, 1, 1, 4	,	0, 1, 1, 4	,	0, 1, 0, 2
0, 0, 1, 2		0, 0, 1, 2		0, 0, 1, 2
 +- -+ +- -+ +- -+

5.2.4 Composing one after another

This again is simple: we use MuPAD’s functional
composition operator @ just as in mathematics and finally
abstract the whole solution process in the function
rref1:
• rref1 := B -> (Substitution @

 Normalization @
 Elimination)(B);

Test suite:

• rref1(B);
• linalg::gaussJordan(B);
 +- -+
 | 1, 0, 0, -1 |
 | |
 | 0, 1, 0, 2 |
 | |
 | 0, 0, 1, 2 |
 +- -+

As a result, the black box gaussJordan alias rref1
(=row reduced echelon form) is brightened to a white
box. This is not the whole story but only a first step to a
deeper understanding. For school the above insight
should be sufficient because afterwards we can use the
professional built-in version linalg::gaussJordan.

6. Conclusions

This article has demonstrated a productive, cooperative,
activity-based CAS-learning arrangement for the Gauss-
Jordan algorithm for the solution of systems of linear
equations. It focuses on the use of invertible elementary
matrices in both mathematical and programming aspects.
Important mathematical concepts (matrix, operations) and
informatical concepts (data and control structure; user-
defined vs. built-in functions) evolved in an informal
manner thus avoiding well-known problems of
conceptualization in elementary Linear Algebra. With
simple (semi)automatic MuPAD-functions we focused on
the crucial steps of the algorithm but did not get lost in
administrative program-specific technical details. This
way we tried to reduce the formal aspect of mathematics
res. informatics to the necessary extend and to keep the
considerations for our students simple and clear. Also we
tried to substitute purely mathematical existence proofs
(e.g. the construction of the inverse matrix) by
algorithmic constructions and to support procedural
thought processes.

It should be mentioned that the procedure
MatrixImage could also be used as means for multiple
representations in 3D:

Analyses ZDM 2003 Vol. 35 (2)

42

Fig. 5: 3D MatrixImage of 3 by 3 linear system B

Remark: It should be mentioned that the normal
matrix output of MuPAD is pretty-printed. Because of
printing reasons this was changed to ASCII output in the
text above.

References
Banchoff, T.; Wermer, J. (1983): Linear Algebra Through Geo-

metry. New York: Springer
Heugl, H.; Klinger, W.; Lechner, J. (1996): Mathematikunter-

richt mit Computeralgebrasystemen. Bonn: Addison-Wesley
Kernighan, B.W.; Pike, R. (1999): The Practice of

Programming. Bonn: Addison-Wesley
Lindner, W. , (2001): Misconceptions around Matrix multiplica-

tion and their Correction in Dialogue with CAS. – In: R. Soro
(Ed.), Current State of Research on Mathematical Beliefs X,
Proceedings of the MAVI-10 European Workshop 2001.
Turku: Pre-Print Series of University of Turku, No. 1, 41-46

Lindner, W. (2002): The Digraph-CAS-Environment and corres-
ponding Elementary Programming Concepts. – In: M.
Borovcnik, H. Kautschitsch (Eds), Technology in Mathe-
matics Teaching, Proceedings of the ICTMT 5 in Klagenfurt
2001. – Wien: öbv&hpt (Schriftenreihe Didaktik der Mathe-
matik v. 26), S. 199-202

Sarvari, C. (2001): Rolle der CAS in der Entwicklung des
mathematischen Denkens. – In: G. Kaiser (Ed), Beiträge zum
Mathematikunterricht 2001, Proceedings of the 35. GDM in
Ludwigsburg. - Bad Salzdetfurth: Franzbecker, S. 528-531

Strang, G. (1998): Introduction to Linear Algebra. – Wellesley:

Wellesley-Cambride Press

Autor

Lindner, Wolfgang, Fakultät 4 – Naturwissenschaften, Institut
für Mathematik LE 424, Gerhard-Mercator-Universität
Duisburg, Lotharstr. 65, D-47048 Duisburg.
E-mail: Lindner@math.uni-duisburg.de

